面向自动目标识别的图像压缩关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何在图像有损压缩过程中保持图像的自动目标识别性能,是军事图像通信领域面临的重要挑战。本文深入研究了面向自动目标识别的图像压缩编码关键技术,取得了一些有价值的研究成果。
     图像有损压缩过程中自动目标识别性能保持程度的度量是面向自动目标识别的图像压缩技术的核心问题,本文提出了一种基于轮廓信息保持程度的图像压缩质量测度。在图形间模糊相似性测度的基础上,对原始图像和压缩后恢复图像分别进行相同的轮廓提取处理,将压缩前后轮廓图形间的相似性程度作为轮廓特征保持测度,从而度量了图像有损压缩过程中自动目标识别性能的保持程度。理论分析与实验结果表明,轮廓特征保持测度比二值互相关系数更全面地衡量了图像有损压缩对自动目标识别性能的影响程度。
     在分析了ROI检测算法与ROI优先压缩编码技术的基础上,论文分别提出了基于整幅图像ROI检测与基于图像块ROI判决的两种面向自动目标识别的图像压缩系统设计思路和结构框图。在此基础上,论文重点讨论了面向自动目标识别的航空可见光侦察图像压缩编码技术。
     团块人造目标ROI检测是面向自动目标识别的航空可见光侦察图像压缩编码系统中的关键环节。本文提出了一种基于局部灰度熵特征的可见光图像团块人造目标ROI检测算法。理论分析和实验结果表明,该算法较好地提取出了人造目标与自然背景的特征差异,能够在各种复杂自然背景和不同目标类型的情况下,有效检测各类团块目标,是一种稳健的团块人造目标ROI检测算法,适用于面向图像压缩的ROI检测任务。
     在面向自动目标识别的图像压缩编码系统结构以及可见光图像团块人造目标ROI检测算法的基础上,本文提出了一种基于JPEG2000 ROI优先编码机制的航空可见光侦察图像多级ROI优先压缩编码方案。理论分析与实验结果表明该压缩编码方案能够满足面向自动目标识别的图像压缩任务要求。
It is a great challenge for military image communication technology to preserve the auto target recognition (ATR) performance in the process of lossy image compression. The key techniques in ATR-directed image compression are studied in this dissertation.
     How to measure the impact of lossy image compression on ATR performance is a kernel problem in ATR-directed image compression. A novel image compression quality metric based on the contour information is presented in this dissertation. Based on the fuzzy similarity metric between two shapes, the similarity measure between target contour shapes extracted from source image and codec image is defined as contour feature persistence metric (CFPM). Then the extent to which the ATR performance is preserved in lossy image compression is measured. According to theoretical analysis and experiment results, CFPM measures the extent more comprehensively than correlation coefficients.
     On the basis of the analysis of region-of-interest (ROI) detection algorithm and ROI prioritized compression mechanism, two ATR-directed compression schemes are presented as: based on full image ROI detection, and based on block ROI judgment. Then the dissertation focuses the issue of ATR-directed aerial reconnaissance optical imagery compression.
     Man-made blob ROI detection is an important component in ATR-directed aerial optical image coding. This dissertation presents a novel man-made blob ROI detection algorithm based on local intensity entropy feature. According to theoretical analysis and experiment results, this algorithm extracts the local feature difference between the natural background and man-made objects efficiently, and detects man-made target regions robustly with complicated natural environment and different kinds of targets. It can be treated as a reliable detection algorithm for image-compression-directed ROI detection.
     Based on the ATR-directed image compression system structure and the algorithm of man-made blob ROI detection in aerial imagery, an ATR-directed aerial optical image multi-level ROI coding scheme based on JPEG2000 ROI prioritized compression mechanism is presented in this dissertation. According to theoretical analysis and experiment results, the compressing scheme can meet the requirement of ATR-directed image compression.
引文
[1] 孙义明,杨丽萍.信息化战争中的战术数据链[M].北京:北京航空航天大学出版社,2005.
    [2] Jain Avinash, Pierre Moulin, Michael I Miller and et al. Information-theoretic Bounds on Target Recognition Performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1153-1166.
    [3] Sims S R. Data compression issues in automatic target recognition and the measuring of distortion[J]. Optical Engineering, 1997, 36(10): 2671-2674.
