炔丙醇与二硫缩烯酮的碳/杂环化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环、碳环作为关键结构单元广泛地存在于天然产物、合成药物、染料、以及有机功能材料中,发展新的成环反应,一直是有机合成化学研究的核心内容。制备新型多官能化有机合成子进而构建所需环系,是发展成环新反应的主要策略。因此,创造性地设计和制备多官能化、多反应位点的有机合成子是有机合成方法学研究的重要内容。炔和二硫缩烯酮均是具有代表性的有机合成子,已有百余年的研究历史。有机化学家利用两者的结构特点及取代基的立体、电子效应等因素,开发了众多碳环以及杂环化合物的合成新策略,形成了特色鲜明的合成方法学。如果能将二者“融合”成新的有机合成子(使其兼具炔和二硫缩烯酮的结构特征),所得的合成子将具有重要的应用价值。
     我们课题组一直致力于炔化学研究,根据多年的研究经验提出了‘官能化炔’的研究新思路。作为具有代表性的一类‘官能化炔’,炔丙醇在路易斯酸作用下易于生成炔基碳正离子,能够与亲核性物种反应,生成新的‘官能化炔’;同时,炔基碳正离子能够重排生成联烯基碳正离子。二硫缩烯酮是另一类易于制备的合成中间体,其α-位具有强亲核性,易于与亲电物种反应。基于炔丙醇和二硫缩烯酮化合物的这些反应特性,我们创造性地将二者结合,通过构建炔基/二硫缩烯酮‘融合’的合成中间体,进一步发生分子内的环合反应,或直接进行分子间的成环反应,从而为一些重要碳、杂环化合物的合成提供新方法。本论文主要分为五个章节。
     第一章:介绍炔丙醇类化合物在有机合成中的应用。
     第二章:概要性介绍二硫缩烯酮化学的研究进展。
     第三章:阐述论文选题。
     第四章:我们以三氟化硼乙醚作催化剂,实现了炔丙醇和α-羰基二硫缩烯酮的[3+2]环加成反应,以较高的收率得到全取代环戊二烯。其中,α-羰基二硫缩烯酮首次作为极化的烯烃合成碳环化合物,通过对反应机理研究,我们发现了在闭环过程中一个新颖的1,4-烷硫基迁移。进一步研究发现,环戊二烯中独特的取代基促使和马来酰亚胺反应,并发现了一种新颖的脱烷硫基型Diels-Alder反应,得到一类新型的有机小分子荧光染料,具有易于大量制备、易于结构修饰等优点,并且具有优良的光物理性质。
     第五章:利用炔丙醇在路易斯酸作用下易于生成炔基碳正离子的特点,能够与二硫缩烯酮α-位发生偶联反应,得到多种含有二硫缩烯酮的‘官能化炔’。此类合成子进一步发生分子内或分子间的环合反应,最终我们得到多取代吡咯、噻吩、二氢噻吩和苯并[f]-1-二氢茚酮等重要的化合物。
Carbon/heterocyclic ring as a key structural element widely found in natural products,synthetic drugs, dyes, and organic functional materials, the development of a new cyclization,has been the core content of organic synthetic chemistry research. Preparation of newmulti-functional organic synthesis and thus build the required sub-ring system, is developinginto a new ring main policy response. Therefore, creatively designed and preparedmulti-functional, multi-site reactions in organic synthon is an important part of organicsynthesis research. Alkyne and ketene dithioacetals are representative organic synthons, overa hundred years of research history. Organic chemists use structural features of both stereoand replace factors, electronic effects and other factors to develop a new strategy for thesynthesis of a number of carbocyclic and heterocyclic compounds, forming a distinctivesynthesis methodology. If you can both "fusion" into a new organic synthon (make structuralfeatures of both alkyne and ketene dithioacetals), and the resulting synthon will haveimportant applications.
     Our group has been working alkyne chemistry research, the 'functionalized alkyne'research new ideas based on years of research experience. As a representative of a class of'functionalized alkyne', propargyl alcohols in the presence of lewis acid easy to producealkynyl carbocation can be reacted with a nucleophilic species to produce new 'functionalizedalkyne'; Meanwhile, alkynyl carbocations rearrangement can generate allenic carbocations. α-carbonyl ketene dithioacetals is easy to prepare a synthetic intermediate, the α-position has astrong nucleophilicity to react with the electrophilic species. Based on the responsecharacteristics of propargyl alcohols and ketene dithioacetals, we creatively combine both bybuilding alkynyl/ketene dithioacetals 'fusion' synthetic intermediates, further intramolecularcyclization occurs, or to direct intermolecular cyclization reaction to provide a new methodfor the synthesis of a number of important carbo/heterocyclic compounds. The thesis isdivided into five chapters.
     The first chapter introduces the propargyl alcohols compound used in organic synthesis.
     The second chapter, the significant advances in the chemistry of ketene dithioacetals inrecent years are reviewed.
     The third chapter of the paper topic.
     The IV chapter, we have developed a conceptually new strategy to synthesizecyclopentadienes by BF3Et2O-catalyzed regiospecific [3+2] cycloaddition of propargylic alcohols and α-oxo ketene dithioacetals. The α-oxo ketene dithioacetals were for the first timeapplied to carbocyclic synthesis as polarized alkenes. A mechanistically novel1,4-alkylthioshift was observed in the ring-closure process. The unique substitution pattern ofcyclopentadienes facilitated an unusual dethiolation Diels–Alder reaction with maleimides,affording a new small organic fluorescent dye molecules, with ease a lot of preparation, easeof structural modification, etc., and has excellent photophysical properties.
     Chapter V, the containing ketene dithioacetals 'functionalized alkyne' were efficientlyconstructed through a coupling reaction of propargyl cabocations from propargylic alcoholswith ketene dithioacetals. Further the use of such synthons intermolecular or intramolecularcyclization reaction, we finally obtain several important compounds, such as polysubstitutedpyrroles, thiophenes, dihydrothiophenes and benzo[f]-1-indanones and so on.
引文
[1] a) Nakagawa T, Kasatkin A, Sato F. Highly Efficient Synthesis of Propargyl-and AllenyltitaniumReagents from Propargyl Halides or Propargyl Alcohol Derivatives. Practical Synthesis of Allenyl andHomopropargyl Alcohols[J]. Tetrahedron Letters,1995,36(18):3207-3210. b) Frantz D E, Fa¨ssler R,Carreira E M. Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition ofTerminal Alkynes to Aldehydes[J]. J Am Chem Soc,2000,122:1806-1807.
    [2] Engel D, Dudley G. The Meyer–Schuster rearrangement for the synthesis of α,β-unsaturated carbonylcompounds[J]. Org Biomol Chem,2009,7:4149-4158.
    [3] Andres J, Cardenas R, Tapia O, et al. A theoretical study of the Meyer-Schuster reaction mechanism:minimum-energy profile and properties of transition-state structure[J]. J Am Chem Soc,1988,110(3):666-674.
    [4] Zhang L, Lu P, Wang Y, et al.3-Alkenylation or3-Alkylation of Indole with Propargylic Alcohols:Construction of3,4-Dihydrocyclopenta[b]indole and1,4-Dihydrocyclopenta[b]indole in the Presenceof Different Catalysts[J]. J Org Chem,2012,77:9510-9520.
    [5] Zhang X, Teo W, Chan W, et al. Ytterbium(III) Triflate Catalyzed Tandem Friedel-CraftsAlkylation/Hydroarylation of Propargylic Alcohols with Phenols as an Expedient Route to Indenols[J].Org Lett,2009,11(21):4990-4993.
    [6] Huang W, Wang J, Xigeng Zhou X, et al. One-Step Synthesis of Substituted Dihydro-andTetrahydroisoquinolines by FeCl3·6H2O Catalyzed Intramolecular Friedel-Crafts Reaction ofBenzylamino-Substituted Propargylic Alcohols[J]. J Org Chem,2008,73:1586-1589.
    [7] Huang W, Zheng P, Zhou X, et al. Controllable One-Step Synthesis of Spirocycles, Polycycles, and Di-and Tetrahydronaphthalenes from Aryl-Substituted Propargylic Alcohols[J]. J Org Chem,2008,73:6845-6848.
    [8] Sanz R, Miguel D, Julia M, et al. Br nsted Acid Catalyzed Propargylation of1,3-DicarbonylDerivatives. Synthesis of Tetrasubstituted Furans[J]. Org Lett,2007,9(4):727-730.
    [9] Huang W, Wang J, Zhou X, et al. Yb(OTf)3-catalyzed propargylation and allenylation of1,3-dicarbonylderivatives with propargylic alcohols: one-pot synthesis of multi-substituted furocoumarin[J].Tetrahedron,2007,63(47):11636-11643.
