UWB-SAR图像中的目标检测与鉴别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对超宽带合成孔径雷达(Ultra Wide Band Synthetic Aperture Radar,即UWB-SAR)探测叶簇隐蔽目标的应用需求,对UWB-SAR图像中的目标检测与鉴别问题进行了系统深入的研究。
     首先综述了UWB-SAR目标检测与鉴别问题的研究现状、方法和意义,指出了UWB-SAR目标检测与鉴别在UWB-SAR自动目标识别系统中的位置和现存问题。
     第二章研究了UWB-SAR图像中的恒虚警率(Constant False Alarm Rate,即CFAR)目标检测问题。采用试验数据分析了UWB-SAR图像中各种不同植被覆盖类型杂波的统计特性,并基于得到的结论提出了一种CFAR目标检测方法,该方法在一个通用形式下,能够在已知类型的不同植被覆盖杂波中实现CFAR处理;提出了一种快速统计量计算方法,该方法能大大提高CFAR算法的计算效率。
     第三章针对目标检测与鉴别的应用需求研究了UWB-SAR图像中的目标特征提取方法。基于UWB-SAR回波模型和成像原理,研究了用频域滤波的方法在UWB-SAR图像频域支撑中提取目标的方向域、频率域和分辨率域特征的方法,给出了相应的滤波器设计;建立了UWB-SAR目标模型,改进了隐马尔可夫模型和统计分析方法用于特征整合;研究了UWB-SAR点目标检测及树干杂波抑制问题;实验结果表明,所研究的结果能改善UWB-SAR目标检测与鉴别的性能。
     第四章研究了UWB-SAR图像中的非均匀背景目标检测问题。针对UWB-SAR图像中杂波统计模型随植被覆盖类型漂移的问题,在改进了α截集雷达杂波识别方法的基础上,提出了一种对杂波统计模型自适应的CFAR检测方法,有效地实现了在不同植被覆盖类型下的CFAR目标检测;针对杂波边沿的非均匀性,基于变量索引CFAR方法研究了UWB-SAR图像中强弱杂波边沿处的CFAR检测问题,实现了在杂波边沿处的CFAR目标检测;实验结果验证了方法的有效性。
     第五章研究了UWB-SAR图像中目标检测与鉴别的定量性能评估方法。基于接收机工作特性曲线,提出了两种对目标检测算法性能进行定量评估的方法;以目标与杂波的可分离性为度量,引入了两个用于评估特征提取方法的性能指标;针对UWB-SAR图像中杂波与目标的特点,改进了UWB-SAR图像中目标检测与鉴别性能评估中若干参量的计算方法。
     最后系统地总结了全文的工作,并给出了进一步研究的建议。
To detect concealed targets in foliage with Ultra Wide Band Synthetic Aperture Radar (UWB-SAR), the problem of target detection and discrimination in UWB-SAR image is systematically studied in this thesis.At first, the present research state, methods and significance of UWB-SAR target detection and discrimination are summarized, and the situation of UWB-SAR target detection and discrimination in UWB-SAR automatic target recognition system and its current existing problem is also pointed out.The problem of Constant False Alarm Rate (CFAR) target detection in UWB-SAR image is studied in chapter 2. The clutter statistical property of different vegetation bestrow is analysed, and a CFAR target detection method is proposed based on the corresponding conclusions. Under a common form, the method can perform CFAR processing in different vegetation bestrow clutter. A fast statistics computation method is proposed for CFAR processing, which can save the computation expense a lot.In Chapter 3, the target feature extraction method is studied for target detection and discrimination in UWB-SAR image. Based on the UWB-SAR echo model and image principal, the target feature extraction method from aspect domain, frequency domain and resolution domain in UWB-SAR image by filtering in frequency domain is presented, and the corresponding filter design are offered. With the constructed UWB-SAR target model, some statistical analysis methods and Hidden Markov Model are modified and combined for feature fusion. The point target detection method in UWB-SAR image is studied, and the result is used for trunk clutter suppression. The effectiveness of these methods is confirmed by the experiment results.The problem of nonhomogeneous environment target detection in UWB-SAR imagery is studied in chapter 4. To conquer the clutter model excursion with the change of vegetation bestrow, based on the modification of a truncation clutter recognition method, a CFAR target detection method that can adapt to the change of clutter statistical model is presented. To deal with the clutter edge at the boundary between a block of intensive clutter and a block of weak clutter, based on the variance index, a CFAR target detection method is proposed. The experiment results show that the methods are effective.In chapter 5, the quantificational performance evaluation method of UWB-SAR target detection and discrimination is studied. Based on the receiver operating characteristic curve, two methods are presented for quantificational performance evaluation of target detection. Using the separability of the target and clutter as the measure, two indexes for evaluating the performance of target feature extraction are introduced. A calculation method of several parameters for UWB-SAR target detection and discrimination is modified to cope with the speciality of UWB-SAR target and clutter.