    [4] Baras J S, Dey S. Combined Compression and Classification With Learning Vector Quantization[J]. IEEE Transactions on Information Theory, 1999, 45(6): 1911-1920.
    [5] Jin-Woo, Nahm. Joint ATR-Compression for FLIR and SAR Images[D]. PhD thesis, Georgia Institute of Technology, 1996.
    [6] Ulug B, Ahalt S C, Mitchell R A. Efficient ATR using compression[J]. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(4): 1199-1211.
    [7] Petrou M, Peixin Hou, Sei-Ichiro Kamata, Underwood C I. Region-based image coding with multiple algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(3): 562-570.
    [8] Susanna L K, Alan C. Impact of lossy wavelet-based image compression on ATR discrimination performance[A]. In: Firooz A S. Proceedings of SPIE Conference on Automatic Target Recognition VIII[C]. Orlando, FL, USA: SPIE, 1998: 448-459.
    [9] Papps T N, Safranek R J. Perceptual criteria for image quality evaluation[R]. Lucent Technologies, Bell Laboratories Technical Document, 2000.
    [10] Zhongkang Lu, Lin W, Yang X, EePing Ong, Susu Yao. Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation[J]. IEEE Transactions on Image Processing. 2005, 14(11): 1928-1942.
    [11] Oh J, Woolley S I, Arvanitis T N, Townend J N. A multistage perceptual quality assessment for compressed digital angiogram images[J]. IEEE Transactions on Medical Imaging. 2001, 20(12): 1352-1361.
    [12] Jia Li, Chaddha N, Gray R M. Asymptotic performance of vector quantizers with a perceptual distortion measure[J]. IEEE Transactions on Information Theory. 1999, 45(4): 1082-1091.
    [13] Harold S, Charles H, Joseph L. Image compression quality metrics[A]. In: Proceedings of SPIE Conference on Wavelet Application in Signal and Image Processing IV[C]. Orlando, FL, USA: SPIE, 1997: 42-55.
    [14] Olga K, Carlos M, Sergio D C. Task-specific image quality metrics for lossy compression of FLIR images[A]. In: Ivan K. Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition VIII [C]. Orlando, FL, USA: SPIE, 1999: 397-408.
    [15] Shyi-Chyi Cheng. Visual pattern matching in motion estimation for object-based very low bit-rate coding using moment-preserving edge detection[J]. IEEE Transactions on Multimedia. 2005, 7(2): 189-200.
    [16] Al-Fahoum A S. Quality Assessment of ECG Compression Techniques Using a Wavelet-Based Diagnostic Measure[J]. IEEE Transactions on Information Technology in Biomedicine. 2006, 10(1): 182-191.
    [17] Bradley W, Abhijit M. Performance of the MACH filter and DCCF algorithms in the presence of data compression[A]. In: Sadjadi F A. Proceedings of SPIE Conference on Automatic Target Recognition IX[C]. Orlando, FL, USA: SPIE, 1999: 376-387.
    [18] Chang S, Carin L. A Modified SPIHT Algorithm for Image Coding With a Joint MSE and Classification Distortion Measure[J]. IEEE Transactions on Image Processing. 2006, 15(3): 713-725.
    [19] Michael H, Jun T. ATR performance on wavelet-compressed SAR imagery[A]. In: Edmund G Z. Proceedings of SPIE Conference on SAR Imagery VII[C]. Orlando, FL, USA: SPIE, 2000: 685-695.
    [20] John D G, Susan A S, Susan C W. Assessing the impact of image compression on SAR automatic target detection and cuing[A]. In: Proceedings of IEEE 1996 National Radar Conference[C]. Michigan, USA: IEEE, 1996: 118-123.
    [21] Kelly E J. An adaptive detection algorithm[J]. IEEE Transaction on Aerospace and Electronics System. 1986, 22(1): 115-127.
    [22] Fukanaga K. Introduction to statistical pattern recognition[M]. New York: Academic Press, 1990.
    [23] Bhanu B, et al. Introduction to the special issue on automatic target detection and recognition[J], IEEE Transaction on Image Processing. 1997, 6(1): 1-6.
    [24] Daniel K, Shawn Halversen. Discriminating Targets from Clutter[J]. Lincoln Labortory Journal. 1993, 6(1): 25-52.
