光纤偏振态的高速控制与偏振编码通信
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏振效应是当前光纤技术领域中的一个热点问题。一方面光纤系统中大量的偏振问题如偏振相关损耗、偏振模色散、消偏振等在高速情况下变得非常严重,导致系统性能的恶化,已成为高速光纤通信系统速率升级的瓶颈;另一面,偏振效应在高速光信号处理中的优势,促使各种新技术如偏振光开关、偏振光编码、偏振光逻辑等迅速发展起来。无论在偏振问题的解决还是偏振效应的应用中,偏振控制都是一个核心技术。高速偏振控制能快速补偿光纤系统中各种偏振相关的信号损伤,大幅度提升系统性能,保证高速偏振相关器件功能的实现,至关重要,是目前光纤技术领域的关键课题之一。
     编码格式是40Gb/s及以上速率的光纤通信系统中的一大难题。在现有编码格式的通信系统中,向40Gb/s速率的升级加剧了非线性效应引起的信号损伤,造成偏振模色散的功率代价成倍增长,信噪比严重恶化,谱效率低下,最终导致误码率急剧上升。因此,寻找新的编码格式是当前光纤通信领域的迫切任务。偏振编码是一种全新的编码格式,它具有天然的功率均衡性、偏振特性好、功率代价小等优势,可大大降低系统中的非线性效应、抑制偏振模色散、降低误码率、提高谱效率,因此偏振编码通信的实现将推动高速光纤通信更快地发展。
     本文首先详细分析了光纤及通信系统中的各种偏振效应,包括偏振控制器与半导体光放大器(SOA)的偏振特性,在国家“863”项目与国家自然基金项目的支持下,对光纤偏振态的高速控制、高速偏振编码通信及高速信号源等问题展开了系统深入的研究,提出了多项关键技术,实现了高速偏振控制与偏振编码通信。本文取得的创新性成果主要有:
     1.在Mueller矩阵极分解的基础上,对光纤与SOA中的偏振效应进行了深入研究,提出一种精确获得偏振旋转(或双折射)矢量的差分旋转法,适合于光纤在扰动较大的复杂环境中的长期测量,大大提高了Mueller矩阵测量方法的精度与抗干扰能力;建立了一种能够表征实际应用中SOA的3种效应(偏振旋转、偏振相关增益、偏振无关增益)及其关系的参数模型,利用该模型得到了SOA正交偏振旋转的必要条件,解决了SOA偏振旋转效应在偏振编码通信系统中的应用问题。
     2.提出一种计算圆单模光纤中压应力函数及其应力分布的方法,得到了光纤与纤芯中应力分布的解析解,解决了光纤的弹性形变及极限压应力问题;应用矢量微扰法获得了适用于圆单模光纤的压应力双折射,精密的实验测量验证了所得理论结果的正确性;得到了压力大小及方向与双折射矢量的函数关系式,提供了一种不仅能检测压力大小,而且能够获得压力方向的光纤传感方法。
     3.首次将广义偏振主态概念引入对PZT挤压光纤所致弹光效应的特性分析,提出多元主态的概念,得到了双单元、三单元压电偏振控制器(PPC)输出偏振态与驱动电压解析形式的主态模型;提出并实现了一种基于开环控制的光纤偏振态高速控制方法,将传统偏振控制速度提高2~3个数量级,达微秒量级,成功地应用三单元PPC进行了高速偏振态发生器实验。其中,光纤偏振态的高速开环控制方法被“Optics Letters”评论员评价为“great work(杰出工作)”。
     4.提出一种基于SOA交叉偏振调制的光脉冲数字差分方法,实现了提取脉冲前沿的单边差分和同时提取脉冲前后沿的双边差分技术,应用双边差分法实验成功一种高速的全光差分器,所得差分信号的脉宽比基于SOA交叉增益调制的差分器获得的更窄;应用这种双边差分法,成功地将5Gb/s的低速信号倍速到40Gb/s,获得了高速信号源。其中,基于SOA交叉偏振调制的双边差分方法被“OpticsLetters”评论员评价为“a novel technology(一项创新技术)”。
     5.提出一种基于SOA泵浦光控正交偏振旋转的数字偏振编码方法,实验成功12.5Gb/s基于差分接收的偏振编码通信;观察到偏振编码过程中的偏振不稳现象,找到了偏振旋转效率最高的泵浦波长,提供了一种克服交叉增益调制影响的功率均衡方法;对40Gb/s的单波长与4×40Gb/s多波长偏振编码通信系统数值模拟结果表明,偏振编码格式使用的传输功率更小,能较好克服光纤非线性效应的影响,显著降低误码率。其中,基于SOA正交偏振旋转的偏振编码方法被“Optics Letters”评论员评价为“a significant contribution(一项重要贡献)”。
Polarization effect is a nonnegligible problem in the field of fiber technology.On the one hand,a large number of polarization problems in fiber system,for example, polarization dependent loss,polarization mode dispersion(PMD),depolarization,ect., become very serious,which result in the degradation of system performance and become a main bottleneck for rate upgrade of high-speed fiber communication systems. On the other hand,the advantages of polarization effects in high-speed optical signal processing impel various novle technologies develop rapidly such as polarization optical switch,polarization optical encoding,polarization optical logic,ect..Whether for solving the polarization problems or application of polarization effects,polarization control is a key technology.High-speed polarization control can quickly compensate the massive polarization dependent damages in fiber systems,and greatly improve the system performance,while ensure the performance of high-speed polarization related devices,which is one of the core research issues in the field of fiber technology.