    At last, the research of the thesis is summarized and some problems and interesting area for future research are pointed out.
引文
[1] 张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社,1989.
    [2] 谢寿生,徐永进.微波遥感技术与应用.北京:电子工业出版社,1987.
    [3] 张直中.微波成像技术.北京:科学出版社,1990.
    [4] 刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [5] 张直中.九十年代合成孔径雷达(SAR)的发展简况.第七届全国雷达年会,南京,1999:1-6.
    [6] 朱述龙,张占睦.遥感图像获取与分析.北京:科学出版社,2000.
    [7] 舒宁.雷达遥感原理.武汉:武汉测绘科技大学出版社,2000.
    [8] 魏钟铨等.合成孔径雷达卫星.国家863计划308主题空间信息获取与处理系统专著,北京:科学出版社,2001.
    [9] 袁孝康.合成孔径雷达的发展现状与未来.上海航天,16,2002:42-47.
    [10] 赵英时 等.遥感应用分析原理与方法.北京:科学出版社,2004.
    [11] 著,杨逢春,王积勤 译.超宽带雷达测量基础.长沙:国防科技大学出版社,2000.
    [12] 李海英,杨汝良.超宽带雷达的发展、现状及应用.遥感技术与应用,16(3),2001:178-183.
    [13] Fowler C., Entzminger J., Corum J. Assessment of Ultra-Wideband (UWB) technology. IEEE Transactions on AES. November, 1990: 45-49.
    [14] Hoff L. E., Stotts L. B. ARPA Surveillance Technology for the Detection of Targets Hidden in Foliage. SPIE, Vol. 2093, 1994: 403-426.
    [15] Engler, H. F. Technical Issues in Ultra-Wideband Radar. Journal of Electronic Defense. January, 1995 Supplement: 54-59.
    [16] Mehrdad Soumekh. Reconnaissance with Ultra Wideband UHF Synthetic Aperture Radar. IEEE Signal Processing Magzine. July, 1995: 21-40.
    [17] 梁甸农 等.叶簇穿透超宽带SAR体制及关键技术项目论证报告.内部报告,1996.
    [18] D. Macdonald et al. Automatic Detection and Cueing for Foliage Concealed Targets. SPIE Vol. 2757, 1996:152-162.
    [19] M. E Davis. Technical Challenges In Ultra-Wideband Radar Development for Target Detection and Terrain Mapping. Pro. IEEE, National Radar Conference, Boston, 1999:1-6.
    [20] A. Y Nashashibi, et al. Millimeter-Wave Measurements of Foliage Attenuation and Ground Reflectivity of tree Stands at Nadir Incidence. IEEE Transactions on Antennas and Propagation, 52(5), 2004:1211-1222.
    [21] M. F. Toups, et al. Foliage Penetration Data Collections and Investigations Utilizing the P-3 UWB-SAR. SPIE Vol. 2757, 1995:136-144.
    [22] 梁甸农,周智敏,常文革.叶簇穿透超宽带合成孔径雷达技术发展动态.内部报告,1999.
    [23] J. G. Fleischman, M. F. Toups, and S. Ayasli. Summary of Results from Foliage Penetration Experiment with a three-frequency Polarimetric SAR. SPIE Vol. 1693, 1992:151-160.
    [24] J. G. Fleischman, et al. Foliage Penetration Experiment. IEEE Trans on AES, 32(1),1996:134-164.
    [25] D. A giglio. Overview of Foliage/Ground Penetration and Interferometric SAR Experiments. SPIE Vol. 2230, 1994:209-216.
    [26] Vickers R. S., Gonzalez V. H., Ficklin R. W. Results from a VHF Impulse Synthetic Aperture Radar. SPIE, Vol. 1631, 1992: 219-225.