    [25] Michael G, Gerald R, Harold S, et al. Video compression quality metrics for moving scenes[A]. In: Harold HS. Proceedings of SPIE Conference on Wavelet Applications V[C]. Orlando, FL, USA: SPIE, 1998: 233-244.
    [26] Frank M C, Mark S S, Gerhard X R. Image quality measures for performance assessment of compression transforms[A]. In: Proceedings of SPIE Conference on Mathematics of Data/Image Coding, Compression, and Encryption[C]. Gainesville, FL, USA: SPIE, 1998: 136-152.
    [27] Mark S S, Frank M C. Spatial exemplars and metrics for characterizing image compression transform error[A]. In: Proceedings of SPIE Conference on Mathematics of Data/Image Coding, Compression, and Encryption IV[C]. San Diego, CA, USA: SPIE, 2001: 67-79.
    [28] Mark S S, Gerhard X R, Frank M C. Local analysis of distortion and ATR error associated with decompressed digital imagery[A]. In: Mark S S. Proceedings of SPIE Conference on Mathematics of Data/Image Coding, Compression, and Encryption IV with application[C]. San Diego, CA, USA: SPIE, 2001: 80-93.
    [29] Jin-Woo Nahm, Mark J T Smith. Very low bit rate compression using a quality measure based on target detection performance[A]. In: Kadar I. Proceedings of Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition IV[C]. Atlanta, GA, USA: SPIE, 1995: 246-255.
    [30] Creusere C D, Nevel A V. ATR directed image compression[R]. AIAA19981123-136. AIAA, 1998.
    [31] Jun T, Raymond O W. Joint compression and detection in the wavelet domain[A]. In: Proceedings of 42nd Midwest Symposium on Circuits and Systems[C]. IEEE, 1999: 1139-1142.
    [32] Jun T, Raymond O W. CFAR-enhanced image codec for SONAR ATR[A]. In: Proceedings of SPIE Conference on Wavelet Application in Signal and Image Processing VII[C]. Denver, CO, USA: SPIE, 1999: 903-913.
    [33] Paul G D. Target detection and intelligent image compression[A]. In: Firooz A S.Proceedings of SPIE Conference on Automatic Target Recognition X[C]. Orlando, FL, USA: SPIE, 2000: 86-97.
    [34] Paul G D, Margaret J,. Feature detection and fusion for intelligent compression[A]. In: Ivan K. Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition X[C]. Orlando, FL, USA: SPIE, 2001: 162-173.
    [35] Xun D, Adriana D, Stanley C A. Content-based image compression for ATR applications[A]. In: Edmund G Z. Proceedings of SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VII[C]. Orlando, FL, USA: SPIE, 2000: 696-704.
    [36] Xun D, Honglin L, Stanley C A. Content-based image compression[A]. In: Edmund G Z. Proceedings of SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VIII[C]. Orlando, FL, USA: SPIE, 2001: 92-102.
    [37] Xun D, Honglin L, Stanley C A. Content-based image and video compression[A]. In: Edmund G Z. Proceedings of SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery IX[C]. Orlando, FL, USA: SPIE, 2002: 299-309.
    [38] Jain A, Moulin P, Miller M I, et al. Information-theoretic bounds on target recognition performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(9): 1153-1166.
    [39] Lei M, Min-Ahn Q V, Glen P A, et al. Automatic-target-recognition-assisted image coding[A]. In: Firooz A S. Proceedings of SPIE Conference on Automatic Target Recognition XII[C]. Orlando, FL, USA: SPIE, 2002: 203-213.
    [40] Robert J B, Glen P A. Intelligent compression of SAR imagery using multi-resolution Markov models[A]. In: Proceedings of ICASSP'01[C]. IEEE, 2001: 1721-1724.
    [41] Ramamurthi B, Gersho A. Classified Vector Quantization of Images[J]. IEEE Transactions on Communications. 1986, 34(11): 1105-1115.
    [42] 孙圣和, 陆哲明, 刘春和. 快速最近邻矢量量化码字搜索算法[J]. 电子学报. 2001, 29(12): 1772-1777.
    [43] John A. Saghri, Andrew G. Tescher, Anthony M Planinac. KLT/JPEG2000 multispectral bandwith compression with region of interest prioritization capability[A]. In: Proceedings of SPIE Vol. 5203 Appications of Digital Image Processing XXVI[C]. Bellingham, WA, USA: SPIE, 2003: 226-235.
