非均匀环境下的机载雷达STAP方法与目标检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂波抑制是机载雷达下视工作时的关键问题。除了采用超低副瓣天线、偏置相位中心天线(DPCA)等传统杂波抑制技术,能够有效提高相控阵机载雷达杂波抑制能力和运动目标检测性能的空时自适应处理(STAP)技术受到了广泛关注。常规的统计STAP方法性能最优的前提条件是具有足够的与待检测样本中的干扰独立同分布(IID)的训练样本,以便估计协方差矩阵。在非均匀环境下,由于缺乏足够的与待检测样本中干扰独立同分布的训练样本,常规统计STAP方法性能急剧下降。
     本文着重研究各种非均匀环境下的相控阵机载雷达的STAP杂波抑制方法与目标检测问题。首先介绍了非均匀STAP的基本知识,然后分别研究了常规非均匀环境、非正侧面阵、圆柱型阵和机载火控雷达的STAP杂波抑制方法,最后基于实测数据对相控阵机载雷达杂波抑制和目标检测问题进行了研究。第二章研究了常规非均匀环境下的STAP方法。第三章研究了非正侧面阵相控阵机载雷达杂波抑制问题。第四章研究了圆柱型相控阵机载雷达杂波建模与杂波抑制问题。第五章研究了相控阵机载火控雷达地面运动目标检测(GMTI)和空中运动目标检测(AMTI)问题。第六章研究了实际工程中面临的相控阵机载雷达子阵划分问题,并对子阵级STAP性能进行了分析。第七章和第八章基于实测数据对相控阵机载雷达运动目标检测技术进行了研究,给出了简单有效的运动目标检测方法。
Clutter suppression is critical to airborne radar. In addition to the conventional techniques such as ultralow sidelobe antennas and displaced phased center antenna (DPCA), there has been great interest in space-time adaptive processing (STAP) because it can suppress clutter effectively and improve the detection performance of airborne phased array radar evidently. The premise of the superiority of the conventional statistical STAP is to have ample training samples with interference that are independently and identically distributed (IID) with interference in the test sample, in order to estimate the covariance matrix. Under the nonhomogeneous environment, the performance of the conventional statistical STAP degrades greatly due to lack of sufficient homogeneous training samples.
     This paper puts its emphasis on the investigation of the STAP algorithm and target detection technique for phased array airborne radar in nonhomogeneous environments. Firstly, some basic knowledge of nonhomogeneous STAP is introduced. Secondly, the nonhomogeneous STAP algorithms are investigated in terms of conventional nonhomogeneous environments, non-sidelooking phased array, cylindrical phased array, and airborne fire-control radar etc. Finally, the problems of clutter suppression and target detection are studied based on measured data for phased array airborne radar. In chapter 2, the STAP method is studied in conventional nonhomogeneous environment. In chapter 3, the clutter suppression approach to airborne radar with non-sidelooking phased array antennas is investigated. In chapter 4, clutter model and clutter suppression for airborne early warning (AEW) radar with cylindrical phased array antennas is studied. In chapter 5, the problem of the ground moving target indication (GMTI) and air moving target indication (AMTI) for airborne fire-control radar is reseached. In chapter 6, the subarray partition problem for airborne phased radar is discussed in pratical engineering application background, and the STAP performance is analyzed at subarray stage. In chapters 7 and 8, the moving target detection technique of phased array airborne radar is analyzed based on measured data, and the simple and effective moving target detection methods are given.
引文
[1] Koch W., Klemm R.. Ground target tracking with STAP radar. IEE Proc.-Radar, Sonar Navig., 2001, 148(3): 173~185.
    [2] Ward J.. Space-time adaptive processing for airborne radar. Technical Report 1015, MIT Lincoln Laboratory, 1994.
    [3] Klemm R.. Space-time adaptive processing: principles and applications. IEE Radar, Sonar, Navigation and Avionics 9, London: IEE Press, 1998.
    [4] Klemm R.. Principles of space-time adaptive processing. IEE Radar, Sonar, Navigation and Avionics 12, London: IEE Press, 2002.
    [5] 王永良, 彭应宁. 空时自适应信号处理. 北京:清华大学出版社,2000.
    [6] Guerci J.R.. Space-time adaptive processing for radar. Boston, London: Artech House, 2003.
    [7] Melvin W.L.. A STAP overview. IEEE AES Magazine, 2004, 19(1): 19~35.
    [8] Klemm R.. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc.-Radar, Sonar Navig., 1987, 134(3): 269~276.
    [9] 保铮,廖桂生,吴仁彪,张玉洪,王永良. 相控阵机载雷达杂波抑制的时空二维自适应滤波. 电子学报,1993,21(9):1~7.
    [10] 保铮,张玉洪,廖桂生,王永良,吴仁彪. 机载雷达空时二维信号处理(1). 现代雷达, 1994,16(1):38~48.
    [11] 保铮, 张玉洪, 廖桂生,王永良,吴仁彪. 机载雷达空时二维信号处理(2). 现代雷达,1994,16(2):17~27.