    [27] David Buseck, Joel Kositsky, Roger Vickerso Ultra-Wideband Impulse SAR for Foliage and Ground Penetration. Ultra-Wideband. Short-Pulse Electromagnetics 2, Plenum Press, New York, 1995.
    [28] N. VandenBerg, et al. P-3 Ultra-Wideband SAR:System Applications to Foliage Penetration. SPIE Vol. 2757, 1995:130-135.
    [29] L. Happ, et al. Low-Frequency Ultra-wideband Synthetic Aperture Radar 1995 BoomSAR Tests. Pro. IEEE, National Radar Conference, Michigan, 1996:54-59.
    [30] D. R Sheen, et al. The P-3 Ultra-Wideband SAR: Description and Examples. Pro. IEEE, National Radar Conference, Michigan, 1996:50-53.
    [31] L. A Bessette, S. M Crooks and S. Ayasli. P-3 Ultra Wideband SAR, Grayling, Michigan, Target and Clutter Phenomenology.
    [32] Bruce Walker, et al. A High-Resolution, Four-Band SAR Tested with Real-Time Image Formation. IEEE Proc. IGARSS, 1996:1881-1885.
    [33] H. Hellsten, et al. Development of VHF CARABAS Ⅱ SAR. SPIE, Vol. 2747, 1996:48-60.
    [34] L. Ulander, et al. Development of the Ultra-wideband LORA SAR Operating in the VHF/UHF-band. IEEE Proc. IGARSS, 2003: 4268-4270.
    [35] L. M. H Ulander, et al. Performance of the CARABAS-Ⅱ VHF-band Synthetic Aperture Radar. IEEE Proc. IRC, 2001: 129-131.
    [36] J. E Fransson, et al. Detection of Thinning Cutting Using CARABAS-Ⅱ VHF SAR Data. IEEE Proc. IGARSS, 2002: 1792-1794.
    [37] C. Brousseau, et al. A V. H. F. Multifrequency and MultiPolarization Radar: Preliminary Results. IEEE, Proceedings of National Radar Conference, Michigan, 1996:226-231.
    [38] M. L Williams and G. Blucher. Enhancing FOPEN Performance at L-Band Using SAR Polarimetry. 5th European Conference On Synthetic Aperture Radar, ULM, Germany, 2004:219-222.
    [39] 梁甸农,周智敏,常文革.叶簇穿透超宽带成像雷达技术发展动态.国防科技参考,20(3),1999:1-6.
    [40] 梁甸农,周智敏.叶簇穿透超宽带成像雷达技术.国防科技参考,20(3),1999:7-10.
    [41] B. T Binder, et al. SAR Foliage Penetration Phenomenology of Tropical Rain Forest and Northern U. S. Froest. IEEE Pro. IRC, 1995:158-163.
    [42] 梁甸农 等.叶簇穿透超宽带雷达外场实验报告.内部报告,1999.
    [43] 梁甸农 等.叶簇穿透超宽带SAR项目技术总结报告.内部报告,2000.
    [44] 梁甸农 等.机载叶簇穿透超宽带合成孔径雷达飞行成像试验报告.内部报告,2002.
    [45] 梁甸农,周智敏,常文革.机载叶簇穿透超宽带成像雷达的关键技术.国防科技参考,20(3),1999:30-31.
    [46] L. M. Novak and etc. Effect of Polarization and Resolution on SAR ATR. IEEE Trans. on AES, 33(1), 1997:102-115.
    [47] 蒋咏梅.叶簇穿透UWB-SAR目标检测方法研究.国防科技大学博士论文,1998.
    [48] 董臻.UWB-SAR信息处理中的若干问题研究.国防科技大学博士论文,2001.
    [49] 王岩.机载SAR目标特征提取与识别方法研究.国防科技大学博士论文,2003.
    [50] Merrill I.Skolnik 编,王军,等译.雷达手册.北京:电子工业出版社,2003.
    [51] 赵树杰 等.统计信号处理.西安:西北电讯工程学院出版社,1986.
    [52] Fred E. Nathanson, J. Patrick Reilly and Marvin N. Cohen et al 著,郦能敬,等译.雷达设计原理——信号处理与环境.合肥:电子工业部第38研究所,1993.