    [44] John A. Saghri, Andrew G. Tescher, Belal Mohammad. Impact of lossycompression on the classification of remotely-sensed imagery data[A]. In: Proceedings of SPIE Vol. 4115 Appications of Digital Image Processing XXIII[C]. Boston, Massachusetts, USA: SPIE, 2000: 121-129.
    [45] John A. Saghri, Andrew G. Tescher, Ahmed Bou-Shehri. Space-based data compression isssues[A]. In: Proceedings of SPIE Vol. 3528 Multimdia Systems and Applications[C]. Boston, Massachusetts, USA: SPIE, 1998: 581-597.
    [46] Sims S R. Data compression issues in automatic target recognition and the measuring of distortion[J]. Optical Engineering, 1997, 36(10): 2671-2674.
    [47] Harold S, Charles H, Joseph L. Image compression quality metrics[A]. In: Proceedings of the SPIE Conference on Wavelet Application in Signal and Image Processing IV[C]. Orlando, FL, USA: SPIE, 1997: 42-55.
    [48] Michael G, Harold S. Video compression quality metrics correlation with aided target recognition applications[J]. Journal of Electronic Imaging, 1998, 7(4): 740-745.
    [49] Olga K, Carlos M, Sergio D C. Task-specific image quality metrics for lossy compression of FLIR images[A]. In: Proceedings of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition VIII[C]. Orlando, FL, USA: SPIE, 1999: 397-408.
    [50] 赵恒卓, 杨春旭, 胡正仪, 王延平. 基于线矩特征的破损目标识别[J]. 武汉大学学报(自然科学版). 1997, 43(5): 650-654.
    [51] Kamgar-Parsi B, Jain A K, Dayhoff J E. Aircraft detection: a case study in using human similarity measure[J]. IEEE Trans. on PAMI. 2001, 23(12): 1404-1414.
    [52] 张洪钺, 杨雪勤, 郭红涛. 基于仿射变换的飞机图像的识别[J]. 航空学报. 2003,24(3):251-254.
    [53] Dudani S A, Breeding K J. Aircraft identification by moment invariants[J]. IEEE Transactions on Computers, 1977, 26 (1): 39-45.
    [54] 汪国有, 李捷, 张天序. 基于分级轮廓分形特征的舰船目标识别方法[J]. 华中理工大学学报. 1999,27(12): 1-3.
    [55] Tello M, Lopez-Martinez C, Mallorqui J J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform[J]. IEEE Geoscience and Remote Sensing Letters. 2005, 2(2): 201-205.
    [56] Jolly D, Lakshmanan D, Jain K. Vehicle segmentation and classification using deformable templates[J]. IEEE Transactions on PAMI. 1996, 18(3): 293-308.
    [57] 钮峰, 俞能海, 吴皓. 航空图片中车辆的检测方法研究[J]. 电路与系统学报. 2002, 7(4): 80-83.
    [58] 李艳, 彭嘉雄. 港口目标特征提取与识别[J]. 华中科技大学学报. 2001,26(6):10-12.
    [59] Carmichael O, Hebert M. Shape-based recognition of wiry objects[J]. IEEE Trans on PAMI. 2004, 26(12): 1537-1552.
    [60] 巩丹超, 张永生. 基于航空影像的建筑物半自动提取技术研究[J]. 测绘通报, 2002,(10):15-18.
    [61] Simonetto E, Oriot H, Garello R. Rectangular building extraction from stereoscopic airborne Radar images[J]. IEEE Trans. on Geoscience and Remote Sensing. 2005, 43(10): 2386-2395.
    [62] 吕岳. 基于左右轮廓特征的打印体邮政编码数字快速识别[J]. 通信学报 1997,18(7): 93-96.
    [63] 娄震, 胡钟山, 杨静宇, 刘克, 孙靖夷. 基于轮廓分段特征的手写体阿拉伯数字识别[J]. 计算机学报. 1999, 22(10): 1065-1073.
    [64] Linnell T A, Deravi F. Mapping vector accumulator: fractal domain feature for character recognition[J]. Electronics Letters. 2004, 40(22): 1406-1407.