    [12] 廖桂生. 相控阵天线 AEW 雷达时空二维自适应处理. [博士学位论文],西安: 西安电子科技大学,1992.
    [13] Dipietro R.. Extented factored space-time processing for airborne radar systems. Proc. of the 26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA, USA, Oct. 1992: 425~430.
    [14] Wang H.. Space-time processing for airborne radar. Digital Signal Processing Handbook. Boca Raton, FL: CRC Press, 1997.
    [15] Wang H., Cai L.J.. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. on AES, 1994, 30(3): 660~669.
    [16] Wang H., Zhang Y.H., Zhang Q.W.. Lessons learned from recent STAP experiments. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 761~765.
    [17] Wang H.. An overview of space-time adaptive processing for airborne radars. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 789~794.
    [18] Wang H., Zhang Y.H., Zhang Q.W., Brown R.D., Wicks M.C.. An improved andaffordable space-time adaptive processing approach. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 72~77.
    [19] Brown R.D., Wicks M.C., Zhang Y.H., Zhang Q.W., Wang H.. A space-time adaptive processing approach for improved performance and affordability. Proc. of the IEEE National Radar Conf., Ano Arbor, MI, USA, May 1996: 321~326.
    [20] Maher J., Zhang Y.H., Wang H.. A performance evaluation of ΣΔ-STAP approach to airborne surveillance radars in the presence of both clutter and jammers. Proc. of the IEEE Int. Radar Conf., Edingburg, UK, Oct. 1997: 305~309.
    [21] Zhang Y.H., Wang H.. Further study on space-time adaptive processing with sum and difference beams. Proc. of the IEEE Antennas and Propagation Symposium, Montreal Que., Canada, July 1997: 2422~2425.
    [22] Zhang Y.H., Wang H.. Further results of ΣΔ-STAP approach to airborne surveillance radars. Proc. of the IEEE National Radar Conf., Syracuse, NY, USA, May 1997: 337~342.
    [23] Wang H., Zhang Y.H.. A STAP configuration for airborne surveillance radars. Proc. of the IEEE National Radar Conf., Syracuse, NY, USA, May 1997: 217~222.
    [24] Zhang Y.H., Maher J., Chang H., Wang H.. Adaptive pre-suppression of jammers for STAP-based airborne surveillance radars. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 32~37.
    [25] Brown R.D., Schneible R.A., Wicks M.C., Wang H., Zhang Y.H.. STAP for clutter suppression with sum and difference beams. IEEE Trans. on AES, 2000, 36(2): 634~646.
    [26] Moo P.W.. GMTI performance of ΣΔ-STAP for a forward-looking radar. Proc. of the IEEE National Radar Conf., Atlanta, GA, USA, May 2001: 258~263.
    [27] 王永良,吴志文,彭应宁. 适于非均匀杂波环境的空时自适应处理方法. 电子学报,1999,27(9):56~58.
    [28] Haimovich A.M., Ness Y.B.. The eigenanalysis interference canceler. IEEE Trans. on SP, 1991, 9(1): 76~84.
    [29] Haimovich A.M.. The eigencanceler: adaptive radar by eigenanalysis methods. IEEE Trans. on AES, 1996, 32(2): 532~542.
    [30] Haimovich A.M., Berin M.. Eigenanalysis-based space-time adaptive radar: performance analysis. IEEE Trans. on AES, 1997, 33(4): 1170~1179.
    [31] Haimovich A.M.. Asymptotic distribution of the conditional signal-to-noise ratio in a eigenanalysis-based adaptive array. IEEE Trans. on AES, 1997, 33(3): 988~996.
    [32] Haimovich A.M., Peckham C., Ayoub T., et al. Performance analysis of reduced-rank STAP. Proc. of the IEEE National Radar Conf., Syracuse, NY, USA,May 1997: 42~47.
    [33] Ayoub T.F., Haimovich A.M., Pugh M.L.. Reduced-rank STAP for high PRF radar. IEEE Trans. on AES, 1999, 35(3): 953~962.
    [34] Melvin W.L.. Eigenbased modeling of nonhomogeneous airborne radar environments. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 171~176.
    [35] Goldstein J.S., Kogon S.M., Reed I.S., Williams D.B., and Holder E.J.. Partially adaptive radar signal processing: the cross-spectral approach. Proc. of the 29th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, Nov. 1995: 1383~1387.
    [36] Goldstein J.S., Zulch P.A., Reed I.S.. Reduced rank space-time adaptive radar processing. Proc. of the IEEE Int. Acoustics, Speech, and Signal Processing Conf., Atlanta, GA, USA, May 1996: 1173~1176.
    [37] Goldstein J.S., Reed I.S., Smith R.N.. Low-complexity subspace selection for partial adaptivity. Proc. of the IEEE Military Communications Conf., McLean, VA, USA, Oct. 1996: 597~601.