    [53] 何友,关键,彭应宁 等.雷达自动检测与恒虚警处理.北京:清华大学出版社,1999.
    [54] G. B Goldstein. False-Alarm Regulation in Lognomal and Weibull Clutter. IEEE Trans on AES, 9(1), 1973:84-92.
    [55] J. Li, Jose C. Principe. Target Detection with Synthetic Aperture Radar. IEEE Trans on AES, 32(2), 1996:613-627.
    [56] E. J. Kelly. An Adaptive Detection Algorithm. IEEE Trans on AES, 22(1), 1996:115-127.
    [57] Li-Kang Yen, Jose C. Principe, Renbiao Wu. A CFAR Intensity Pattern Detector For MMW SAR Images. Signals, Systems & Computers Conference Record of the Thirty-Second Asilomar Conference, 1998:974-978.
    [58] Principe, J. C., de Vries, B, and de Oliveria, P. G. The Gamma Filter-A New Class of Adaptive ⅡR Filters with Restrict Reedback. IEEE Trans on Signal Processing, 41 (2),1993:649-656.
    [59] 贾承丽 等.利用Gamma CFAR进行SAR图像目标检测.系统工程与电子技术,27(1),2005:40-42.
    [60] Jose C. Principe et al. Target Prescreening Based on a Quadratic Gamma Discriminator. IEEE Trans on AES, 34(3), 1998:706-715.
    [61] A. Banjerjee et al. Adaptive Target Detection in Foliage-Penetrating SAR Images Using Alpha-Stable Models. IEEE Trans on Image Processing. 8(12), 1999:1823-1831.
    [62] R. Kapoor et al. UWB Radar Detection of Targets in Foliage Using Alpha-Stable Clutter Models. IEEE Trans on AES. 35(3), 1999:819-833.
    [63] W. Irving, A. Willsky and L. Novak. A Multiresolution Appraoch to Discriminating Targets from clutter in SAR Imagery(Part Ⅰ). SPIE Vol. 2487, 1995:272-295.
    [64] W. Irving, A. Willsky and L. Novak. A Multiresolution Appraoch to Discriminating Targets from clutter in SAR Imagery(Part Ⅱ). SPIE Vol. 2487, 1995:346-349.
    [65] L. M. Novak, G. J. Owirka, C. M. Netishen. Radar Target Identification Using Spatial Matched Filters. Patten Recognition, Vol.27, (4), 1994:607:617
    [66] G. J. Owirka, L. M. Novak. A New SAR ATR Algorithm Suite. SPIE, Vol. 2230, 1994:336-343
    [67] L. M. Novak, G. R. Benitz. ATR Performance Using Ehanced Resolution SAR. SPIE, Vol.2757, 1996:332-337
    [68] G. J. Owirka, S. M. Verbout, L. M. Novak. Template-Based SAR ATR Performance Using Different Image Enhancement Techniques. SPIE, Vol.3721, 1999:302-319
    [69] L. M. Novak. State-of-the-art of SAR automatic target recognition. The record of the IEEE 2000 International Conference. 2000:836-843
    [70] W. Irving, L. Novak and A. Willsky. A Multiresolution Appraoch to Discrimination in SAR Imagery.. IEEE Trans. on AES, 33(4), 1997:1157-1169.
    [71] Flake L R. Multi-aperture SAR target detection using hidden markov models. The Ohio State University M. Sc Dissertation, 1995.
    [72] Flake L. R, Ahalt S. C and Krishnamurthy A. K. Detecting anisotropic scattering with hidden Markov models. IEE Proceedings of Radar, Sonar and Navigation, 144(2), 1997:81-86.
    [73] A. Banerjee, et al. Frequency Dependence of ATD Performance in Foliage-Penetrating SAR Images. Proceedings of International Conference on Image Processing, 1998:578-582.
    [74] T. Raju Darnarla, Ravinder Kapoor, and Marc Ressler. Automatic Target Detection Algorithm for Foliage PenetratingUltra-wideband SAR Data Using Split Spectral Analysis. SPIE Vol.3704, 1999:113-120.
    [75] Anders Sullivan, et al. Phenomenological Modeling for FOPEN SAR: Tree-Trunk Scattering on Flat Terrain and With Concealed Targets. SPIE Vol.3721, 1999:224-234.