     Encoding format is a difficult problem for 40Gb/s and above high-speed fiber communication.In the communication systems with present encoding formats,the bit rate upgrade to 40Gb/s gives rise to intensive damage of signal by nonlinear effects, while causes double increase of PMD penalty,serious deterioration of signal-to-noise ratio,and lower spectrum efficiency.Therefore looking for new encoding format becomes an urgent task in present high-speed fiber communications.Polarization encoding is a novel format and has more advanges such as natural power equalization, better polarization characteristics,less power penality,and so on,which can greatly reduce the nonlinear effects,suppress the PMD,and improve the spectrum efficiency,so its realization will accelerate the development of high-speed fiber communications.
     In this dissertation,based on detailed investigation of various polarization effects in the fiber and communication systems,including properties of polarization controller and semiconductor optical amplifier(SOA),under support of the "863" project and the National Nature Science Foundation,high-speed fiber polarization control and polarization encoding communication with the signal source are deeply researched, while a few kernel technologies are proposed,then the high-speed polarization control and polarization encoding communication are demonstrated experimentally.The main innovative achievements of this dissertation are presented as following:
     1.Based on polar decomposition of Mueller matrix,the polarization effects in the fiber and SOA are investigated in detail,and a precise differential rotation method is proposed to obtain the PR or birefringence vectors,which is applicable to long time measurement of fiber in complicated environment with great perturbation,therefore greatly improves the precision and anti-interference capability of Mueller matrix method.Furthermore a practical parameter model is established which can describe three kinds of effects including polarization rotation(PR),polarization dependent gain, and polarization independent gain in the SOA,while it is successfully used to obtain the necessary conditions for SOA-based orthogonal PR(OPR),and to solve the problems in the applications of SOA-based polarization rotation.
     2.A theoretical approach is proposed to compute the stress function and its distribution in the circular single mode fibers(SMFs) under press,and the analytical solution of stress distribution is obtained for the fiber and core,while the elastic deformation and limitation of pressure stress have been discussed in detail.Then the stress birefringence is gained for circular SMFs by vector perturbation approach,and the theoretical result is proved by precise experimental measurement.Moreover the functional relationship between press vector(magnitude and direction) and birefringence vector is studied and disclosed,while a fiber-based sensing method is presented which can obtain not only the magnitude but also the direction of press.
     3.A generated concept of principal state of polarization(PSP) is introduced to analyze the elastic-optic effect in the fiber caused by PZT squeezing,and then the concept of multicomponent PSP is proposed,while the PSP model which describes the output state of polarization function with relation to driving voltage is obtained for the piezoelectric polarization controllers(PPCs) with two and three units,thus an open-loop high-speed polarization control method is proposed,which improves the control speed of present PCs to 2~3 order of magnitude and reach the microsecond magnitude. Furthermore a high-speed polarization state generator is demonstrated experimentally based on 3-unit PPC.The method of open-loop high-speed polarization control is appraised as "great work" by commentators of "Optics Letters".