    [38] Goldstein J.S., Reed I.S.. Reduced rank adaptive filtering. IEEE Trans. on SP, 1997, 45(2): 493~496.
    [39] Goldstein J.S., Reed I.S.. Subspace selection for partially adaptive sensor array processing. IEEE Trans. on AES, 1997, 33(2): 539~554.
    [40] Goldstein J.S., Reed I.S.. Theory of partially adaptive radar. IEEE Trans. on AES, 1997, 33(4): 1309~1325.
    [41] Reed I.S., Goldstein J.S.. A tutorial on space-time adaptive processing. Proc. of the IEEE National Radar Conf., Syracuse, NY, USA, May 1997.
    [42] Berger S.D., Welsh B.M.. Selecting a reduced-rank transformation for STAP-a direct form perspective. IEEE Trans. on AES, 1999, 35(2): 722~729.
    [43] Goldstein J.S., Reed I.S., Scharf L.L.. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. on IT, 1998, 44(7): 2943~2959.
    [44] Goldstein J.S., Reed I.S., Zulch P.A., Melvin W.L.. A multistage STAP CFAR detection technique. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 111~116.
    [45] Zulch P.A., Goldstein J.S., Guerci J.R., Reed L.S.. Comparison of reduced-rank signal processing techniques. Proc. of the 32th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 1998: 421~425.
    [46] Goldstein J.S., Reed I.S., Zulch P.A.. Multistage partially adaptive STAP CFAR detection algorithm. IEEE Trans. on AES, 1999, 35(2): 645~661.
    [47] Reed I.S., Goldstein J.S., Yu X., Singer P.. Multidisciplinary perspective on adaptive sensor array processing. IEE Proc.- Radar, Sonar and Navig., 1999,146(5): 221~234.
    [48] Peckham C.D., Haimovich A.M., Ayoub T.F., Goldstein J.S., Reed I.S.. Reduced-rank STAP performance analysis. IEEE Trans. on AES, 2000, 36(2): 664~676.
    [49] 张良. 机载相控阵雷达降维 STAP 研究. [博士学位论文],西安:西安电子科技大学,1999.
    [50] Brennan L.E., Reed I.S.. Theory of adaptive radar. IEEE Trans. on AES, 1973, 9(2): 237~252.
    [51] Chen P.. On testing the equality of covariance matrices under singularity. Report for AFOSR Summer Faculty Research Program, Rome Laboratory, Rome, NY, August 1994.
    [52] Reed I.S., Mallett J.D.. Rapid convergence rate in adaptive arrays. IEEE Trans. on AES, 1974, 10(6): 853~863.
    [53] Adve R.S., Wicks M.C., Hale T.B., et al. Ground moving target indication using knowledge based space time adaptive processing. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA, May 2000: 735~740.
    [54] Kelly E.J.. An adaptive detection algorithm. IEEE Trans. on AES, 1986, 22(1): 115~127.
    [55] Robey F.C., Fuhrmann D.R., Kelly E.J., et al. A CFAR adaptive matched filter detector. IEEE Trans. on AES, 1992, 28(1): 208~216.
    [56] Richmond C.D.. The theoretical performance of a class of space-time adaptive detection and training strategies for airborne radar. Proc. of the 32th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 1998: 1327~1331.
    [57] Rabideau D.J., Steinhardt A.O.. Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training. Proc. of the 30th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 1996: 75~79.
    [58] Rabideau D.J., Steinhardt A.O.. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans. on AES, 1999, 35(3): 879~891.
    [59] Richmond C.D.. Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments IEEE Trans. on SP, 2000, 48(5): 1235~1247.
    [60] Melvin W.L.. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans. on AES, 2000, 36(2): 621~633.
    [61] Melvin W.L., Guerci J.R., Callahan M.J., et al. Design of adaptive detection algorithms for surveillance radar. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA, May 2000: 608~613.
    [62] Richmond C.D.. Statistical performance analysis of the adaptive sidelobe blankerdetection algorithm. Proc. of the 31th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 1997: 872~876.
    [63] 吴仁彪. 机载相控阵雷达时空二维自适应滤波的理论与实现. [博士学位论文],西安:西安电子科技大学,1993.
    [64] Han Y.I., Kim T.. Performance of excision GO-CFAR detectors in nonhomogeneous environments. IEE Proc.-Radar, Sonar, Navig., 1996, 143(2): 105~112.
    [65] Borsari G.K.. Mitigating effects on STAP processing caused by an inclined array. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 135~140.
    [66] Braham H., Michel J.H., Zhang Y.H.. Bistatic STAP performance analysis in radar applications Proc. of the IEEE National Radar Conf., Atlanta, GA, USA, May 2001: 198~203.
    [67] Klemm R.. Ambiguities in bistatic STAP radar. Proc. of the IEEE Int. Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, July 2000:1009~1011.
    [68] Kogon S.M., Zatman M.A.. Bistatic STAP for airborne radar systems. ASAP Workshop, MIT Lincoln Laboratory, Lexington, 2001.