    [65] 颜学阶, 常明, 朱林. 基于线性轮廓匹配的工程图识别算法研究[J]. 华中理工大学学报 1997, 25(3): 34-37.
    [66] 王金鹤. 扫描图象曲线轮廓关键点的提取及其处理[J]. 中国图象图形学报 2001, 6(7): 699-702.
    [67] Amit Y. Graphical shape templates for automatic anatomy detection: application to MRI brain scans[J]. IEEE Trans. Med. Imaging. 1997, 16(1): 28–40.
    [68] Amit Y, Kong A. Graphical templates for model registration[J]. IEEE Pattern Anal. Machine Intell. 1996, 18(3): 225–236.
    [69] Huttenlocher D P, Gregory A K and William J R. Comparing Images Using the Hausdorff Distance[J]. IEEE Trans. PAMI. 1993, 15(9): 850-863.
    [70] Olson C F, Huttenlocher D P. Automatic Target Recognition by Matching Oriented Edge Pixels[J]. IEEE Trans. Image Processing, 1997, 6(1): 103-113.
    [71] 臧铁飞, 沈庭芝, 陈建军, 顾建军. 改进的 Hausdorff 距离和遗传算法在图像匹配中的应用[J]. 北京理工大学学报. 2000, 20(6): 733-737.
    [72] Kass M, Witkin A, Terzopoulous D. Snakes: active contour models[A]. In: BradyI M, Rosenfield A eds. Proceedings of the 1st International Conferenceon Computer Vision[C]. London: IEEE Computer Society Press, 1987: 259~268.
    [73] Foresti G L, Pellegrino F A. Automatic visual recognition of deformable objects for grasping and manipulation[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C. 2003, 34(3): 325-333.
    [74] Wang X, Peng Z, Gao F, Wee W G. Deformable contour method based on variational approach to a constrained optimization formulation[J]. Electronics Letters[J]. 2004, 40(2): 110-112.
    [75] Sclaroff S, Lifeng Liu. Deformable shape detection and description via model-based region grouping[J]. IEEE Trans. on PAMI. 2001, 23(5): 475-489.
    [76] Hu M K. Visual pattern recognition by moment invariants[J]. IEEE Transactions on Information Theory, 1962, 8(2): 179-187.
    [77] Lamdan Y, Schwartz J T, and Wolfson H J. Object recognition by affine invariant matching[A]. In: Proceedins of IEEE international conference on computer vision and pattern recognition[C]. 1988: 335–344.
    [78] Forsyth D, Mundy J L, Zisserman A, and et al. Invariant descriptors for 3-D object recognition and pose[J]. IEEE Trans. PAMI. 1991, 13(10): 971–991.
    [79] Sluzek A. Identification and inspection of 2D objects using new moments based shape descriptors[J]. Pattern Recognition Letters, 1995, 16(7): 687-697.
    [80] Zhaohui Huang, Fernand S Cohen. Affine-Invariant B-Spline Moments for Curve Matching[J]. IEEE Trans. Image Processing. 1996, 5(10): 1473-1480.
    [81] Rahtu E, Salo M, Heikkila J. Affine invariant pattern recognition using multi-scale auto-convolution[J]. IEEE Trans. on PAMI. 2005, 27(6): 908-918.
    [82] Sheynin S, Tuzikov A. Moment computation for objects with spline curve boundary[J]. IEEE Trans. on PAMI. 2003, 25(10): 1317-1322.
    [83] Tsang P W M. Enhancement of a genetic algorithm for affine invariant planar object shape matching using the migrant principle[J]. IEE Proc. Vision, Image and Signal Processing. 2003, 150(2): 107-113.
    [84] Flusser J. Affine invariants of convex polygons[J]. IEEE Trans. on Image Processing. 2002, 11(9): 1117-1118.
    [85] Clark F Olson, Daniel P Huttenlocher. Automatic Target Recognition by Matching Oriented Edge Pixels[J]. IEEE Trans. Image Processing, 1997, 6(1):103-113.
    [86] 王延平, 袁杰, 苏样芳. 几种拐点不变量及其在目标识别中的应用[J]. 中国图象图形学报. 1999, 4A(10): 854-859.
    [87] Mokhtarian F, Suomela R. Robust Image Corner Detection Through Curvature Scale Space[J]. IEEE Trans. on PAMI, 1998, 20(12): 1376-1381.