    [10] Mothe S, Lauw S, Chan W, et al. Br nsted Acid-Catalyzed Cycloisomerization of But-2-yne-1,4-diolswith or without1,3-Dicarbonyl Compounds to Tri-and Tetrasubstituted Furans[J]. J Org Chem,2012,77:69376947.
    [11] Wang S, Wang Y, Lu P, et al. Synthesis of Functionalized Indenes via Cascade Reaction of Aziridinesand Propargyl Alcohols[J]. Org Lett,2009,11(12):2615-2618.
    [12] Wang L, Xie X, Liu Y. Facile Synthesis of Fully Substituted Dihydro-β-carbolines via Br nsted AcidPromoted Cascade Reactions of α-Indolyl Propargylic Alcohols with Nitrones[J]. Org Lett,2012,14(23):5848-5851.
    [13] Liu Y, Liao P, Bi X, et al. Regiospecific6-Endo-Annulation of in Situ Generated3,4-Dienamides/Acids: Synthesis of δ-Lactams and δ-Lactones[J]. Org Lett,2013,15(11):2608-2611.
    [14] Yao L, Shi M. Lewis Acid-Catalyzed Cascade Reactions of Arylmethylenecyclopropanes with1,1,3-Triarylprop-2-yn-1-ols or Their Methyl Ethers[J]. Org Lett,2007,9(25):25187-5190.
    [15] Yoshimatsu M, Yamamoto T, Sawa A, et al. α-Sulfanyl and α-Selanyl Propadienyl Cations:Regioselective Generations and Cycloadditions with Thioamides and Selemide Controlled byMeNO2-H2O System[J]. Org Lett,2009,11(13):2952-2955.
    [16] Zhang X, Teo W, Chan W, et al. Efficient synthesis of di-and trisubstituted2-aryloxazoles viaytterbium(III) triflate catalyzed cyclization of tertiary propargylic alcohols with aryl amides[J]. JOrganomet Chem,2011,696(1):331–337.
    [17] Zhang X, Teo W, Chan W, et al. Br nsted Acid Catalyzed Cyclization of Propargylic Alcohols withThioamides. Facile Synthesis of Di-and Trisubstituted Thiazoles[J]. J Org Chem,2010,75:6290-6293.
    [18] Zhu Y, Lu P, Wang Y, et al. Tandem Reaction of Propargylic Alcohol, Sulfonamide, andN-Iodosuccinimide: Synthesis of N-(2-Iodoinden-1-yl)-Arenesulfonamide[J]. Org Lett,2011,13(5):1024-1027.
    [19] Zhu Y, Lu P, Wang Y, et al. Tandem Reaction of Propargyl Alcohol and N-Sulfonylhydrazone:Synthesis of Dihydropyrazole and Its Utility in the Preparation of3,3-Diarylacrylonitrile[J]. Org Lett,2011,13(14):3553-3555.
    [20] Detz R J, Hiemstra H H, van Maarseveen J H. Catalyzed Propargylic Substitution[J]. Eur J Org Chem,2009,36:6263–6276.
    [21] Pan Y, Zhao S, Zhan Z, et al. One-Pot Synthesis of Substituted Furans Using Cu(OTf)2-CatalyzedPropargylation/Cycloisomerization Tandem Reaction[J]. J Comb Chem,2009,11:103-109.
    [22] Huang G, Pan Y, Zhang Y, et al. Atom-Economical Chemoselective Synthesis of1,4-Enynes fromTerminal Alkenes and Propargylic Alcohols Catalyzed by Cu(OTf)2[J]. J Org Chem,2013,78:2742-2745.
    [23] Wang T, Ma R, Zhan Z, et al. Solvent-free solid acid-catalyzed nucleophilic substitution ofpropargylic alcohols: a green approach for the synthesis of1,4-diynes[J]. Green Chem,2010,12:1576-1579.
    [24] Yadav J S, Thrimurtulu N, Reddy N M, et al. The first example of alkynylation of propargylic alcoholswith alkynylsilanes catalyzed by molecular iodine[J]. Tetrahedron Letters,2008,49:2031-2033.
    [25] Sanz R, Martínez A, Rodríguez F, et al. Br nsted Acid Catalyzed Alkylation of Indoles with TertiaryPropargylic Alcohols: Scope and Limitations[J]. Eur J Org Chem,2010,36:7027-7039.
    [26] Silveira C C, Mendes S R, Wolf L, et al. Anhydrous CeCl3catalyzed C3-selective propargylation ofindoles with tertiary alcohols[J]. Tetrahedron Letters,2010,51:4560-4562.
    [27] Gohain M, Marais C, Bezuidenhoudt B C. An Al(OTf)3-catalyzed environmentally benign process forthe propargylation of indoles[J]. Tetrahedron Letters,2012,53:4704-4707.
    [28] Yuan F, Han F. Iron-Catalyzed Direct Synthesis of Densely Substituted Benzofurans andNaphthopyrans from Phenolic Compounds and Propargylic Alcohols[J]. Adv Synth Catal,2013,355:537-547.
    [29] Huang W, Wang J, Zhou X, et al. Yb(OTf)3-catalyzed propargylation and allenylation of1,3-dicarbonyl derivatives with propargylic alcohols: one-pot synthesis of multi-substitutedfurocoumarin[J]. Tetrahedron,2007,63:11636-11643.
    [30] Feng X, Tan Z, Xiang J, et al. Synthesis of tetrasubstituted furans via In-catalyzed propargylationof1,3-dicarbonyl compounds-cyclization tandem process[J]. Tetrahedron Letters,2008,49:4110-4112.
    [31] Yadav J S, Pandurangam T, Praneeth K, et al. Heteropoly acid-catalyzed highly efficient alkylation of1,3-dicarbonyl compounds with benzylic and propargylic alcohols[J]. Tetrahedron Letters,2008,49:4296-4301.
    [32] Liu X, Huang L, Zhan Z, et al. Indium Achtungtrenung (III) Chloride-CatalyzedPropargylation/Amination/Cyclo-Achtungtrenung isomerization Tandem Reaction: One-Pot Synthesisof Highly Substituted Pyrroles from Propargylic Alcohols,1,3-Dicarbonyl Compounds and PrimaryAmines[J]. Adv Synth Catal,2008,350:2778-2788.
    [33] a) Zhan Z, Yu J, Liu H, et al. BiCl3-Catalyzed propargylic substitution reaction of propargylic alcoholswith C-, O-, S-and N-centered nucleophiles[J]. Chem Commun,2006,3352-3354. b) Zhan Z, Yu J,Liu H, et al. A General and Efficient FeCl3-Catalyzed Nucleophilic Substitution of PropargylicAlcohols[J]. J Org Chem,2006,71:8298-8301.
    [34] Pridmore S J, Slatford P A, Williams J M.2,5-Disubstituted furans from1,4-alkynediols[J].Tetrahedron Letters,2007,48:5111-5114.
    [35] Hayes S J, Knight D W, Menzies M D, et al. An efficient furan synthesis using heterogeneouscatalysis[J]. Tetrahedron Letters,2007,48:7709-7712.
    [36] Mothe S R, Kothandaraman P, Chan P W H, et al. Chanb Silver Triflate Catalyzed TandemHeterocyclization/Alkynylation of1-((2-Tosylamino)aryl)but-2-yne-1,4-diols to2-Alkynyl Indoles[J].Chem Eur J,2012,18:6133-6137.
    [37] Susanti S, Koh F, Chan P W H, et al. Silver Acetate Catalyzed Hydroamination of1-(2-(Sulfonylamino)phenyl)prop-2-yn-1-ols to (Z)-2-Methylene-1-sulfonylindolin-3-ols[J]. J OrgChem,2012,77:7166-7175.
    [38] Yamabe H, Mizuno A, Iwasawa N, et al. Rh(I)-Catalyzed Cyclization of1-Arylprop-2-yn-1-olDerivatives Utilizing Rhodium1,4-Migration[J]. J Am Chem Soc,2005,127(10),3248-3249.
    [39] Shintani R, Okamoto K, Hayashi T. Rhodium-Catalyzed Isomerization of α-Arylpropargyl Alcohols toIndanones: Involvement of an Unexpected Reaction Cascade[J]. J Am Chem Soc,2005,127(9):2872-2873.
    [40] Shintani R, Okamoto K, Hayashi T, et al. Rhodium-Catalyzed Asymmetric Synthesis of Indanones:Development of a New “Axially Chiral” Bisphosphine Ligand[J]. J Am Chem Soc,2006,128(9):2772-2773.