    [69] Kreyenkamp O., Klemm R.. Doppler compensation in forward-looking STAP radar. IEE Proc.-Radar, Sonar, Navig., 2001, 148(5): 253~258.
    [70] Lapierre F.D., Droogenbroeck M.V., Verly J.G.. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. Proc. of the IEEE Int. Acoustics, Speech, and Signal Processing Conf., HongKong, China, April 2003: V73~V76.
    [71] Lapierre F.D., Verly J.G., Droogenbroeck M.V.. New solutions to the problem of range dependence in bistatic STAP radars. Proc. of the IEEE National Radar Conf., the Huntsville Marriott, Huntsville, AL, USA, May 2003: 452~459.
    [72] Melvin W.L., Himed B., Davis M.. Doubly adaptive bistatic clutter filtering. Proc. of the IEEE Radar Conf., the Huntsville Marriott, Huntsville, AL, USA, May 2003: 171~178.
    [73] 王彤. 机载雷达简易 STAP 方法及其应用. [博士学位论文],西安:西安电子科技大学,2001.
    [74] Zatman M.. Production of adaptive array troughs by dispersion synthesis. IEE Electronics Letters, 1995, 31(25): 2141~2412.
    [75] Zatman M.. Circular array STAP. Proc. of the IEEE National Radar Conf., Boston, MA, USA, April 1999: 108~113.
    [76] Zatman M.. The properties of adaptive algorithms with time varying weights. Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA, USA, March 2000: 82~86.
    [77] Zatman M.. Circular array STAP. IEEE Trans. on AES, 2000, 36(2): 510~517.
    [78] 王永良. 新一代机载预警雷达的空时二维自适应信号处理. [博士学位论文], 西安:西安电子科技大学,1994.
    [79] Klemm R.. Adaptive airborne MTI: comparison of sideways and forward looking radar. Proc. of IEEE Int. Radar Conf. Alexandria, VA, USA, May 1995: 614~618.
    [80] Richardson P.G., Hyaward S.D.. Adaptive space-time processing for forward looking radar. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA, May 1995: 629~634.
    [81] Wang Y.L., Peng Y.N, Bao Z.. Space-time adaptive processing for airborne radar with various array orientations. IEE Proc.-Radar, Sonar and Navig., 1997, 144(6): 330~340.
    [82] Marshall D.. Evaluation of STAP training strategies with Mountaintop data. MIT Lincoln Laboratory TR MTP-5, 1996.
    [83] Guerci J.R., Bergin J.S.. Principal components, covariance matrix tapers and the interference modulation problem. Proc. of the Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, MA, USA, March 1999.
    [84] Guerci J.R., Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. on SP, 1999, 47(4): 977~985.
    [85] Guerci J.R., Bergin J.S.. Principal components, covariance matrix tapers and the subspace leakage problem. IEEE Trans. on AES, 2002, 38(1): 152~162.
    [86] Melvin W.L., Wicks M.C.. Improving practical space-time adaptive radar. Proc. of the IEEE National Radar Conf., Syracuse, NY, USA, May 1997: 48~53.
    [87] Adve R.S., Hale T. B., Wicks M.C.. Transform domain localized processing using measured steering vectors and non-homogeneity detection. Proc. of the IEEE National Radar Conf., Boston, MA, USA, April 1999: 285~290.
    [88] Fenner D.K., Hoover W.F.. Test results of a space-time adaptive processing system for airborne early warning radar. Proc. of the IEEE National Radar Conf., Ann Arbor, MI, USA, May 1996: 88~93.
    [89] Little M.O., Berry W.P.. Real-time multichannel airborne radar measurements. Proc. of the IEEE National Radar Conf., Syracuse, NY, USA, May 1997: 138~142.
    [90] Chen P.. Partitioning procedure in radar signal processing problems. Final report for AFOSR Summer Faculty Research Program, Rome Laboratory, Rome, NY, August 1995.
    [91] Melvin W.L., Wicks M.C., Brown R.D.. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architecture and algorithms. Proc. of the IEEE National Radar Conf., Ano Arbor, MI, USA, May 1996: 130~135.
    [92] Himed B., Salama Y., Michel J.H.. Improved detection of close proximity targetsusing two-step NHD. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA, May 2000: 781~786.
    [93] Wang Y.L., Chen J.W., Bao Z., et al. Robust space-time adaptive processing for airborne radar on nonhomogeneous clutter environment. IEEE Trans. on AES, 2003, 39(1): 70~81.
    [94] 陈建文. 机载雷达空时自适应处理方法研究. [博士学位论文], 长沙:国防科学技术大学,2000.
    [95] 陈建文,王永良,皇甫堪,周良柱. 基于非均匀检测的机载雷达空时自适应处理方法. 数据采集与处理,2000,15(1):44~47.
    [96] Fabrizio G.A., Turley M.D.. An advanced STAP implementation for surveillance radar systems. Proc. of the IEEE 11th Signal Processing Workshop on Statistical Signal Processing, Singapore, Aug. 2001: 134~137.