    [76] Paul Runkle et al. Multi-Aspect Target Detection for SAR Imagery Using Hidden Markov Models. IEEE Trans On GRS. 39(1), 2001:46-54.
    [77] D.r Sheen, et al. Ultrawidebandwidth Measurements of Foliage Transmission Properties at UHF:Measurements System and Results. SPIE Vol. 1631, 1992:206-218.
    [78] N. VandenBerg, et al. P-3 ultra-wideband SAR System Applications to Foliage Penetration. SPIE Vol. 2757,1996:130-151.
    [79] D. R. Sheen et al. Foliage Transmission Measurements Using A Ground-Based Ultrawide Band (300-1300 MHz) SAR System. IEEE Trans. On GRS, Vol.32, No.1, 1994:119-130.
    [80] D. R. Sheen, L. P. Johnston. Statistical and Spatial Properties of Forest Clutter Measured with Polarimetric Synthetic Aperture Radar. IEEE Trans. On GRS, 30(3), 1992:578-588.
    [81] J. A Marble and D. Gorman. Performance Comparison of Phenomenology-based Features to Generic Features for False Alarm Reduction in UWB-SAR Imagery. SPIE Vol. 3721, 1999:235-242.
    [82] D. MacDonald, J. Isenman, and J. Roman. Radar detection of hidden targets. IEEE Pro. National Aerospace and Electronics Conference, 1997: 846-855.
    [83] S. R Cloude, etal. FOPEN Using Polarimetric SAR Interferometry. 5th European Conference On Synthetic Aperture Radar, ULM, Germany, 2004:255-262.
    [84] 万朋.合成孔径雷达目标检测及相关技术研究.电子科技大学博士论文,2000.
    [85] 万朋,王建国,黄顺吉.SAR图像目标综合检测方法.电子学报,29(3),2001:323-325.
    [86] 郦苏丹.SAR图像特征提取与目标识别方法研究.国防科技大学博士论文,2001.
    [87] 陆立明.星载合成孔径雷达目标检测技术研究.国防科技大学博士论文,2004.
    [88] 赵小杰.合成孔径雷达变化检测方法研究.中国科学院电子学研究所硕士论文,2001.
    [89] 李岚.合成孔径雷达图像恒虚警目标检测.中国科学院电子学研究所硕士论文,2001.
    [90] 付琨,匡纲要,郁文贤.一种合成孔径雷达图像阴影和目标检测的方法.软件学报,13(4),2002:818-826.
    [91] 邹焕新 等.一种基于斑点抑制的SAR图像舰船航迹检测算法.电子与信息学报,25(8),2003:1051-1058.
    [92] 种劲松,朱敏慧.高分辨合成孔径雷达图像舰船检测方法.测试技术学报,17(1),2003:15-18.
    [93] 刘培国.超宽带信号辐射、散射理论与技术.国防科技大学博士论文,2001.
    [94] 谭怀瑛.VHF/UHF波段树干土壤散射特性研究.国防科技大学博士论文,2001.
    [95] M. R. Allen, J. M. Jauregui. FOPEN-SAR Detection by Direct Use of Simple Scattering Physics. IEEE International Radar Conference, 1995:152-157.
    [96] M. R. Allen, S. A. Phillips, and D. J. Sofianos. Adaptive Matched Filter Spatial Detection Performance on Standard Imagery from a Wideband VHF/UHF SAR. SPIE Vol. 2217, 1994:188-193.
    [97] M. R. Allen, S. A. Phillips, and D. J. Sofianos. Wide-angle SAR Matched Filter Image Formation. SPIE Vol. 2093, 1994:381-387.
    [98] M. R. Allen, L. E. Hoff. Wide-angle Wideband SAR Matched Filter Image Formation for Enhanced Detection Performance. SPIE Vol. 2230, 1994:302-314.
    [99] R. D. Chancy, A. S. Willsky, and L. M. Novak. Coherent Aspect-dependent SAR Image Formation. SPIE Vol. 2230, 1994:256-274.
    [100] M. R. Allen. An Efficient Approach to Physics-based FOPEN-SAR ATD/R. SPIE, Vol. 2757, 1996:163-172.
    [101] C. C. Hsu, et al. Electromagnetic Modeling of Foliage Obscured Point Source Response. SPIE Vol. 1942, 1993:76-87.