    [41] Shintani R, Takatsu K, Hayashi T, et al. hodium-Catalyzed Rearrangement of Aryl Bis(alkynyl)Carbinols to3-Alkynyl-1-indanones[J]. Angew Chem Int Ed,2008,47:1447-1449.
    [42] Fehr C, Farris I, Sommer H. Copper-Catalyzed Cycloisomerizations of5-En-1-yn-3-ols[J]. OrgLett,2006,8(9):1839-1841.
    [43] Lian J, Liu R. Gold-catalyzed cyclo-isomerization of1,6-diyne-4-en-3-ols to form naphthyl ketonederivatives[J]. Chem Commun,2007,1337-1339.
    [44] Yan B, Zhou Y, Liu Y, et al. Highly Efficient Synthesis of Functionalized Indolizines andIndolizinones by Copper-Catalyzed Cycloisomerizations of Propargylic Pyridines[J]. J Org Chem,2007,72(20):7783-7786.
    [45] Friel D K, Snapper M L, Hoveyda A H. Aluminum-Catalyzed Asymmetric Alkylations ofPyridyl-Substituted Alkynyl Ketones with Dialkylzinc Reagents[J]. J Am Chem Soc,2008,130(30):9942-9951.
    [46] Ma H, Lin Y, Huang S. Sequential Allenylidene/Vinylidene Cyclization for StereoselectiveConstruction of Bicyclic Carbocycles from Propargyl Alcohol[J]. Org Lett,2012,14(15):3846-3849.
    [47] Funayama A, Satoh T, Miura M. Regio-and Stereoselective Homocoupling ofγ-Arylatedtert-Propargyl Alcohols with Liberation of a Ketone Molecule and Successive CyclizationTo Produce Fluorescent Dihydrofuran Derivatives[J]. J Am Chem Soc,2005,127(44):15354-15355.
    [48] Lenden P, Entwistle D A, Willis M C. An Alkyne Hydroacylation Route to Highly SubstitutedFurans[J]. Angew Chem Int Ed,2011,50:10657-10660.
    [49] Thies N, Hrib C G, Haak E. Ruthenium-Catalyzed Functionalization of Pyrroles and Indoles withPropargyl Alcohols[J]. Chem Eur J,2012,18:6302-6308.
    [50] Andreev I A, Belov D S, Kurkin A V, et al. Synthesis of4,5,6,7-Tetrahydro-1H-indole DerivativesThrough Successive Sonogashira Coupling/Pd-Mediated5-endo-dig Cyclization[J]. Eur J Org Chem,2013:649-652.
    [51] Paih J L, Dérien S, Dixneuf P H, et al. Ruthenium-Catalyzed One-Step Transformation of PropargylicAlcohols into Alkylidene Cyclobutenes: X-ray Characterization of an Ru(η3-cyclobutenyl)Intermediate[J]. Angew Chem Int Ed,2001,40(15):2912-2915.
    [52] Paih J L, Dérien S, Pierre H. Dixneuf P H, et al. Ruthenium-Catalyzed Synthesis ofAlkylidenecyclobutenes via Head-to-Head Dimerization of Propargylic Alcohols andCyclobutadiene–Ruthenium Intermediates[J]. Chem Eur J,2005,11:1312-1324.
    [53] Ye L, He W, Zhang L. Gold-Catalyzed One-Step Practical Synthesis of Oxetan-3-ones from ReadilyAvailable Propargylic Alcohols[J]. J Am Chem Soc,2010,132(25):8550-8551.
    [54] Ma S, Wu B, Zhao S. Mild and Efficient Synthesis of (Z)-α-Chloroalkylidene-β-lactones via thePdCl2-Catalyzed Cyclocarbonylation of2-Alkynols[J]. Org Lett,2003,5(23):4429-4432.
    [55] Ma S, Wu B, Jiang X, et al. Studies on Pd(II)-Catalyzed Synthesis of (Z)-α-Haloalkylidene-β-lactonesfrom Cyclocarbonylation of2-Alkynols and the Subsequent Coupling Reactions[J]. J OrgChem,2005,70(7):2568-2575.
    [56] Alfonsi M, Arcadi A, Chiarini M, et al. Sequential Rhodium-Catalyzed Stereo-and RegioselectiveAddition of Organoboron Derivatives to the Alkyl4-Hydroxy-2-Alkynoates/LactonizactionReaction[J]. J Org Chem,2007,72(25):9510-9517.
    [57] Yamada W, Sugawara Y, Yamada T, et al. Silver-Catalyzed Incorporation of Carbon Dioxide intoPropargylic Alcohols[J]. Eur J Org Chem,2007:2604-2607.
    [58] Yoshida S, Fukui K, Yamada T, et al. Silver-Catalyzed Enantioselective Carbon Dioxide Incorporationinto Bispropargylic Alcohols[J]. J Am Chem Soc,2010,132(12):4072–4073.
    [59] Brotherton W S, Michaels H A, Zhu L, et al. Apparent Copper(II)-Accelerated Azide AlkyneCycloaddition[J]. Org Lett,2009,11(21):4954-4957.
    [60] Diz P M, Coelho A, Sotelo E, et al. Copper-Catalyzed Huisgen1,3-Dipolar Cycloaddition underOxidative Conditions: Polymer-Assisted Assembly of4-Acyl-1-Substituted-1,2,3-Triazoles[J]. J OrgChem,2013,78(13):6540-6549.
    [61] Xu S, Hao L, Zhuang-Ping Zhan Z, et al. Chemoselective synthesis of substituted pyrazoles throughAgOTf-catalyzed cascade propargylic substitution–cyclization–aromatization[J]. Org Biomol Chem,2013,11:294-298.
    [62] Milton M D, Inada Y, Uemura S, et al. Ruthenium-and gold-catalysed sequential reactions: astraightforward synthesis of substituted oxazoles from propargylic alcohols and amides[J]. ChemCommun,2004:2712-2713.
    [63] Tanaka K, Osaka T, Noguchi K, et al. Rhodium-Catalyzed Asymmetric One-Pot Transesterificationand [2+2+2] Cycloaddition Leading to Enantioenriched3,3-Disubstituted Phthalides[J]. OrgLett,2007,9(7):1307-1310.
    [64] Wang X, Hu J, Liang Y, et al. Copper-catalyzed dimerization fragmentation cyclization reactions of(E)-1-en-4-yn-3-ols as a versatile approach for the synthesis of multisubstituted1H-cyclopenta[b]naphthalenes[J]. Org Biomol Chem,2011,9:7461-7467.
    [65] Chen X, Wang Y, Lu P, et al. Palladium catalyzed bicyclization of1,8-diiodonaphthalene and tertiarypropargylic alcohols to phenalenones and their applications as fluorescent chemosensor for fluorideions[J]. Chem Commun,2011,47:2628-2630.
    [66] Jin J, Lu P, Wang Y, et al. Synthesis of Indeno[1,2-c]furans via a Pd-Catalyzed Bicyclization of2-Alkynyliodobenzene and Propargylic Alcohol[J]. J Org Chem,2012,77(24):11368-11371.
    [67] Kim J H, Lee S B, Lee W K, et al. Synthesis of1,2,5-and1,2,3,5-substituted pyrroles fromsubstituted aziridines via Ag(I)-catalyzed intramolecular cyclization[J]. Tetrahedron,2011,67(13):3553-3558.
    [68] Nishibayashi Y, Hidai M, Uemura S, et al. Novel Ruthenium-and Platinum-Catalyzed SequentialReactions: Synthesis of Tri-and Tetrasubstituted Furans and Pyrroles from Propargylic Alcohols andKetones[J]. Angew Chem Int Ed,2003,42:2681-2684.
    [69] Gu Y, Zhang Q, Deng Y, et al. Ionic Liquid as an Efficient Promoting Medium for Fixation of CarbonDioxide: A Clean Method for the Synthesis of5-Methylene-1,3-oxazolidin-2-ones from PropargylicAlcohols, Amines, and Carbon Dioxide Catalyzed by Cu(I) under Mild Conditions[J]. J Org Chem,2005,70(18):7376-7380.
    [70] Qi C, Jiang H, Huang L, et al. Carbon Dioxide Triggered and Copper-Catalyzed Domino Reaction:Efficient Construction of Highly Substituted3(2H)-Furanones from Nitriles and PropargylicAlcohols[J]. Org Lett,2011,13(20):5520-5523.
    [71] Bustelo E, Dixneuf P H. Mononuclear Ruthenium Catalysts for the Direct Propargylation ofHeterocycles with Propargyl Alcohols[J]. Adv Synth Catal,2005,347:393-397.