    [88] Heidemann G. The long-range saliency of edge- and corner-based salient points[J]. IEEE Trans. on Image Processing, 2005, 14(11): 1701-1706.
    [89] Mori G, Belongie S, Malik J. Efficient shape matching using shape contexts[J]. IEEE Trans. PAMI. 2005, 27(11): 1832-1837.
    [90] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts[J]. 2002, 24(4): 509–522.
    [91] Ortiz S Jr. 3D searching starts to take shape search engine[J]. IEEE Computer. 2004, 37(8): 24-26.
    [92] Ghosh A, Petkov N. Robustness of shape descriptors to incomplete contour representations[J]. IEEE Trans. on PAMI. 2005, 27(11): 1793-1804.
    [93] Erol B, Kossentini F. Shape-based retrieval of video objects[J]. IEEE Transactions on Multimedia. 2005, 7(1): 179-182.
    [94] Dufour R M, Miller E L, Galatsanos N P. Template matching based object recognition with unknown geometric parameters[J]. IEEE Trans. on Image Processing. 2002, 11(12): 1385-1396.
    [95] Nandy D, Ben-Arie J. Shape from recognition: a novel approach for 3-D face shape recovery[J]. IEEE Trans. on Image Processing. 2001, 10(2): 206-217.
    [96] Wen-Jing Li, Lee T. Hopfield neural networks for affine invariant matching[J]. IEEE Trans. on Neural Networks. 2001, 12(6): 1400-1410.
    [97] Yali Amit. 2D Object Detection and Recognition: Models, Algorithms, and Networks[M]. Massachusetts: MIT Press. 2002.
    [98] 丁险峰, 吴洪, 张宏江, 马颂德. 形状匹配综述[J]. 自动化学报. 2001, 27(5): 678-691.
    [99] Daniel P H, Gregory A K, William J R. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
    [100] 第一作者. 基于空间模糊化表示的图形相似性测度[J]. 系统工程与电子技术,2005, 27(2): 340-342.
    [101] Grigorescu C, Petkov N. Distance sets for shape filters and shape recognition[J]. IEEE Trans. on Image Processing. 2003, 12(10): 1274-1286.
    [102] 郭桂蓉, 庄钊文. 信息处理中的模糊技术[M]. 长沙: 国防科技大学出版社. 1996.
    [103] 刘立柱. 概率与模糊信息论及其应用[M]. 北京: 国防工业出版社. 2004.
    [104] 舒宁. 模式识别的理论与方法[M]. 武汉:武汉大学出版社. 2004.
    [105] 杨光正, 吴岷, 张晓莉. 模式识别[M]. 合肥:中国科技大学出版社. 2001.
    [106] Zadeh L A. Fuzzy Sets[J]. Information and Control, 1965, 8: 338-353.
    [107] Rafael C Gonzalez. 数字图像处理[M]. 北京: 电子工业出版社. 2002.
    [108] Zhang Y J, Gerbrands J J. On the design of test images for segmentation evaluation[A]. In: In: Proc. EUROSCO, 1992, vol.1: 551-554.
    [109] Zhang Y J. Evaluation and comparison of different segmentation algorithms[J]. Pattern Recognition Letters. 1997, 18(10): 963-974.
    [110] Zhang Y J, Gerbrands J J. Comparison of thresholding techniques using synthetic images and ultimate measurement accuary[A], In: Proceedings of 11st ICPR[C], 1992: 209-213.
    [111] Zhang Y J. Image synthesis and segmentation comparison[A]. In: Proceedings of 3rd ICYCS[C], 1993: 21-24.
    [112] 章毓晋. 图像分割[M]. 北京: 科学出版社. 2002.
    [113] 张天序. 成像自动目标识别[M]. 湖北科学技术出版社. 2005.
    [114] Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulation[J]. IEEE Trans. PAMI, 1991, 13(6): 583-598.
    [115] Shapiro J M. Embedded Image Coding Using Zerotree of Wavelet Coefficients[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3445-3462.
    [116] Said A, Pearlman W. A new, fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 243-250.
    [117] 郭武, 梅丽, 罗建书. 一种基于 SPIHT 的 ROI 图像编码. 中国空间科学技术, 2003, 2(1): 61-65.