     4.A new method of optical pulse differential is proposed based on cross polarization modulation of the SOA,and then it is demonstrated for extracting the pulse front edge by single-side differentiation and both edges by double-side optical differentiation.Thus a high-speed all-optical differentiator is implemented based on double-side differentiation,where the differential signal is much shorter than that obtained by SOA's cross gain modulation.Furthermore based on double-side differentiation,the low-rate clock of 5 Gb/s is successfully multiplied up to 40Gb/s,and then a high-speed signal source is achieved.The SOA-based double-side all-optical differentiator is appraised as "a novel technology" by commentators of"Optics Letters".
     5.A novel scheme of digital polarization encoding is proposed based on orthogonal polarization rotation(OPR) of the SOA by optical pump control,and the experiment of 12.5-Gb/s polarization encoding communication is successfully carried out with differential polarization decoding receiver.The polarization shaking of output signal from the SOA in polarization encoding is observed by experiment,and the pump wavelength with the highest efficiency for OPR is obtained,while a power equalization method is presented to overcome the influence of cross gain modulation.By numerical simulation of the polarization encoding transmission in 40 Gb/s single channel and 4×40 Gb/s multichannel fiber communication systems,where it is convinced that the polarization encoding communication employs less transmission power then overcome the nonlinear effects in the fiber and greatly reduce the bit error rate.The method of polarization encoding bansed on OPR of the SOA is appraised as "a significant contribution" by commentators of "Optics Letters".
引文
[1]E.Collett.Polarized Light:Fundamentals and Applications.Marcel Dekker,1993:Chap.1,4.
    [2]Max Born and E.Wolf.Principles of Optics.London.Cambridge University Press,1999:45.
    [3]G Baker,S.Pandey and F.Bright.Extending the Reach of Immunoassays to Optically-Dense Specimens by Using Two-Photon Excited Fluorescence Polarization.Anal.Chem.2000,72:5748-5752.
    [4]R.S.Gurjar,Vadim Backman.Lev T.Perelman et al.Imaging human epithelial properties with polarized light scattering spectroscopy.Nature Medicine,2001,7(11):1245-1248.
    [5]O.Pfister,W.J.Brown,M.D.Stenner,et al.Polarization Instabilities in a Two-Photon Laser.Phys.Rev.Lett.2001,86:4512-4515.
    [6]T.Tsegayel,J.Soderholm,et al.Experimental Demonstration of Three Mutually Orthogonal Polarization States of Entangled Photons.Phys.Rev.Lett.2000,85:5013-5017.
    [7]Luis.Degree of polarization of type-Ⅱ unpolarized light.Phys.Rev.A,2007,75:053806.
    [8]Picozzi.Entropy and degree of polarization for nonlinear optical waves.Opt.Lett.2004,29:1653-1655.
    [9]E.Wolf.Unified theory of coherence and polarization of random electromagnetic beams.Phys.Lett.A,2003,312:263-267.
    [10]W.H.Mcmaster.Matrix Representation of Polarization,Reviews of Modern Physics,1961,33(1):8-28.
    [11]H.Mueller.The foundation of optics.J.Opt.Soc.Am.(A)1948,38:661.
    [12]R.C.Jones.A new calculus for the treatment of optical systems.J.Opt.Soc.Am.,1941,31:488-493.
    [13]E.S.Fry and G W.Kattawar.Relationships between elements of the Stokes matrix.Appl.Opt.,1981,20:2811-2814.
    [14]R.Simon.The connection between Mueller and Jones matrices of polarization optics.Opt.Commun.1982,42:293-297.
    [15]K.Kim,L.Mandel,and E.Wolf.Relationship between Jones and Mueller matrices for random media.J.Opt.Soc.Am.A,1987,4:433-437.
    [16]Al-Qasimi,O.Korotkova,D.James,and E.Wolf.Definitions of the degree of polarization of a light beam.Opt.Lett.2007,32:1015-1016.
    [17]M.Petersson,H.Sunnerud,M.Karlsson,and B.Olsson.Performance monitoring in optical networks using Stokes parameters IEEE Photonics Technol.Lett.,2001,13 (9):1035-1037.Volume 16,Issue 2,Feb.2004 Page(s):686-688.
    [18]S.R.Cloude.Group theory and polarization algebra.Optik.,1986,bf75:26-36.
    [19]Sudha,A.Gopala Rao,et al.Positive-operator-valued-measure view of the ensemble approach to polarization optics.J.Opt.Soc.Am.A,2008,25:874-880.
    [20]K.Bliokh,A.Niv,V.Kleiner,et al..Singular polarimetry:Evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium.Opt.Express 2008,16:695-709.