    [72] a)Inada Y, Yoshikawa M, Nishibayashi Y, et al. Ruthenium-Catalyzed Propargylation of AromaticCompounds with Propargylic Alcohols[J]. Eur J Org Chem,2006,881-890. b) Matsuzawa H, MiyakeY, Nishibayashi Y. Ruthenium-Catalyzed Enantioselective Propargylation of Aromatic Compoundswith Propargylic Alcohols via Allenylidene Intermediates[J]. Angew Chem Int Ed,2007,46:6488-6491.
    [73] Bustelo E, Dixneuf P H. Activation of Mononuclear Arene Ruthenium Complexes for CatalyticPropargylation Directly with Propargyl Alcohols[J]. Adv Synth Catal,2007,349:933-942.
    [74] Matsuzawa H, Kanao K, Nishibayashi Y, et al. Remarkable Effect of N-Substituent onEnantioselective Ruthenium-Catalyzed Propargylation of Indoles with Propargylic Alcohols[J]. OrgLett,2007,9(26):5561-5564.
    [75] a)Nishibayashi Y, Hidai M, Uemura S, et al. Ruthenium-Catalyzed Propargylation of AromaticCompounds with Propargylic Alcohols[J]. J Am Chem Soc,2002,124(40):11846-11847. b)Nishibayashi Y, Hidai M, Uemura S, et al. Propargylation of Aromatic Compounds with PropargylicAlcohols Catalyzed by a Cationic Diruthenium Complex[J]. Angew Chem Int Ed,2003,42:1495-1498.
    [76] a)Ikeda M, Miyake Y, Nishibayashi Y. Cooperative Catalytic Reactions Using Organocatalysts andTransition Metal Catalysts: Propargylic Allylation of Propargylic Alcohols with α,β-UnsaturatedAldehydes[J]. Organometallics,2012,31(9):3810-3813. b)Ikeda M, Miyake Y, Nishibayashi Y.Cooperative Catalytic Reactions Using Organocatalysts and Transition-Metal Catalysts:Enantioselective Propargylic Alkylation of Propargylic Alcohols with Aldehydes [J]. Angew Chem IntEd,2010,49:7289-7293. c)Motoyama K, Ikeda M, Nishibayashi Y, et al. Cooperative CatalyticReactions Using Lewis Acids and Organocatalysts: Enantioselective Propargylic Alkylation ofPropargylic Alcohols Bearing an Internal Alkyne with Aldehydes[J]. Eur J Org Chem,2011:2239-2246.
    [77] a)Ikeda M, Miyake Y, Nishibayashi Y. Cooperative Catalytic Reactions Using DistinctTransition-Metal Catalysts: Ruthenium-and Copper-Catalyzed Enantioselective PropargylicAlkylation[J]. Chem Eur J,2012,18:3321-3328. b) Motoyama K, Ikeda M, Nishibayashi Y, et al.Ruthenium-and Copper-Catalyzed Enantioselective Propargylic Alkylation of Propargylic Alcoholswith β-Keto Phosphonates[J]. Organometallics,2012,31:3426-3430.
    [78] a)Nishibayashi Y, Wakiji I, Ishii Y, et al. Ruthenium-Catalyzed Propargylic Alkylation of PropargylicAlcohols with Ketones: Straightforward Synthesis of γ-Keto Acetylenes[J]. J Am Chem Soc,2001,123,3393-3394. b)Onodera G, Matsumoto H, Nishibayashi Y, et al. Preparation of DicationicChalcogenolate-Bridged Diruthenium Complexes and Their Dual Catalytic Activity toward Reactionsbetween Propargylic Alcohols and Acetone[J]. Organometallics2005,24:5799-5801. c)NishibayashiY, Onodera G, Inada Y, et al. Synthesis of Diruthenium Complexes Containing ChiralThiolate-Bridged Ligands and Their Application to Catalytic Propargylic Alkylation of PropargylicAlcohols with Acetone[J]. Organometallics,2003,22:873-876.
    [79] Luzung M R, Toste F D. Rhenium-Catalyzed Coupling of Propargyl Alcohols and Allyl Silanes[J]. JAm Chem Soc,2003,125(51):15760-15761.
    [80] Biannic B, Aponick A. Gold-Catalyzed Dehydrative Transformations of Unsaturated Alcohols[J]. EurJ Org Chem,2011:6605-6617.
    [81] Yadav J S, Reddy B S, Rao T S, et al. Copper(II)-catalyzed allylation of propargylic and allylicalcohols by allylsilanes: a facile synthesis of1,5-enynes[J]. Tetrahedron Letters,2008,49:614-618.
    [82] Inada Y, Nishibayashi Y, Hidai M, et al. Ruthenium-Catalyzed Propargylic Substitution Reaction ofPropargylic Alcohols with Thiols: A General Synthetic Route to Propargylic Sulfides[J]. J Amn ChemSoc,2002,124(51):15172-15173.
    [83] Nishibayashi Y, Milton M D, Inada Y, et al. Ruthenium-Catalyzed Propargylic Substitution Reactionsof Propargylic Alcohols with Oxygen-, Nitrogen-, and Phosphorus-Centered Nucleophiles[J]. ChemEur J,2005,11:1433-1451.
    [84] Georgy M, Boucard V, Campagne J M. Gold(III)-Catalyzed Nucleophilic Substitution of PropargylicAlcohols[J]. J Amn Chem Soc,2005,127(41):14180-14181.
    [85] Jiang H, Liu X, Zhou L. First Synthesis of1-Chlorovinyl Allenes via Palladium-CatalyzedAllenylation of Alkynoates with Propargyl Alcohols[J]. Chem Eur J,2008,14:11305-11309.
    [86] Liu J, Liu Q, Bi X, et al. Silver-Catalyzed Cross-Coupling of Propargylic Alcohols with Isocyanides:An Atom-Economical Synthesis of2,3-Allenamides[J]. Chem Eur J,2014,20:2154-2158.
    [87] Myers A G, Zheng B. New and Stereospecific Synthesis of Allenes in a Single Step from PropargylicAlcohols[J]. J Am Chem Soc,1996,118(18):4492-4493.
    [88] Pu X, Ready J M. Direct and Stereospecific Synthesis of Allenes via Reduction of PropargylicAlcohols with Cp2Zr(H)Cl[J]. J Am Chem Soc,2008,130(33):10874-10875.
    [89] Li Z, Boyarskikh V, Davies H M, et al. Scope and Mechanistic Analysis of the EnantioselectiveSynthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-SigmatropicRearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols[J]. J Am Chem Soc,2012,134(37):15497-15504.
    [90] Danowitz A M, Taylor C E, Mapp A K, et al. Palladium-Catalyzed [3,3]-Rearrangement for the FacileSynthesis of Allenamides[J]. Org Lett,2010,12(11):2574-2577.
    [91] a)Trost B M, Livingston R C. An Atom-Economic and Selective Ruthenium-Catalyzed RedoxIsomerization of Propargylic Alcohols. An Efficient Strategy for the Synthesis of Leukotrienes[J]. JAm Chem Soc,2008,130(36):11970-11978. b)Trost B M, Livingston R C. Two-metal catalystsystem for redox isomerization of propargyl alcohols to enals and enones[J]. J Am Chem Soc,1995,117(37):9586-9587.
    [92] a)Stefanoni M, Luparia M, Vidari G, et al. A Simple and Versatile Re-Catalyzed Meyer–SchusterRearrangement of Propargylic Alcohols to α,β-Unsaturated Carbonyl Compounds[J]. Chem Eur J,2009,15:3940-3944. b)Mattia E, Porta A, Vidari G, et al. One-Pot Consecutive Reactions Based onthe Synthesis of Conjugated Enones by the Re-Catalysed Meyer–Schuster Rearrangement[J]. ChemEur J,2012,18:11894-11898.
    [93] Collins B S, Dr. Suero M G, Gaunt M J. Copper-Catalyzed Arylative Meyer–Schuster Rearrangementof Propargylic Alcohols to Complex Enones Using Diaryliodonium Salts[J]. Angew Chem Int Ed,2013,52:5799-5802.
    [94] Sugawara Y, Yamada W, Yamada T, et al. Carbon Dioxide-Mediated Catalytic Rearrangement ofPropargyl Alcohols into α,β-Unsaturated Ketones[J]. J Am Chem Soc,2007,129(43):12902-12903.
    [95] Trost B M, Oi S. Atom Economy: Aldol-Type Products by Vanadium-Catalyzed Additions ofPropargyl Alcohols and Aldehydes[J]. J Am Chem Soc,2001,123(6):1230-1231.