    [118] Solka J K, Marchette D J, Wallet B C. Identification of Man Made Regions in Unmanned Aerial Vehicle Imagery and Videos[J]. IEEE Trans. on Pattern Analysis andMachine Intelligence, 1998, 20(8): 852-857.
    [119] David Casaent, Anqi Ye. Detection Filters and Algorithm Fusion for ATR[J]. IEEE Trans. On Image Processing, 1997, 6(1): 114-125.
    [120] 赵亦工, 朱红. 自然背景中人造目标的自适应检测[J]. 电子学报, 1996, 24(4): 17-20.
    [121] Nieniewski M. Extraction of diffuse objects from images by means of watershed and region merging: example of solar images[J]. IEEE Transactions on Systems, Man and Cybernetics. 2004, 34(1): 796-801.
    [122] Shannon C E. A mathematical theory of communication[J]. Bell System Technology Journal, 1948, 27(7): 379-423.
    [123] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 1989, 北京: 高等教育出版社.
    [124] David E. Jansing, Thomas A. Albert, Darrel L. Chenoweth. Two-dimensional entropic segmentation[J]. Pattern Recognition Letters. 1999, 20(3): 329-336.
    [125] Pal N, and et al . Object-background segmentation using new definitions of entropy[J]. IEE Proceedings of Computers and Digital Techniques, 1989, 136(4): 284-295.
    [126] Shiozaki A. Edge Extraction Using Entropy Operator[J]. Computer Vision, Graphics, and Image Processing. 1986, 36(1): 1-9.
    [127] 张弓, 朱兆达, 周亦南. 局部熵算法在机载PD雷达杂波跟踪中的应用[J]. 电子学报. 2003, 31(9): 1295-1298.
    [128] 田金文, 苏康, 柳健. 基于局部熵差的图象匹配方法—算法及计算机仿真[J]. 宇航学报. 1999, 20(1): 28-32.
    [129] 孙即祥. 图像处理[M]. 2004, 北京: 科学出版社.
    [130] Dominikus Noll. Restoration of Degraded Images with Maximum Entropy[J]. Journal of Global Optimization. 1997, 10(1): 91-103.
    [131] 孙即祥. 图像压缩与投影重建[M]. 2005, 北京: 科学出版社.
    [132] Hermes L, Buhmann J M. A minimum entropy approach to adaptive image polygonization[J]. IEEE Trans. on Image Processing. 2003, 12(10): 1243-1258.
    [133] 张志龙. 基于遥感图像的重要目标特征提取与识别算法研究[D]. 博士学位论文. 长沙: 国防科技大学, 2005.
    [134] Kadir Timor, Michael Brady. Scale Saliency: a novel approach to salient featureand scale selection[A]. In: International Conference Visual Information Engineering[C], 2003: 25-28.
    [135] Kadir Timor, Michael Brady. Saliency, scale and image description[J]. International Journal of Computer Vision, 2001, 45(2): 83-105.
    [136] Kadir Timor, Andrew Zisserman, Michael Brady. An affine invariant salient region detector[A]. In: Proceedings of the 8th European Conference on Computer Vision[C], Prague, Czech Republic, 2004: 345–457.
    [137] Otsu N. A Threshold Selection Method from gray level histogram[J]. IEEE Trans. Syst. Man. Cybern., 1979. 9: 62-66.
    [138] Fu K S. A Survey on Image Segmentation[J]. Pattern Recognition, 1981, 13: 3-16.
    [139] Sahoo P K. A Survey of Theshold Techniques, Computer Vision Graphics[J]. Image Processing, 1988, 41(2): 233-260.
    [140] Taubman D. EBCOT: Embedded block coding with optimized truncation. Tech. Rep. N1020R, ISO/IEC JTC1/SC29/WG1, 1998.
    [141] Christopoulos C, Skodras A, Ebrahimi T. The JPEG2000 still image coding system: an overview[J]. IEEE Trans. On Consumer Electronics, 2000, 46(4): 1103-1127.
    [142] Taubman D. High performance scalable image compression with EBCOT[A]. In: Proc. of IEEE International Conference on Image Processing[C], Kobe, Japan. 1999: 344-348.