    [21]D.Waddy,P.Lu,L.Chen,and X.Bao.Fast state of polarization changes in aerial fiber under different climatic conditions,IEEE Photonics Technol.Lett.,2001,13(9):1035-1037.
    [22]E.Snitzer and H.Osterberg.Observed dielectric waveguide modes in the visible spectrum.J.Opt.Soc.A.,1961,51:499-505.
    [23]V.Ramaswamy,W.G.French,and R.D.Standley.Polarization characteristics of noncircular core single-mode fibers.Appl.Opt.1978,17:3014-3017.
    [24]S.C.Rashleigh and R.Ulrich.Polarization mode dispersion in single mode fibers.Optics letters,1978,20:60-62.
    [25]R.Ulrich and A.Simon.Polarization optics of twisted single-mode fibers.Appl.Opt.1979,18:2241-2251.
    [26]R.Ulrich.Polarization stabilization on single-mode fiber.Appl.Phys.Lett.,1979,35:840-842.
    [27]R.Ulrich,S.Rashleigh,and W.Eickhoff.Bending-induced birefringence in single-mode fibers.Opt.Lett.,1980,5:273-275.
    [28]S.C.Rashleigh.Origin and control of polarization effects in single-mode fibers.J.Lightwave Technol.1983,1:312-330.
    [29]M.Eguchi and M.Koshiba.Accurate finite-element analysis of dual-mode highly elliptical-core fibers.J.Lightwave Technol.,1994,12:607-613.
    [30]Y.Park,U.Paek,and D.Kim.Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile.Opt.Lett.2002,27:1291-1293.
    [31]C.D.Poole and R.E.Wagner.Phenomenological approach to polarization dispersion in long single-mode fibers.Electron.Lett.,1986,22:1029-1030.
    [32]C.D.Poole,J.H.Winters,and J.A.Nagel.Dynamical equation for polarization dispersion.Opt.Lett.,1991,6:372-374.
    [33]吴重庆.光波导理论.北京:清华大学出版社,2005:176;吴重庆,付松年,董晖等.偏振模色散矢量的研究.物理学报,2002,11:2542-2546;H.Dong,P Shum,Y D.Gong,and C.Q.Wu.Spectrally resolved reflectometric measurement of polarization mode dispersion in an optical fiber link with polarization-dependent loss.Opt.Lett.,2007,32:2999-3001;A.Galtarossa and C.Menyuk.Polarization Mode Dispersion.New York.Springer Science+Business Media,Inc.,2005.
    [34]http://www.corning.com/specialtymaterials/ww/en/index.aspx.
    [35]陈硕,张洪明,姚敏玉等.用于40Gb/s系统的可编程光纤挤压式PMD模拟器,光电子.激光,2004,8:6-9.
    [36]J.Rogers.Polarization-optical time domain reflectometry:a technique for the measurement of field distributions.Appl.Opt.,1981,20:1060-1074.
    [37]Corsi,A.Galtarossa,L.Palmieri.Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers.J.Lightwave Technol.,1999,17:1172-1178.
    [38]M.Wuilpart,P.Megret,M.Blondel,A.J.Rogers,et al.Measurement of the spatial distribution of birefringence in optical fibers.IEEE Photonics Technol.Lett.,2001,13(8):.836-838.
    [39]M.Wuilpart,G.Ravet,P.Megret,M.Blondel.Polarization mode dispersion mapping in optical fibers with a polarization-OTDR.IEEE Photonics Technol.Lett,2002,14(12):1716-1718.
    [40]Y.Liu,E.Tangdiongga,Z.Li,et al.Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering.OFC/NFOEC,Anaheim,CA,2006,Post-Deadline Paper:PDP28.
    [41]J.Zhang,J.Wu,C.Feng,K.Xu,J.Lin.All-Optical Logic or Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering.IEEE Photonics Technol.Lett.,2007,19(1):33-35.
    [42]M.Cheng,C.Q.Wu,H.Liu.Cascaded optical buffer based on nonlinear polarization rotation in semiconductor optical amplifiers.Chinese Physics Letters,2008,25(11):4026-4029;H.Dorren,D.Lenstra,Y.Liu,M.Hill,and G.Khoe.Nonlinear polarization rotation in semiconductor optical amplifiers:theory and application to all-optical flip-flop memories.J.Quantum Electron.2003,39:141.
    [43]Marand and P.Townsend.Quantum key distribution over distances as long as 30 km.Opt.Lett.1995,20:1695-1697.