    [96] Trost B M, Chung C K. Vanadium-Catalyzed Addition of Propargyl Alcohols and Imines[J]. J AmChem Soc,2006,128(32):10358-10359.
    [97] Ye L, Zhang L. Practical Synthesis of Linear α-Iodo/Bromo-α,β-unsaturated Aldehydes/Ketones fromPropargylic Alcohols via Au/Mo Bimetallic Catalysis[J]. Org Lett,2009,11(16):3646-3649.
    [98] Nishibayashi Y, Shinoda A, Miyake Y, et al. Ruthenium-Catalyzed Propargylic Reduction ofPropargylic Alcohols with Silanes[J]. Angew Chem Int Ed,2006,45:4835-4839.
    [99] Meyer V J, Niggemann M. Highly Chemoselective Calcium-Catalyzed Propargylic Deoxygenation[J].Chem Eur J,2012,18:4687-4691.
    [100] Zhang D, Ready J M. Directed Hydrozirconation of Propargylic Alcohols[J]. J Am Chem Soc,2007,129(40):12088-12089.
    [101] a)Lu Z, Ma S. Studies on the Cu(I)-Catalyzed Regioselective anti-Carbometallation of SecondaryTerminal Propargylic Alcohols[J]. J Org Chem,2006,71(7):2655-2660. b)Zhang X, Lu Z, Ma S, et al.Synthesis of highly substituted allylic alcohols by a regio-and stereo-defined CuCl-mediatedcarbometallation reaction of3-aryl-substituted secondary propargylic alcohols with Grignardreagents[J]. Org Biomol Chem,2009,7:3258-3263.
    [102] Milton M D, Onodera G, Nishibayashi Y, et al. Double Phosphinylation of Propargylic Alcohols: ANovel Synthetic Route to1,2-Bis(diphenylphosphino)ethane Derivatives[J]. Org Lett,2004,6(22):3993-3995.
    [103] Jér me F, Monnier F, Dixneuf P H, et al. Ruthenium catalyzed regioselective hydrophosphination ofpropargyl alcohols[J]. Chem Commun,2003:696-697.
    [104] Liu Z, Song J, Bi X, et al. Silver(I)-Catalyzed Hydroazidation of Ethynyl Carbinols: Synthesis of2-Azidoallyl Alcohols[J]. Angew Chem Int Ed,2014,53(21):5305-5309.
    [105] Rodríguez D, Castedo L, Saá C, et al. Synthesis of the Tetracyclic Core of Anthracycline Antibioticsby an Intramolecular Dehydro Diels Alder Approach[J]. Org Lett,2003,5(17):3119-3121.
    [106] Yamazaki T, Takasuka T K, Furuta A, et al. Facile conversion of4,4,4-trifluorobut-2-yn-1-ols to4,4,4-trifluorobut-2-en-1-ones[J].Tetrahedron,2009,65:5945-5948.
    [107] Kayaki Y, Yamamoto M, Ikariya T. N-Heterocyclic Carbenes as Efficient Organocatalysts for CO2Fixation Reactions[J]. J Am Chem Soc,2005,127:9428-9438.
    [1] Kelber C. The effect of sulphuric carbonic acid and atzaki on acetophenone[J]. Chem Ber,1910,43(2):1252-1259.
    [2] Pan L, Bi X, Liu Q. Recent developments of ketene dithioacetal chemistry[J]. Chem Soc Rev,2013,42:1251-1286.
    [3] Pan W, Dong D, Liu Q, et al. One-Pot Synthesis of Substituted Indole N-Oxides: TiCl4-MediatedBaylis-Hillman Reaction of α-Oxo Cyclic Ketene-S,S-acetal with o-Nitrobenz-aldehydes andSubsequent Intramolecular Cyclization[J]. Synlett,2006(7):1090-1094.
    [4] Sun S, Wang M, Liu Q, et al. A Practical Route to2,3-Di-/1,2,3-Trisubstituted Indolizines from α-EWGKetene S,S-Acetals and Their Application in Bis(1-indolizinyl)methane Synthesis[J]. Synthesis,2008(4):573-583.
    [5] a) Yuan H, Wang M, Liu Q, et al. Unexpected Hydrobromic Acid-Catalyzed C-C Bond-FormingReactions and Facile Synthesis of Coumarins and Benzofurans Based on Ketene dithioacetals[J]. ChemEur J,2010,16:13450-13457. b) Liang D, Wang M, Liu Q, et al. One-Pot Synthesis ofPolyfunctionalized4H-Chromenes and Dihydrocoumarins Based on Copper(II) Bromide-CatalyzedC-C Coupling of Benzylic Alcohols with Ketene Dithioacetals[J]. Adv Synth Catal,2010,352:1593-1599. c) Liu Y, Wang M, Liu Q, et al. Copper(II) Bromide/Boron TrifluorideEtherate-Cocatalyzed Cyclization of Ketene Dithioacetals and p-Quinones: a Mild and GeneralApproach to Polyfunctionalized Benzofurans[J]. Adv Synth Catal,2010,352:884-892. d) Yuan H,Wang M, Liu Q, et al. Copper(II)-Catalyzed C-C Bond-Forming Reactions of a-Electron-WithdrawingGroup-Substituted Ketene S,S-Acetals with Carbonyl Compounds and a Facile Synthesis ofCoumarinsa[J]. Adv Synth Catal,2009,351:112-116. e) Rao H S P, Sivakumar S. Condensation ofr-Aroylketene Dithioacetals and2-Hydroxyarylaldehydes Results in Facile Synthesis of aCombinatorial Library of3-Aroylcoumarins[J]. J Org Chem,2006,71:8715-8723.
    [6] Junjappa H, Ila H, Asokan C V. α-Oxoketene-S,S-, N,S-and N,N-acetals: Versatile intermediates inorganic synthesis[J]. Tetrahedron,1990,46:5423-5506.
    [7] a) Bi X, Dong D, Liu Q, et al.[5+1] Annulation: A Synthetic Strategy for Highly Substituted Phenolsand Cyclohexenones[J]. J Am Chem Soc,2005,127:4578-4579. b) Dong D, Bi X, Liu Q, et al.[5C+1N] Annulation: a novel synthetic strategy for functionalized2,3-dihydro-4-pyridones[J]. ChemCommun,2005:3580-3582. c) Bi X, Dong D, Qun Liu Q, et al.[5C+1S] Annulation: A Facile andEfficient Synthetic Route toward Functionalized2,3-Dihydrothiopyran-4-ones[J]. J Org Chem,2005,70:10886-10889.
    [8] Tan J, Xu X, Liu Q, et al. Tandem Double-Michael-Addition/Cyclization/Acyl Migration of1,4-Dien-3-ones and Ethyl Isocyanoacetate: Stereoselective Synthesis of Pyrrolizidines[J]. AngewChem Int Ed,2009,48:2868-2872.
    [9] Xu X, Pan L, Liu Q, et al. Facile [7C+1C] Annulation as an Efficient Route to Tricyclic IndolizidineAlkaloids[J]. Angew Chem Int Ed,2013,52:9271-9274.
    [1] Datta S, Odedra A, Liu R, Ruthenium-Catalyzed Cycloisomerization of cis-3-En-1-ynes toCyclopentadiene and Related Derivatives through a1,5-Sigmatropic Hydrogen Shift ofRuthenium-Vinylidene Intermediates[J]. J Am Chem Soc,2005,127:11606-11607.
    [2] Bruneau C, Dixneuf P H. Metal Vinylidenes and Allenylidenes in Catalysis: Applications inAnti-Markovnikov Additions to Terminal Alkynes and Alkene Metathesis[J]. Angew Chem Int Ed,2006,45:2176-2203.
    [3] Funami H, Kusama H, Iwasawa N. Preparation of Substituted Cyclopentadienes throughPlatinum(II)-Catalyzed Cyclization of1,2,4-Trienes[J]. Angew Chem Int Ed,2007,46:909-911.
    [4] Lee J H, Toste F D. Gold(I)-Catalyzed Synthesis of Functionalized Cyclopentadienes[J]. Angew ChemInt Ed,2007,46:912-914.
    [5] Hastings C J, Pluth M D, Bergman R G, et, al. Enzymelike Catalysis of the Nazarov Cyclization bySupramolecular Encapsulation[J]. J Am Chem Soc,2010,132:6938-6940.
    [6] Hastings C J, Backlund M P, Bergman R G, et al. Enzyme-like Control of Carbocation DeprotonationRegioselectivity in Supramolecular Catalysis of the Nazarov Cyclization[J]. Angew Chem Int Ed,2011,50:10570-10573.