    [143] Taubman D. High performance scalable image compression with EBCOT[J]. IEEE Trans. On Image Processing, 2000, 9(7): 1158-1170.
    [144] Taubman D, Michael W. Marcellin. JPEG2000 图像压缩基础、标准和实践[M]. 北京: 电子工业出版社. 2004.
    [145] Lijie Liu, Guoliang Fan. A new JPEG2000 region-of-interest image coding method: partial significant bitplanes shift[J], IEEE Signal Processing Letters, 2003, 10(2): 35-38.
    [146] Zhou Wang, Alan C. Bovik. Bitplane-by-bitplane shift (BbBShift) – a suggestion for JPEG2000 region of interest image coding[J], IEEE Signal Processing Letters, 2002, 9(5): 160-162.
    [147] Zhou Wang. Generalized bitplane-by-bitplane shift (BbBShift) method forJPEG2000 ROI coding[A]. In: Proceedings of International Conference on Image Processing[C], New York. 2002: 81-84.
    [148] Information Technology – JPEG2000 Image Coding System – Part 1:Core Coding System[S]. ISO/IEC 15444-1 (ITU-T Rec. T.800), 2002.
    [149] 肖江, 邓家先, 吴成柯等. 一种支持干涉多光谱图像ROI的压缩编码方法[J]. 光子学报, 2003, 23(4): 481-484.
    [150] 成礼智, 王红霞, 罗永. 小波的理论与应用[M]. 北京: 科学出版社, 2005.
    [151] 张旭东, 卢国栋, 冯健. 图像编码基础和小波压缩技术—原理、算法和标准[M]. 北京:清华大学出版社. 2004.
    [152] Buzo A H, Gray Jr, Gray R M and Markel J D, Speech coding based upon vector quantization[J], IEEE Trans on Acoust. Speech, Signal Processing, 1980, 28(10): 562-574.
    [153] Linde Y, Buzo A and Gray R M. An algorithm for vector quantization design[J], IEEE Trans. On Commun., 1980, 28(1): 84-95.
    [154] 胡征, 杨有为. 矢量量化原理与应用[M]. 西安电子科技大学出版社. 1988.
    [155] 孙圣和, 陆哲明著. 矢量量化技术及其应用[M]. 北京: 科学出版社. 2002.
    [156] 郑勇. 基于小波变换的分类矢量量化图像压缩编码方法研究[D]. 博士学位论文. 成都: 电子科技大学, 2002.
    [157] 张正阳. 高性能图像编码研究[D]. 博士学位论文. 西安: 西安电子科技大学, 1999.
    [158] Ramamurthi B, Gersho A. Classified Vector Quantization of Images[J]. IEEE Transactions on Communications. 1986, 34(11): 1105-1115.
    [159] 孙圣和, 陆哲明, 刘春和. 快速最近邻矢量量化码字搜索算法[J]. 电子学报. 2001, 29(12): 1772-1777.
    [160] John A. Saghri, Andrew G. Tescher, Anthony M Planinac. KLT/JPEG2000 multispectral bandwith compression with region of interest prioritization capability[A]. In: Proceedings of SPIE Vol. 5203 Appications of Digital Image Processing XXVI[C]. SPIE, 2003. 226-235.
    [161] John A Saghri, Andrew G Tescher, Belal Mohammad. Impact of lossy compression on the classification of remotely-sensed imagery data[A]. In: Proceedings of SPIE Vol. 4115 Appications of Digital Image Processing XXIII[C]. SPIE, 2000. 121-129.
    [162] John A. Saghri, Andrew G Tescher, Ahmed Bou-Shehri. Space-based data compression isssues[A]. In: Proceedings of SPIE Vol. 3528 Multimdia Systems and Applications[C]. Boston, Massachusetts, USA: SPIE, 2000. 581-597.
    [163] Kubrick A, Ellis T. Classified vector quantization of images: codebook design algorithm[J]. IEE Proceedings of Communications, Speech and Vision, 1990, 137(6): 379-386.
    [164] Riskin E A. Optimal bit allocation via the generalized BFOS algorithm[J]. IEEE Transaction on Information Theory, 1991, 37(2): 400-402.
    [165] Quweider M K, Salari E. Efficient classification and codebook design for CVQ[J]. IEE Proceedings-Vision, Image and Signal Processing, 1996, 143(6): 344-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700