    [102] M. R. Allen, J. M. Jauregui. FOPEN-SAR Detection by Direct Use of Simple Scattering Physics. IEEE, ICR' 1995:152-157.
    [103] Y. T Dong, et al. Multi-Aspect Detection of Surface and Shallow-Buried Unexploded Ordnance Via Ultra-Wideband Synthetic Aperture Radar. IEEE Trans on GRS, 39(6), 2001:1259-1270.
    [104] V. Larson, L. M. Novak, and C. Stewart. Joint Spatial-Polarimetric Whitening Filter to Improve SAR Target Detection Performance for Spatially Distributed Targets. SPIE Vol. 2230, 1994:285-301.
    [105] V. Larson and L. Novak. Polarimetric Subspace Target Detector for SAR Data Based On the Hugen Dihedral Model. SPIE Vol. 2487, 1995:235-250.
    [106] V. Larson. Performance of K-distribution GLRT SAR Target Detector. SPIE Vol. 2755, 1996:24-35.
    [107] R. L. Dilsavor and R. L. Moses. Fully-Polarimetric GLRTs for Detecting Scattering Centers with Unknown Amplitude Phase, and Tilt Angle in Terrain Clutter. SPIE Vol. 2234, 1994:14-25.
    [108] L. M. Novak and et al. Studies of Target Detection Algorithms That Use Polarimetric Radar Data. IEEE Trans. on AES, 25(2), 1989:150-165.
    [109] L. M. Novak, M. C. Burl, and W. M. Irving. Optimal Polarimetric Processing for Enhanced Target Detection. IEEE Trans. on AES, 29(1), 1993:234-244.
    [110] R. Kapoor and N. Nandhakumar. Multi-aperture Ultra-wideband SAR Processing with Polarimetric University. SPIE Vol. 2487, 1995:26-37.
    [111] W. W. Irving, G. J. Owirka, and L. M. Novak. A New Model for High-Resolution Polarimetric SAR Clutter Data. SPIE Vol.1630, 1992:208-223.
    [112] F. L. Posner. Texture and Speckle in High Resolution SAR Clutter. IEEE Trans. On GRS, Vol.31, No.1, 1993:192-203.
    [113] W. W. Irving, G. J. Owirka, L. M. Novak. A New Model for High Resolution Polarimetric SAR Clutter Data. SPIE Vol. 1630, 1992:208-223.
    [114] J. Verly. Physical Optics Polarization Scattering Matrix for a Right-Angle Dihedral. ADA293 096, 1995.
    [115] S. R Cloude and E Pottier. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans On GRS, 34(2),1996:407-418.
    [116] J. S LEE, et al. Unsupervised Classification Using Polarimetric Decomposition and Complex Wishart Classifier. IEEE Trans On GRS, 37(5),1999:2249-2258.
    [117] M. L Williams and N. Harris. Demonstration of Reduced False-Alarm Rates using Simulated L-Band Polarimetric SAR Imagery of Concealed Targets. IEEE Pro. IRC, Australia, 2003:535-540.
    [118] Lars M. H. Ulander, et al. Detection of Concealed Ground Targets in CARABAS SAR Images using Change Detection. SPIE Vol.3370, 1998:243~252.
    [119] N. S Subotic, et al. Multiresolution Target Detection in SAR Imagery. IEEE Proc. IGARSS, 1995: 2157-2160.
    [120] M. Datcu, D. Luca and K. Seidel. Multiresolution Analysis of SAR Images. EUSAR'96, Konigswinter Germany,1996:375-378.
    [121] W. Phillips and R. Chellappa. Target Detection in SAR:Parallel Algorithms, Context Extraction and Region Adaptive Techniques. SPIE Vol. 3070, 1997:76-87.
    [122] J. B. Billingsley et al. Statistical Analyses of. Measured Radar Ground Clutter Data. IEEE Trans on AES, 35(2), 1999:579-592.
    [123] 董臻,梁甸农.UWB-SAR图像中二面角目标的检测.系统工程与电子技术,23(4),2001:1-3.
    [124] Mehrdad Soumekh. Reconnaissance with Ultra Wideband UHF Synthetic Aperture Radar. IEEE Signal Processing Magazine, July 1995:21-40.
    [125] Lawrence R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. IEEE Pro, 77(2), 1989:257-285.
    [126] 汪胡桢,等.现代工程数学手册.武汉:华中工学院出版社,1985.