    [7] Melchionna M, Nieger M, Helaja J. Isolation of a Zwitterionic Dienegold ACHTUNGTRENUNG(III)Complex Intermediate in the Direct Conversion of Enyne–Amines to Cyclopentadienes[J]. Chem EurJ,2010,16:8262-8267.
    [8] Zhong M, Wang X, Liang Y, et al. Synthesis of Tetrasubstituted Cyclopentadienes viaPalladium-Catalyzed Reaction of (Z)-2-En-4-yn Acetates and N-Methyl Indoles[J]. J Org Chem,2012,77:10955-10961.
    [9] Wang M, Yuan H, Liu Q, et al. Tandem Nazarov cyclization–halovinylation of divinyl ketones underVilsmeier conditions: synthesis of highly substituted cyclopentadienes[J]. Chem Commun,2010,46:2247-2249.
    [10] Liu X, Pan L, Liu Q, et al. Efficient synthesis of trifluoromethylatedcyclopentadienes/fulvenes/norbornenes from divinyl ketones[J]. Org Biomol Chem,2013,11:6703-6706.
    [11] Xi Z, Song Q, Chen J, et al. Dialkenylation of Carbonyl Groups by Alkenyllithium Compounds:Formation of Cyclopentadiene Derivatives by the Reaction of1,4-Dilithio-1,3-dienes with Ketonesand Aldehydes[J]. Angew Chem Int Ed,2001,40:1913-1916.
    [12] Fang H, Li G, Xi Z, et al. Reactions of Substituted (1,3-Butadiene-1,4-diyl)magnesium,1,4-Bis(bromomagnesio)butadienes and1,4-Dilithiobutadienes with Ketones, Aldehydes and PhNOTo Yield Cyclopentadiene Derivatives and N-Ph Pyrroles by Cyclodialkenylation[J]. Chem Eur J,2004,10:3444-3450.
    [13] Fang H, Zhao C, Xi Z, et al. Reaction of aluminacyclopentadienes with aldehydes affordingcyclopentadiene derivatives[J]. Tetrahedron,2003,59:3779-3786.
    [14] Wang Z, Xi Z. Dearomatizing Anionic Cyclization of1-Lithio-4-naphthyl-1,3-butadienes Leading tothe Formation of Spiro Cyclopentadiene Derivatives[J]. Synlett,2006,08:1275-1277.
    [15] Wang Z, Fang H, Xi Z. Reaction of4-methyl,4-phenyl, and4-hydrogen substituted1-lithio-1,3-butadienes with aldehydes: preparation of multiply substituted cyclopentadienes[J].Tetrahedron,2006,62:6967-6972.
    [16] Wang C, Mao G, Xi Z, et al. Facile synthesis of multiply substituted cyclopentadienes and conjugateddienals through reactions between1,4-dilithio-1,3-dienes and carboxylic acid derivatives includingacyl chlorides, anhydrides, and DMF[J]. Eur J Org Chem,2007,8:1267-1273.
    [17] Li H, Zhang W, Xi Z. Alkaline Earth Metallocenes Coordinated with Ester Pendants: Synthesis,Structural Characterization, and Application in Metathesis Reactions[J]. Chem Eur J,2013,19:12859-12866.
    [18] Xi Z, Li P. Deoxygenative cycloaddition of aldehydes with alkynes mediated by AlCl3andzirconium:Formation of cyclopentadiene derivatives[J]. Angew Chem Int Ed,2000,39:2950-2952.
    [19] Zhao C, Li P, Xi Z, et al. Lewis acid mediated reactions of zirconacyclopentadienes with aldehydes:One-pot synthetic route to indene and cyclopentadiene derivatives from aldehydes and benzyne oralkynes[J]. Chem Eur J,2002,8:4292-4298.
    [20] Xi C, Kotora M, Takahashi T, et al. Reaction of Zirconacycles with3-Iodopropenoates and3-Iodocycloenones in the Presence of CuCl: A New Pathway for the Formation of Cyclopentadienesand Spirocyclic Compounds[J]. J Org Chem,2000,65:945-950.
    [21] Duan Z, Liu Y Takahashi T, et al. Formation of cyclopentadiene derivatives by reaction ofzirconacyclopentadienes with1,1-dihalo compounds[J]. Tetrahedron Letter,2000,41:7471-7474.
    [22] Takahashi T, Tsai F, Li Y, et al. Reactions of zirconacyclopentadienes with CO and Isonitriles giveiminocyclopentadienes[J]. Organometallics,2001,20:4122-4125.
    [23] Chen C, Xi C, Jiang Y, et al.1,1-Cycloaddition of oxalyl chloride with dialkenylmetal compounds:formation of cyclopentadienone derivatives by the reaction of1,4-dilithio-1,3-dienes orzirconacyclopentadienes with oxalyl chloride in the presence of CuCl[J]. J Am Chem Soc,2005,127:8024-8025.
    [24] Geng W, Wang C, Xi Z, et al.1,2,3,4-Tetrasubstituted Cyclopentadienes and Their Applications forMetallocenes: Efficient Synthesis through Zirconocene-and CuCl-Mediated Intermolecular Couplingof Two Alkynes and One Diiodomethane[J]. Chem Eur J,2013,19:8657-8664.
    [25] Takahashi T, Xi Z, Xi C, et al. Preparation of1,2,3-Trisubstituted Cyclopentadienes andTetrahydroindene Derivatives from Zirconacyclopentenes[J]. Tetrahedron Letter,1996,37:7521-7524.
    [26] Zhou S, Yan B, Liu Y. A controllable synthesis of homoallyl ketones and multiply substitutedcyclopentadienes by direct insertion of aroyl cyanides to zirconacyclopentenes[J]. J Org Chem,2005,70:4006-4012.
    [27] Sakai T, Seo S, Matsuoka J, et al. Synthesis of Functionalized Tetracyanocyclopentadienides fromTetracyanothiophene and Sulfones[J]. J Org Chem,2013,78(21):10978-10985.
    [28] Wu Y, Flynn B, Meijere A, et al. From α,β-Unsaturated Fischer Carbene Complexes to HighlySubstituted3-Ethoxycyclopentadienes, Masked Cyclopentenones[J]. Eur J Org Chem,2004,4:724-748.
    [29] Wender P A, Paxton T J, Williams T J. Cyclopentadienone synthesis by rhodium(I)-catalyzed [3+2]cycloaddition reactions of cyclopropenones and alkynes[J]. J Am Chem Soc,2006,128:14814-14815.
    [30] Kuninobu Y, Nishina Y, Takai K, et al. Synthesis of Cp Re Complexes via Olefinic C H Activationand Successive Formation of Cyclopentadienes[J]. J Am Chem Soc,2008,130:14062-14063.
    [31] Shibata Y, Noguchi K, Tanaka K. Cationic Rhodium(I) Complex-Catalyzed [3+2] and [2+1]Cycloadditions of Propargyl Esters with Electron-Deficient Alkynes and Alkenes[J]. J Am Chem Soc,2010,132:7896-7898.
    [32] Briones J F, Hansen J, Davies H M, et al. Highly Enantioselective Rh2(S-DOSP)4-CatalyzedCyclopropenation of Alkynes with Styryldiazoacetates[J]. J Am Chem Soc,2010,132:17211-17215.
    [33] Kramer S, Odabachian Y, Gagosz F, et al. Taking Advantage of the Ambivalent Reactivity ofYnamides in Gold Catalysis: A Rare Case of Alkyne Dimerization[J]. Angew Chem Int Ed,2011,50:5090-5094.
    [34] Rettenmeier E, Schuster A M, Hashmi S K, et al. Gold Catalysis: Highly FunctionalizedCyclopentadienes Prepared by Intermolecular Cyclization of Ynamides and PropargylicCarboxylates[J]. Angew Chem Int Ed,2013,52:5880-5884.
    [35] Gao Y, Wu W, Jiang H, et al. Palladium-catalyzed intermolecular [3+2] carbocyclization of alkynolsand propiolates: an efficient entry to halo-cyclopentadienes[J]. Chem Commun,2014,50:846-848.
    [36] Nair V, Menon R S, Beneesh P B, et al. A Novel Multicomponent Reaction Involving Isocyanide,Dimethyl Acetylenedicarboxylate (DMAD), and Electrophilic Styrenes: Facile Synthesis of HighlySubstituted Cyclopentadienes[J]. Org Lett,2004,6:767-769.
    [37] Lv Y, Yan X, Cao W, et al. An efficient one-pot three-component process for the synthesis of highlysubstituted perfluoroalkylated cyclopentadienes[J]. Tetrahedron,2013,69:4205-4210.