    [97] Park S., Sarkar T.K.. A deterministic eigenvalue approach to space time adaptive processing. Proc. of the IEEE Int. Phased Array Systems and Technology Symposium, Boston, MA, USA, Oct. 1996: 372~375.
    [98] Park S., Sarkar T.K.. A modified generalized eigenvalue approach to space-time adaptive processing. Proc. of the IEEE Int. Antennas and Propagation Symposium, Atlanta, GA, USA, June 1998: 1292~1295.
    [99] Sarkar T.K., Sangruji N.. An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method. IEEE Trans. on AP, 1989, 37(7): 940~944.
    [100] Sarkar T.K., Park S., Koh J., et al. A deterministic least square approach to adaptive antennas. Digital Signal Processing-Rev. J., 1996: 185~194.
    [101] Sarkar T.K., Adve R.S., Wicks M.C.. Effects of mutual coupling and channel mismatched on space-time adaptive processing algorithms. Proc. of IEEE Int. Phased Array Systems and Technology Conf., Dana Point, CA, USA, May 2000: 545~548.
    [102] Sarkar T.K., Koh J., Adve R.S. et al. A pragmatic approach to adaptive antennas. IEEE AP Magazine, 2000, 42(2): 39~55.
    [103] Sarkar T.K., Wang H., Park S., et al. A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. on AP, 2001, 49(1): 91~103.
    [104] 董瑞军. 机载雷达非均匀 STAP 方法及其应用. [博士学位论文],西安:西安电子科技大学,2002.
    [105] 王万林. 非均匀环境下的相控阵机载雷达 STAP 研究. [博士学位论文],西安: 西安电子科技大学,2004.
    [106] Adve R.S., Wicks M.C.. Joint domain localized processing using measured spatial steering vectors. Proc. of the IEEE National Radar Conf., Dallas, Tx, USA, May1998: 165~170.
    [107] Adve R.S., Hale T. B., Wicks M.C.. A two stage hybrid space-time adaptive processing algorithm. Proc. of the IEEE National Radar Conf., Boston, MA, USA, April 1999: 279~284.
    [108] Adve R.S., Hale T. B., Wicks M.C.. Practical joint domain localized adaptive processing in homogeneous and nonhomogeneous environments. Part ?: Homogeneous environments. IEE Proc.-Radar, Sonar Navig., 2000, 147(2): 57~65.
    [109] Adve R.S., Hale T. B., Wicks M.C.. Practical joint domain localized adaptive processing in homogeneous and nonhomogeneous environments. Part П: Nonhomogeneous environments. IEE Proc.-Radar, Sonar Navig., 2000, 147(2): 66~74.
    [110] Pearson F., Borsari G.. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, March 2001.
    [111] Ong K.P., Mulgrew B.. Doppler compensation for JDL for airborne bistatic radar. Proc. of the IEEE Sensor Array & Multichannel Signal Processing Workshop, Aug. 2002: 82~86.
    [112] Lim C.H., Aboutanios E., Mulgrew B.. Modified JDL with Doppler compensation for airborne bistatic radar. Proc. of the IEEE National Radar Conf., Arlington, VA, USA, May 2005: 854~858.
    [113] Himed B., Zhang Y.H., Hajjari A.. STAP with angle-Doppler compensation for bistatic airborne radar. Proc. of the IEEE National Radar Conf., Long Beach, CA, USA, April 2002: 311~317.
    [114] Jaffer A., Himed B., Ho P.. Estimation of range-dependent cluter covariance by configuration parameter estimation. Proc. of the IEEE Int. Radar Conf., Arlington, VA, USA, May 2005: 596~601.
    [115] Jaffer A., Ho P.T.. Adaptive angle-Doppler compensation techniques for bistatic STAP radars. Final Technical Report, AFRL-SN-RS-TR-2005-398, December, 2005.
    [116] Jaffer A., Ho P.T., Himed B.. Adaptive compensation for conformal array STAP by configuration parameter estimation. Proc. of the IEEE National Radar Conf., Verona, NY, USA, April 2006.
    [117] Zatman M.. Performance analysis of the derivative based updating method. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, March 2001.
    [118] Hayward S.D.. Adaptive beamforming for rapidly moving arrays. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 1165~1168.
    [119] Lapierre F.D., Verly J.G.. Registration-based solutions to the range-dependenceproblem in STAP radars. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, March 2003.
    [120] Lapierre F.D., Verly J.G.. The range-dependence problem of clutter spectrum for non-sidelooking monostatic STAP radars, Proc. of the 21st Benelux Meeting on Systems and Control, Veldhoven, The Netherlands, March 2002.
    [121] Neyt X., Lapierre F.D., Verly J.G.. Priciple and evaluation of a registration-based range-dependence compensation method for STAP in case of arbitrary antenna patterns and simulated snapshots. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, March 2004.
    [122] Neyt X., Lapierre F.D., Verly J.G.. Estimation of geometric radar configuration parameters for range-dependence compensation in STAP in the presence of targets, jammers, and decorrelation effects. Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop, July 2004: 662~666.