    [127] 陈善林,徐国祥.因素分析的理论和方法.北京:中国统计出版社,1990.
    [128] 第一作者.UWB-SAR图象中目标检测方法研究.技术报告,长沙:国防科技大学 电子科学与工程学院,2002.
    [129] Kapoor R, Nandhakumar N. Multi-aperture ultra-wideband SAR processing with polarimetric variety. SPIE, Vol. 2487, 1995: 26-37.
    [130] Halverson S D et al. A Comparison of ultra-wideband SAR target detection algorithms. SPIE, Vol. 2230, 1994: 230-243.
    [131] D. R. Iskander et al. Estimating the Parameters of K_Distribution Using Higher-Order and Fractional Moments. IEEE Trans on AES, 1999, 35(4) :1453-1457.
    [132] 马晓岩,向家彬,朱裕生等.雷达信号数字处理.湖南:湖南科技出版社,1999.
    [133] M. Shao and C. L. Nikisa. Signal Processing with Fractional Lower Order Moments:Stable Processes and Their Applications. Proceedings of the IEEE, 81(7),1993:986-1010.
    [134] G. A. Tsihrintzis, C. L. Nikias. Fast Estimation of The Parameters of Alpha Stable Impulsive Interference. IEEE Trans. On Signal Processing, 44(6), 1996:1492-1503.
    [135] 管致中,夏恭恪.信号与线性系统(上册).北京:高等教育出版社,1992.
    [136] 第二作者. Radar clutter recognition based on feature extraction by α truncation-set. Proc.IEEE, IRC'2001, Beijing, China,2001:436-439.
    [137] 第一作者. A new method of Radar clutter recognition based on multi-α truncation set. Proc. IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 2003: 858-862.
    [138] 第一作者.相关雷达杂波的仿真与识别.空军雷达学院硕士论文,2001.
    [139] 第一作者.基于HMM的机载UWB-SAR图像中的点目标检测.现代雷达,26(9),2004:46-49.
    [140] Andrew R.Webb 著,王萍,杨培龙,罗颖昕 译.统计模式识别.北京:电子工业出版社,2004.
    [141] 第二作者. An Approach of Radar Clutter Recognition Based on Higher-Order Statistics Combination. Proc. IEEE, ICSP' 2000, Beijing, China:1933-1937.
    [142] 第一作者.基于高阶统计量特征提取的雷达杂波分类识别.空军雷达学院学报,14(1),2000:9-12.
    [143] 第二作者.两种相关杂波的识别方法及其比较研究.电子学报,31(6),2003:851-854.
    [144] 第二作者. A new method for calibration of SAR image, Proc. IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha,China, 2003:1174-1178.
    [145] A. K Mitra, T. L Lewis and A. K Shaw. Rank-Order Filters for FOPEN Target Detection. IEEE Signal Processing Letters, 11(2),2004:93-96.
    [146] 蒋咏梅,匡纲要,梁甸农.UWB-SAR叶簇覆盖人造目标检测特征信号.电子科 学学刊,21(4),1999:553-556.
    [147] 蒋咏梅,梁甸农.UWB-SAR叶簇覆盖人造目标检测.信号处理,15(2),1999:109-115.
    [148] 蒋咏梅,匡纲要,梁甸农.低频UWB-SAR图像中的目标检测.系统工程与电子技术,19(10),1997:28-32.
    [149] J. Schroeder, D. Howard and A. Gunawardena. Multiscale Modelling for Target Detection in Complex Synthetic Aperture Radar Imagery. Proceedings Of Information, Decision and Control, 1999:77-82.
    [150] L. M Kaplan, S. M Oh and J. H McClellan. Detection of Broadside Targets During Image Formation Using a Quadtree Approach. IEEE Proc. IRC, 2000:104-109.
    [151] 王润生.图像理解[M].长沙:国防科技大学出版社,1995.
    [152] 张贤达.时间序列分析——高阶统计量方法[M].北京:清华大学出版社,1996.
    [153] A. Jakubiak. Signal Detection in Non-Gaussian Clutter. IEEE Trans on AES, 27(5), 1991:758-760.
    [154] A. Jakubiak et al. Radar Clutter Classification Using Kohonen Neural Network. IEEE Proc. IRC, 1997:185-188.