    [38] Esmaeili A A, Moradi A, Habibib A. Facile Synthesis of Highly Substituted Iminocyclopentenes: ANovel Isocyanide-Based Three-Component Condensation Reaction[J]. Synlett,2011,16:2307-2310.
    [39] Tsurugi H, Yamamoto K, Mashima K. Oxidant-Free Direct Coupling of Internal Alkynes and2-Alkylpyridine via Double C H Activations by Alkylhafnium Complexes[J]. J Am Chem Soc,2011,133:732-735.
    [40] Olivella S, L pez N. Thermal rearrangements of2-vinylcyclopropylidene to cyclopentadiene andvinylallene: A theoretical investigation[J]. Chem Eur J,2001,7:3951-3960.
    [41] Binger P, Büch H M. Cyclopropenes and methylenecylopropanes as multifunctional reagents intransition metal catalyzed reactions[M]. in Small Ring Compounds in Organic Synthesis II,1987:77-151.
    [42] Fusi S, Ponticelli F, Ventura A, et al. Rearrangement of3,5-dicyano-1,4-dihydropyridines to denselyfunctionalized cyclopentadienes[J]. Tetrahedron Letters,2008,49:5820-5822.
    [43] Xu T, Gong W, Ning G, et al. Unprecedented Ring Transformation of an α,α′-Monosubstituted2,4,5-Triphenylpyrylium Salt with η3-Phosphines: Efficient Synthesis of Aryl-and AlkylphosphoniumTriphenylcyclopentadienylides[J]. Organometallics,2010,29:6744-6748.
    [44] Zhang H, Meng T, Xi Z, et al. Hydride-Induced Novel Cyclization of Dienedinitriles Leading toMultifunctionalized Cyclopentadienes[J]. Org Lett,2009,11:4458-4461.
    [45] Rausch B J, Gleiter R, Rominger F. Highly functionalized five-membered carbocycles from(3-dialkylamino-1-ethoxyalkenylidene)pentacarbonylchromium complexes and alkynes: the effects ofsubstituents, solvents, ligand additives, and reagent concentrations on the product distribution[J]. JOrganometallic Chem,2002,658:242-250.
    [46] Dyumaev V K, Davydov D V, Beletskaya L P. Improved method for the synthesis ofpentaphenylcyclopentadiene[J]. Rus Chem Bull,1993,3:603-604.
    [47] Drake N L, Adams J R. Some1,4-Diaryl-1,3-cyclopentadienes[J]. J Am Chem Soc,1939,61:1326-1329.
    [48] Pauson P L. Ferrocene Derivatives. Part I. The Direct Synthesis of Substituted Ferrocenes[J]. J. Am.Chem. Soc.1954,76:2187-2191.
    [49] Zhang X, Ye J, Ning G, et al. Synthesis, crystal Structures and aggregation-induced emissionenhancement of aryl-substituted cyclopentadiene derivativesa[J]. J Lumin,2013,139:28-34.
    [50] Sromek A W, Gevorgyan V.1,2-Sulfur Migrations [J]. Top Curr Chem,2007,274:77-124.
    [51] Peng L, Zhang X, Wang J, et al. Transition-Metal-Catalyzed Rearrangement of Allenyl Sulfides: ARoute to Furan Derivatives[J]. Angew Chem Int Ed,2007,46:1905-1908.
    [52] a) Bultman M S, Ma J, Gin D Y. Synthetic Access to the Chlorocyclopentane Cores of the ProposedOriginal and Revised Structures of Palau’amine[J]. Angew Chem Int Ed,2008,47:6821-6824. b)Modrzejewska H, Wojciechowski K. Generation of Arylcyclopenta-1,3-dienes fromCyclopenteno-spiro-benzosultams: Synthesis of2-Arylnorbornenes[J]. Synlett,2008:2465-2470. c)Hughes R P, Kowalski A S, Lomprey J R, et al. A New Synthesis of1,5-Di-tert-butyl-1,3-cyclopentadiene by Dehydration of an Epoxide and Characterization of its Diels-Alder Dimer[J]. JOrg Chem,1996,61:401-404. d) Allred E L, Anderson C L.2,3-Diazabicyclo [2.2.1] heptyl ringsystem. III. Synthesis and characterization of some7-substituted derivatives[J]. J Org Chem,1967,32:1874-1877.
    [53] Lakowicz J R. Principles of Fluorescence Spectroscopy[M].3rd ed., Springer: New York,2006.
    [54] Fernandez-Suarez M, Ting A Y. Fluorescent probes for super-resolution imaging in living cells[J]. NatRev,2008,9:929-943.
    [55] Sinkeldam R W, Greco N J, Tor Y. Fluorescent analogs of biomolecular building blocks: design,properties, and applications[J]. Chem Rev,2010,110,2579-2619.
    [1] Bellina F, Rossi R. Synthesis and Biological Activity of Pyrrole, Pyrroline and PyrrolidinemDerivatives with Two Aryl Groups on Adjacent Positions[J]. Tetrahedron,2006,62(31):7213-7256.
    [2] a)Loudet A, Burgess K. BODIPY Dyes and Their Derivatives: Syntheses and SpectroscopicProperties[J]. Chem Rev,2007,107(11):4891-4932. b) Ulrich G, Ziessel R, Harriman A. TheChemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed[J]. Angew Chem Int Ed,2008,47(7):1184-1201. c)Wienk M M, Turbiez M, Gilot J, et al. Narrow-Bandgap Diketo-Pyrrolo-PyrrolePolymerSolar Cells: The Effect of Processing on the Performance[J]. Adv Mater,2008,20(13):2556-2560. d)Park K, Schougaard S B, Goodenough J B. Conducting-Polymer/Iron-Redox-Couple CompositeCathodes for Lithium Secondary Batteries[J]. Adv Mater,2007,19(6):848-851.
    [3] a)Weissberger A, Taylor E C. Eds.The Chemistry of Heterocyclic Compounds: Thiophene and ItsDerivatives[M], Vol.44, Parts1-4; Wiley: New York, USA,1991. b)Gronowitz, S, H€ornfeldt A B.Thiophenes[M]; Elsevier: Oxford, U.K.,2004.
    [4] a)Knorr L. Synthese von Pyrrolderivaten[J]. Ber Dtsch Chem Ges,1884,17(2):1635-1642. b)Paal, C.Synthese von Thiophen-und Pyrrolderivaten[J]. Ber Dtsch Chem Ges,1885,18(1):367-371.c)Hantzsch A. Neue Bildungsweise von Pyrrolderivaten[J]. Ber Dtsch Chem Ges,1890,23:1474-1476. d) Barton, D H R, Zard S J. A new synthesis of pyrroles from nitroalkenes[J]. J ChemSoc, Chem Commun,1985(16):1098-1100. e)Barton D H R, Kervagoret J, Zard S J. A UsefulSynthesis of Pyrroles from Nitroolefins[J]. Tetrahedron,1990,46(21):7587-7598.
    [5] Wang Y, Bi X, Liu Q, et al. Iron-catalyzed synthesis of polysubstituted pyrroles via [4C+1N]cyclization of4-acetylenic ketones with primary amines[J]. Chem Commun,2011,47:809-811.
    [6] Geng W, Zhang W, Xi Z, et al. Cyclopentadiene Phosphine/Palladium-Catalyzed Cleavage of C NBonds in Secondary Amines: Synthesis of Pyrrole and Indole Derivatives from Secondary Aminesand Alkenyl or Aryl Dibromides[J]. J Am Chem Soc,2012,134:2023020233.
    [7] a)Liu J, Fang Z, Bi X, et al. Silver-Catalyzed Isocyanide-Alkyne Cycloaddition: A General andPractical Method to Oligosubstituted Pyrroles[J]. Angew Chem Int Ed,2013,52:6953-6957. b) GaoM, He C, Lei A, et al. Synthesis of Pyrroles by Click Reaction: Silver-Catalyzed Cycloaddition ofTerminal Alkynes with Isocyanides[J]. Angew Chem Int Ed,2013,52:6958-6961.
    [8] a)Zhang M, Fang X, Beller M, et al. General and Regioselective Synthesis of Pyrroles viaRuthenium-Catalyzed Multicomponent Reactions[J]. J Am Chem Soc,2013,135:11384-11388.b)Cadierno V, Gimeno J, Nebra N. One-Pot Three-Component Catalytic Synthesis of FullySubstituted Pyrroles from Readily Available Propargylic Alcohols,1,3-Dicarbonyl Compounds andPrimary Amines[J]. Chem Eur J,2007,13(35):9973-9981.