    [123] Lim C.H., Mulgrew.. Filter banks based JDL with angle and separate Doppler compensation for airborne bistatic radar. Proc. of the Int. Radar Symposium, Bangalore, India, Dec. 2005: 583~587.
    [124] Varadarajan V., Krolik J.. STAP with a distorted linear array in inhomogeneous clutter. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, 2002: 1~17.
    [125] Lim C.H., Aboutanios E., Mulgrew B.. Linear prediction of range-dependent inverse covariance matrix. Proc. of the National Radar Conf., Verona, NY, April 2006.
    [126] Lim C.H., Mulgrew B.. Prediction of inverse covariance matrix (PICM) sequences for STAP. IEEE SP Letters, 2006, 13(4): 236~239.
    [127] Melvin W.L., Guerci J.R.. Adaptive detection in dense target environments. Proc. of the IEEE National Radar Conf., Atlanta, GA, USA, May 2001: 187~192.
    [128] Rangaswamy M., Himed B., Michels J.H.. Performance analysis of the nonhomogeneity detector for STAP applications. Proc. of the IEEE National Radar Conf., Atlanta, GA, USA, May 2001: 193~197.
    [129] Wicks M.C., Melvin W.L., Chen P.. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar. Proc. of the IEEE Int. Radar Conf., Edinburgh, UK, Oct. 1997: 295~299.
    [130] Guerci J.R., Goldstein J.S., Reed I.S.. Optimal and adaptive reduced rank STAP. IEEE Trans. on AES, 2000, 36(2): 647~663.
    [131] Pillai S.U., Kwon B.H., Forward/backword spatial smoothing techniques for coherent signal identification. IEEE Trans. on ASSP, 1989, 37(1): 8~15.
    [132] Pillai S.U., Kim Y.L., Guerci J.R.. Gneralized forward/backward subaperture smoothing techniques for sample starved STAP. IEEE Trans. on SP, 2000, 48(12): 3569~3574.
    [133] Lombardo P. Data selection strategies for radar space time adaptive processing. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 201~206.
    [134] Pados D.A., Tsao T, Michels J.H., et al. Joint domain space-time adaptive processing with small training data sets. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 99~104.
    [135] Armstrong B.C., Griffiths H.D., Baker C.J., White R.G.. Performance of adaptive optimal Doppler processors in heterogeneous clutter. IEE Proc.-Radar, Sonar, Navig., 1995, 142(4): 179~190.
    [136] Nitzberg R.. An effect of range-heterogeneous clutter on adaptive Doppler filters. IEEE Trans. on AES, 1990, 26(3): 475~480.
    [137] Zatman M.. Properties of Hung-Turner projections and their relationship to the eigencanceller. Proc. of the IEEE 30th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov. 1997: 1176~1180.
    [138] 向敬成, 张明友. 雷达系统. 北京:电子工业出版社,2001.
    [139] 丁鹭飞, 耿富录. 雷达原理. 西安:西安电子科技大学出版社,1995.
    [140] Skolnik M.I.. Radar handbook. Second edition, New York: McGraw-hill, 1990.
    [141] Hale T.B., Temple M.A., Wicks M.C.. Clutter suppression using elevation interferometry fused with space-time adaptive processing. Electronics Letters, 2001, 37(12): 793~794.
    [142] Hale T.B., Temple M.A., Raquet J.F., et al. Localized three-dimensional adaptive spatial-temporal processing for airborne radar. IEE Proc.-Radar Sonar Navig., 2003, 150(1): 18~22.
    [143] 孙继广. 矩阵扰动分析. 北京:科学出版社,1987.
    [144] 程云鹏. 矩阵论. 西安:西北工业大学出版社,1998.
    [145] 张贤达. 矩阵分析与应用. 北京:清华大学出版社,2004.
    [146] Thompson E.A., Pasala K.M.. Space-time adaptive processing of curved antenna arrays. Proc. of the IEEE Int. Antennas and Propagation Symposium, Montreal, Que., Canada, July 1997: 2430~2433.
    [147] Brann C.W., Virga K.L.. Generation of optimal distribution sets for single-ring cylindrical arc arrays. Proc. of the IEEE Int. Antennas and Propagation Symposium, Atlanta, GA, USA, June 1998: 732~735.
    [148] Virga K.L., Zhang H.. Spatial beamformer weighting sets for circular array STAP. Proc. of the IEEE Int. Phased Array Systems and Technology Conf., Dana Point, CA, USA, May 2000: 561~564.
    [149] Tseng C.Y., Griffith L.J.. A simple algorithm to achieve desired patterns for arbitrary arrays. IEEE Trans. on SP, 1992, 40(11): 2737~2746.
    [150] Sarkar T.K., Adve R.. Space-time adaptive processing using circular arrays. IEEE AP Magazine, 2001, 43(1): 138~143.