    [155] K. D Ward. Compound Representation of High Resolution Sea Clutter. Electronics Letters, 17(16), 1981:561-563.
    [156] M. Rangaswamy et al. Non-Gaussian Random Vector Recognition Using Spherically Invariant Random Processes. IEEE Trans on AES,29(1), 1993:111-123.
    [157] Johnson G. Construction of Particular Random Processes. Proc. IEEE,82(2), 1994:270-285.
    [158] R.L米切尔著,陈训达 译.雷达系统模拟.北京:科学出版社,1982.
    [159] M. E Smith and P. K Varshney. Ⅵ-CFAR:A Novel CFAR Algorithm Based on Data Variability. IEEE, National Radar Conference, 1997:263-268.
    [160] M. E Smith and P. K Varshney. Intelligent CFAR Processor Based on Data Variability. IEEE Trans on AES, 36(3), 2000:837-847.
    [161] B. Chen, P. K Varshney and J. H Michels. Adaptive CFAR Detection for Clutter-Edge Heterogeneity Using Bayesian Inference. IEEE Trans on AES, 39(4), 2003:1462-1470.
    [162] 张弓,朱兆达.基于杂波跟踪的CFAR检测研究.电子学报,31(12),2003:1824-1827.
    [163] 黄祥 等.基于区域分类的智能恒虚警SAR图像目标检测.武汉大学学报(理学版),50(1),2004:104-108.
    [164] 王红岗.UWB-SAR叶簇覆盖目标恒虚警检测方法.国防科技大学硕士论文,2004.
    [165] 刘福生,罗鹏飞.统计信号处理.长沙:国防科技大学出版社,1999.
    [166] Gerlach K. Spatially distributed target detection in non-Gaussian clutter. IEEE Trans on AES, 35(3), 1999:926-934.
    [167] 黄德双,韩月秋.基于位置相关的高分辨雷达目标检测方法.电子科学学刊,1997,19(5):584-590.
    [168] 黄德双.高分辨雷达智能信号处理技术.北京:机械工业出版社,2001.
    [169] 郭汉伟.合成孔径雷达地面运动目标检测与成像技术研究.国防科技大学博士论文,2003.
    [170] R. Rau and J. H. McClellan. Analytic Models and Postprocessing Technique for UWB-SAR. IEEE Trans on AES, 36(4), 2000:1058-1074.
    [171] C. Pohl and J. L. Van Genderen. Multisensor image fusion in remote sensing:concepts, methods and applications. INT. J. Remote Sensing, 19(5), 1998:823-854.
    [172] 邹鲲,梁甸农.低频UWB-SAR天线方向图的校准.雷达科学与技术,3(2),2004:188-192.
    [173] Richard O.Duda,Peter E.Hart and David G.Stork著.模式分类.北京:机械工业出版社,2004.
    [174] Milan Sonka,Vaclav Hlavac and Roger Boyle著,艾海舟等 译.图像处理、分析与机器视觉(第二版).北京:人民邮电出版社,2003.
    [175] Rafael C.Gonzalez and Richard E.Woods著,阮秋琦等 译.数字图像处理(第二版).北京:电子工业出版社,2003.
    [176] Jeffrey S. Simonoff. Smoothing Methods in Statistics. New York:Springer-Verlag, 1998.
    [177] Nasr H, Bazakos M. Automated Evaluation and Adaptation of Automatic Target Recognition System[C]. SPIE, Vol. 1310, 1990:108-119.
    [178] 张桂林,熊艳 等.一种评价自动目标检测算法性能的方法[J].华中理工大学学报,1994,22(5):46-50.
    [179] Kaplan. L. M., Murenzi. R. Evaluation of CFAR and texture based target detection statistics on SAR imagery[C]. IEEE Pro. ICASSP, Vol.4, 1998:2141-2144.
    [180] 康耀红,陈刚,陈鹤年.多传感器目标检测的性能评估(一)[M].航空计算技术,28(1),1998:16-21.
    [181] Vladimir Y. Mariano, Junghye Min et al. Performance Evaluation of Object Detection Alogrithms[C]. IEEE, International Pattern Recognition Conference'2002: 965-969.
    [182] John M. Irvine, Sue Abramson, John Mossing. Evaluation of Automated Target Detection Using Image Fusion[C]. SPIE, Vol.5094, 2003:81-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700