    [9] Ran L, Wang Y, Guan Z, et al. Copper-catalyzed homocoupling of ketoxime carboxylates for synthesisof symmetrical pyrroles[J]. Green Chem,2014,16:112-115.
    [10] Li Y, Xu X, Liu Q, et al. Double Isocyanide Cyclization: A Synthetic Strategy for Two-carbonTethered Pyrrol/Oxazole Pairs[J]. J Am Chem Soc,2011,133:1775-1777.
    [11] Zhao Y, Di C, Liu Q, et al.[3+2]Cycloaddition of Propargylamines anda-Acylketene Dithioacetals:A Synthetic Strategy for Highly Substituted Pyrroles[J]. Adv Synth Catal,2012,354:3545-3550.
    [12] Yeh M P, Lin M, Hsu C, et al. Syntheses of3,4-Disubstituted Pyrroles and Furans via LewisAcid-Promoted Semipinacol Rearrangement/Alkyne-Ketone MetathesisReaction of (C)-2-N-orO-((3-Arylpropargyl)methyl)-Tethered3,5,5-Trimethyl-2,3-epoxycyclohexan-1-ones[J]. J Org Chem,2013,78:12381-12396.
    [13] Wang R, Wang S, Ji S. Water promoted C–C bond cleavage: facile synthesis of3,3-bipyrrolederivatives from dienones and tosylmethyl isocyanide (TosMIC)[J]. Org Biomol Chem,2014,12:1735-1740.
    [14] You W, Liao Q, Xi C, et al. Cu-Catalyzed Double S-Alkenylation of Potassium Sulfide: A HighlyEfficient Method for the Synthesis of Various Thiophenes[J]. Org Lett,2010,12(17):3930-3933.
    [15] Gabriele B, Mancuso R, Veltri L, et al. Synthesis of Substituted Thiophenes by Palladium-CatalyzedHeterocyclodehydration of1-Mercapto-3-yn-2-ols in Conventional and Nonconventional Solvents[J].J Org Chem,2012,77:9905-9909.
    [16] Yuan K, Doucet H. Benzenesulfonyl chlorides: new reagents for access to alternative regioisomers inpalladium-catalysed direct arylations of thiophenes[J]. Chem Sci,2014,5:392-396.
    [17] Tang D D, Collins K D, Glorius F, et al. Pd/C as a Catalyst for Completely Regioselective C-HFunctionalization of Thiophenes under Mild Conditions[J]. Angew Chem Int Ed,2014,53:1809-1813.
    [18] Tanga J, Zhao X. Synthesis of2,5-disubstituted thiophenes via metal-free sulfur heterocyclization of1,3-diynes with sodium hydrosulfide[J]. RSC Adv,2012,2:5488-5490.
    [19] Reddy C R, Valleti R R, Reddy M D, et al. A Thioannulation Approach to Substituted Thiophenesfrom Morita-Baylis-Hillman Acetates of Acetylenic Aldehydes[J]. J Org Chem,2013,78:6495-6502.
    [20] Fang G, Li X, Bi X, et al. An Atom-Economic Route to Thiophenes and2,2’-Bithiophenes byIntramolecular Transannulation of gem-Dialkylthio Enynes[J]. Org Lett,2013,15(16):4126-4129.
    [21] Sathishkannana G, Srinivasan K, Sathishkannan G, et al.[3+3] Annulation of Donor-AcceptorCyclopropanes with Mercaptoacetaldehyde: Application to the Synthesis of TetrasubstitutedThiophenes[J]. Chem Commun,2014,50:4062-4064.
    [22] a) Song J, Fang Z, Liao P, et al. Fe(III)-catalyzed intermolecular C(sp2)-C(sp3) dehydration couplingreaction of ketene dithioacetals and propargyl alcohols: Synthesis of novelgem-dialkylthiopenten-4-ynes, and further conversion to methyl pent-4-ynoates[J]. Synlett,2011,17:2551-2554. b) Li Q, Fang Z, Bi X, et al. Iron(III)-Catalyzed Dehydration C(sp2)-C(sp2) Coupling ofTertiary Propargyl Alcohols and α-Oxo Ketene Dithioacetals: A New Routeto gem-Bis(alkylthio)-Substituted Vinylallenes[J]. Synthesis.2013,45(5):609-614.
    [23] a) Frolova L V, Evdokimov N M, Hayden K, et al. One-Pot Multicomponent Synthesis of DiverselySubstituted2-Aminopyrroles. A Short General Synthesis of Rigidins A, B, C, and D[J]. Org Lett,2011,13:1118-1121. b) Nair V, Vinod A U, Rajesh C. A Novel Synthesis of2-Aminopyrroles Using aThree-Component Reaction [J]. J Org Chem,2001,66:4427-4429. c) Chien T C, Meade E A,Townsend L B, et al. Facile Synthesis of1-Substituted2-Amino-3-cyanopyrroles: New SyntheticPrecursors for5,6-Unsubstituted Pyrrolo [2,3-d] pyrimidines[J]. Org Lett2004,6:2857-2859. d)Fontaine P, Masson G, Zhu J. Synthesis of pyrroles by consecutive multicomponent reaction/[4+1]cycloaddition of α-iminonitriles with isocyanides[J]. Org Lett,2009,11:1555-1558. e) Demir A S,Emrullahoglu M. An effective new synthesis of2-aminopyrrole-4-carboxylates[J]. Tetrahedron,2005,61:10482-10489.
    [24] a)Migawa M T, Drach J C, Townsend L B. Design, Synthesis and Antiviral Activity of Novel4,5-Disubstituted7-(β-d-Ribofuranosyl)pyrrolo[2,3-d][1,2,3]triazines and the Novel3-Amino-5-methyl-1-(β-d-ribofuranosyl)-and3-Amino-5-methyl-1-(2-deoxy-β-d-ribofuranosyl)-1,5-dihydro-1,4,5,6,7,8-hexaazaacenaphthylene as Analogues of Triciribine[J]. J Med Chem,2005,48:3840-3851. b)Gangjee A, Mavandadi F, Queener S F, McGuire J J. Novel2,4-Diamino-5-substituted-pyrrolo[2,3-d]pyrimidines as Classical and Nonclassical AntifolateInhibitors of Dihydrofolate Reductases[J]. J Med Chem,1995,38:2158-2165.
    [25] Kundu K, McCullagh J V, Jr A T, et al. Hydroacylation of2-Vinyl Benzaldehyde Systems: AnEfficient Method for the Synthesis of Chiral3-Substituted Indanones[J]. J Am Chem Soc,2005,127:16042-16043.
    [26] Senaiar R S, Teske J A, Deiters A, et al. Synthesis of Indanones via Solid-Supported [2+2+2]Cyclotrimerization[J]. J Org Chem,2007,72:7801-7804.
    [27] a) Ernst-Russell M A, Chai C L L, Elix J A, et al. Euplectin and Coneuplectin, New Naphthopyronesfrom the Lichen Flavoparmelia euplecta[J]. J Nat Prod,2000,63:129-131. b) Mal D, De S R. TotalSynthesis of Euplectin, a Natural Product with a Chromone Fused Indenone[J]. Org Lett,2009,11(19):4398-4401.
    [28] a)Wessig P, Matthes A, Pick C. The photo-dehydro-Diels–Alder (PDDA) reaction[J]. Org BiomolChem,2011,9:7599-7605. b)Johnson R P. Strained Cyclic Cumulenes[J]. Chem Rev,1989,89:1111-1124. c)Wessig P, M ller G. The Dehydro-Diels-Alder Reaction[J]. Chem Rev,2008,108:2051-2063.
    [29] Rodr′guez D, Castedo L, Saa′C. et al. Cyclic Allene Intermediates in Intramolecular DehydroDiels-Alder Reactions: Labeling and Theoretical Cycloaromatization Studies[J]. J Org Chem,2003,68:1938-1946.
    [30] Ozawa T, Kurahashi T, Matsubara S. Dehydrogenative Diels-Alder Reaction[J]. Org Lett,2011,13(19):5390-5393.
    [31] Zhao Q, Hu Q, Hu Y, et al. Fused Benzo[b]fluorenols: Palladium-Catalyzed IntramolecularDehydroaromatization and Carbonyl Reduction[J]. Adv Synth Catal,2012,354:2113-2116.
    [32] Kocsis L S, Benedetti E, Brummond K M. A Thermal Dehydrogenative Diels-Alder Reaction ofStyrenes for the Concise Synthesis of Functionalized Naphthalenes[J]. Org Lett,2012,14(17):4430-4433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700