    [151] Jouny I.. Beamspace STAP for circular arrays. Proc. of the IEEE Int. Antennas and Propagation Symposium, Orlando, FL, USA, Aug. 1999: 784~787.
    [152] Nohara T.J., Weber P., Premji A., et al. Airborne ground moving target indication using non-side-looking antennas. Proc. of the IEEE National Radar Conf., Dallas, TX, USA, May 1998: 269~274.
    [153] Rabideau D.J., Kogon S.M.. A signal processing architecture for space-based GMTI radar. Proc. of the IEEE National Radar Conf. Waltham, MA, USA, April 1999:96~101.
    [154] McDonald K.F., Kuklinski W.S.. Track maintenance and positional estimation via ground moving target indicator and geolocation data fusion. Proc. of the IEEE National Radar Conf., Atlanta, GA, USA, May 2001: 239~245.
    [155] Gaffney J.B., Guttrich G., Babu B.N.S., Torres J.A.. Performance comparison of fast-scan GMTI/STAP architectures. Proc. of the IEEE National Radar Conf., Atlanta, GA, USA, May 2001: 252~257.
    [156] Klemm R.. Real-time adaptive airborne MTI, Part ?: space-time processing. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 755~760.
    [157] Klemm R.. Real-time adaptive airborne MTI, Part П: space-frequency processing. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 430~433.
    [158] 王彤,保铮,廖桂生. 机载火控雷达近距离地面慢速目标检测. 电子学报,2001,29(6):721~725.
    [159] 王彤,保铮,廖桂生.地面慢速目标检测的 STAP 方法. 电子学报,2000,28(9): 123~125.
    [160] Richardson P.G.. Analysis of the adaptive space time processing technique for airborne radar. IEE Proc.-Radar, Sonar Navig., 1994, 141(4): 187~195.
    [161] Richardson P.G.. Relationships between DPCA and adaptive space-time processing techniques for clutter suppression. Proc. of the IEEE Int. Radar Conf., Paris, France, 1994: 295~300.
    [162] Nohara T.J.. Comparison of DPCA and STAP for space-based radar. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA, May 1995: 113~119.
    [163] Lightstone L., Faubert D., Rempel G.. Multiple phase center DPCA for airborne radar. Proc. of the IEEE National Radar Conf., Los Angeles, CA, USA, March 1991: 36~40.
    [164] Blum R.S., Melvin W.L., Wicks M.C.. An analysis of adaptive DPCA. Proc. Of the IEEE National Radar Conf., Ano Arbor, MI, USA, May 1996: 303~308.
    [165] Yadin E.. Evaluation of noise and clutter induced relocation errors. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, May 1995: 650~655.
    [166] Yadin E.. A performance evaluation mode for a two port interferometer SAR-MTI. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 261~266.
    [167] 林幼权等. 三孔径 SAR-MTI 系统性能分析. 系统工程与电子技术,2000,22(12): 31~33.
    [168] 林幼权. 机载合成孔径成像与地面运动目标检测技术研究. [博士学位论文], 西安:西安电子科技大学,2000.
    [169] Wang Y.L., Bao Z., Peng Y.N.. STAP with medium PRF mode for non-sidelooking airborne radar. IEEE Trans. on AES, 2000, 36(2): 609~620.
    [170] Davies P.G., Hughes E.J.. Medium PRF set selection using evolutionary algorithms. IEEE Trans. on AES, 2002, 38(3): 933~939.
    [171] Alabaster C.M., Hughes E.J., Matthew J.H.. Medium PRF radar PRF selection using evolutionary algorithms. IEEE Trans. on AES, 2003, 39(3): 990~1001.
    [172] Morris G.V., Harkness L.L.. Airborne pulsed Doppler radar. Boston, London: Artech House, 1996.
    [173] 周明,孙树栋. 遗传算法原理及应用. 北京:国防工业出版社,1999.
    [174] Simpson J.. PRF set selection for pulse Doppler radar. Proc. of the IEEE Region 5 Conf., Colorado Springs, CO, USA, March 1988: 38~44.
    [175] Klemm R.. Antenna design for adaptive airborne MTI. Proc. of the IEEE Int. Radar Conf., Brington, UK, Oct. 1992: 296~299.
    [176] 许志勇. AEW 雷达空时二维自适应处理降维方法的研究. [博士学位论文], 西安:西安电子科技大学,1997.
    [177] Nickel U.. Subarray configurations for digital beamforming with low sidelobes and adaptive interference suppression. Proc. of the IEEE Int. Radar Conf., Alexandria, VA, USA, May 1995: 620~623.
    [178] Xu Z.Y., Bao Z., Liao G.S.. A method of designing irregular subarray architectures for partially adaptive processing. Proc. of the IEEE Int. Radar Conf., Beijing, China, Oct. 1996: 460~463.
    [179] Haupt R.. Reducing grating lobes due to subarray amplititude tapering. IEEE Trans. on AP, 1985, 33(8): 846~850.
    [180] Lopez P., Rodriguez J.A., Ares F., et al. Subarray weighting for the difference patterns of monopulse antennas: joint optimization of subarray configurations and weights. IEEE Trans. on AP, 2001, 49(11): 1606~1608.
    [181] Smolko J.A.. Optimization of pattern sidelobes in arrays with regular subarray architectures. Proc. of the IEEE Int. Antennas and Propagation Symposium, Atlanta, GA, USA, June 1998: 21~26.
    [182] Mohamed J., Holden R.. Grating lobe minimization in sum and difference beam patterns. Proc. of the IEEE Int. Antennas and Propagation Symposium, June 2003: 22~27.
    [183] 许志勇,保铮,廖桂生. 一种非均匀邻接子阵结构及其部分自适应处理性能分析. 电子学报,1997,25(9):20~24.
    [184] Lombardo P., Billingsley J.B.. A new model for the Doppler spectrum of windblown radar ground clutter. Proc. of the IEEE National Radar Conf., Waltham, MA, USA, April 1999: 142~147.
    [185] Greco M., Gini F., Farina A., Billingsley J.B.. Validation of windblown radar ground clutter spectral shape. IEEE Trans. on AES, 2001, 37(2): 538~548.
    [186] Friedlander B.. A subspace method for space time adaptive processing. IEEE Trans. on SP, 2005, 53(1): 74~82.
    [187] Francos J.M., Nehorai A.. Interference mitigation in STAP using the two-dimensional wold decomposition model. IEEE Trans. on SP, 2003, 51(10): 2461~2470.
    [188] Gerlach K., Picciolo M.L.. Airborne/spacebased radar STAP using a structured covariance matrix. IEEE Trans. on AES, 2003, 39(1): 269~281.
    [189] Parker P., Swindlehurst A.. Space-time autoregressive filtering for matched subspace STAP. IEEE Trans. on AES, 2003, 39(2): 510~519.
    [190] Chang H.H.. Improving space-time adaptive processing (STAP) radar performance in nonhomogeneous clutter. [Doctor Dissertation], Syracuse: Syracuse University, 1997.
    [191] Schneible R.A.. A least squares approach for radar array adaptive nulling. [Doctor Dissertation], Syracuse: Syracuse University, 1996.
    [192] Kim Y.. Efficient signal processing techniques for space-time adaptive radar. [Doctor Dissertation], New York: Polytechnic University, 1998.
    [193] Hale T.B.. Airborne radar interference suppression using adaptive three-dimensional techniques. [Doctor Dissertation], Ohio: Air Force Institute of Technology, 2002.
    [194] Adve R.S., Hale T.B., Wiks M.C., Antonik P.A.. Ground moving target indication using knowledge based space-time adaptive processing. Proc. of the IEEE Int. Radar Conf., Washington, DC, USA, May 2000: 735~740.
    [195] Bergin J., Techau P.. High-fidelity site-specific radar simulation: Kassper’02 workshop datacube. Defense Advanced Research Projects Agency (DARPA), Tech. Report ISL-SCRD-TR-02-105, 2002.
    [196] Rangaswamy M., Lin F., Gerlach K.. Robust adaptive signal processing methods for geterogeneous radar clutter scenarios. Signal Processing, 2004, 84(9): 1653~1665.
    [197] Zywicki D.J., Melvin W.L., Showman G.A., Guerci J.R.. STAP performance in site-specfic clutter rnvironments. Proc. of the IEEE Aerospace Conf., April 2004: 2005~2020.
    [198] Blunt S., Gerlach K., Rangaswamy M.. The enhanced FRACTA algorithm with knowledge aided covariance estimation. Proc. of the IEEE Sensor Array Multichannel Processing Workshop, Barcelona, Spain, 2004.
    [199] Bergin J., Teixeira C., Techau P., Guerci J.. STAP with knowledge-aided data pre-whitening. Proc. of the IEEE National Radar Conf., Philadelphia, PA, USA, April 2004: 289~294.
    [200] Melvin W.L., Showman G.A., Guerci J. R.. A knowledge-aided GMTI detection architechture. Proc. of the IEEE National Radar Conf., April 2004: 301~306.
    [201] Gini F.. Knowledge-based systems for adaptive radar. IEEE Signal Processing Magazine, January 2006: 14~17.
    [202] Capraro G.T., Farina A., Grifiths H., Wicks M.C.. Knowledge-based radar signal and data processing. IEEE Signal Processing Magazine, January 2006: 18~29.
    [203] Guerci J.R., Baranoski E.J.. Knowledge-aided adaptive radar at DARPA. IEEE Signal Processing Magazine, January 2006: 41~50.
    [204] Wiks M.C., Rangaswamy M., Adve R., Hale T.B.. Space-time adaptive processing (A knowledge-based perspective for airborne radar). IEEE Signal Processing Magazine, January 2006: 51~65.
    [205] 魏进武,王永良,陈建文. 双基地机载预警雷达空时自适应处理方法. 电子学报,2001,29(12A):1936~1939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700