    [44]A.Mink,X.Tang,L.Ma,et al.High speed quantum key distribution system supports one-time pad encryption of real-time video.Proc.SPIE 2006,6244:62440M.
    [45]M.Johnson.In-line fiber-optical polarization transformer.Appl.Opt.,1979,18:1288-1289.
    [46]Y.Kidoh,Y.Suematsu,and K.Furuya.Polarization control on output of single-mode optical fibers.IEEE J.of Quantum Electron.,1981,17:991-994.
    [47]T.Okoshi,Y Cheng,and K.Kikuchi.New polarisation-control scheme for optical heterodyne receiver using two Faraday rotators.Electron.Lett.,1985,21(18):787-788.
    [48]刘德明,黄德修,聂刚.全光学偏振自动控制器.光学学报,1993,13(12):1120-1123.
    [49]W.Aarts and G Khoe.New endless polarization control method using three fiber squeezers.J.Lightwave Technol.,1989,7(7):1033-1043.
    [50]K.Hirabayashi,C.Amano.Liquid-Crystal polarization controller arrays on planar waveguide circuits.IEEE Photonics Technol.Lett.,2002,14(4):504-506.
    [51]T.Yoshino,M.Yokota,and T.Kenmochi.High-speed all-fibre polarisation controller.Electron.Lett.,2003,39(25):1800-1802.
    [52]Y.S.Li,H.Yan,et al.Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates.Optics Express,2006,14:3484-3490.
    [53]http://www.generalphotonics.com.
    [54]李必成,盛赛斌.利用DOP数值搜索的偏振模色散补偿算法.光电工程,2004,31(11):27-30.
    [55]李伟文,章献民,陈抗生,邹英寅.模拟退火算法在无端偏振控制器中的应用.光子学报,2005,34(6):820-824.
    [56]J.W.Crowe and R.M.Craig,Jr..Small-signal amplification in GaAs lasers.Appl.Phys.Lett.,1964,4:57-58.
    [57]吴重庆.半导体光放大器的光-光互作用及其应用.物理,2007,8:631-636.
    [58]T.Saitoh and T.Mukai.Recent progress in semiconductor laser amplifiers.J.Lightwave Technol.,1988,6(11):1656-1664.
    [59]N.A.Olsson.Polarization-independent configuration optical amplifier.Electron Lett.,1988,24(17):1075-1076.
    [60]D.M.Patrick,A.D.Ellis,et al..Demultiplexing using polarization rotation in a semiconductor laser amplifier.Electron.Lett.,1994,30(4):341-342.
    [61]H.Soto,D.Erasme,et al..Cross-polarization modulation in semiconductor optical amplifiers.IEEE Photon.Technol.Lett.,1999,11(8):970-972.
    [62]H.Soto,D.Erasme,et al..5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers.IEEE Photon.Technol.Lett.,2001,13(4):335-337.
    [63]H.Soto,C.D(?)az,et al..All-Optical AND Gate Implementation Using Cross-Polarization Modulation in a Semiconductor Optical Amplifier.IEEE Photon.Technol.Lett.,2002,14(4):498-500.
    [64]Y.Liu,M.Hill,et al..Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier.IEEE Photon.Technol.Lett.,2003,15(1):90-92.
    [65]J.Turkiewicz,G.Khoe,et al..All-optical 1310 to 1550 nm wavelength conversion by utilising nonlinear polarisation rotation in semiconductor optical amplifier.Electron.Lett.,2005,41(1):29-30.
    [66]H.Soto and A.Guti(?)rrez.All-optical 2-to-4 level encoder based on cross polarization modulation in a semiconductor optical amplifier utilized to develop an all-optical 2 input digital multiplexer.Opt.Express,2006,14:9000-9005.
    [67]http://www.ciphotonics.com.
    [68]崔迎超,张书练,冯金垣.半导体光放大器的增益特性和偏振特性.激光技术,2005,29(5):462-465.
    [69]Y.S.Cho,W.Y.Choi.Analysis and optimization of polarization-insensitive semiconductor optical amplifiers with delta-strained quantum wells.IEEE J.Quantum Electron.,2001,37(4):574-579.
    [70]段子刚,张哲民,刘德明等.低偏振灵敏度半导体光放大器.中国激光,2000,27(3):203-205.
    [71]刘德明,徐文超,黄德修.低偏振相关的半导体光放大器.华中理工大学学报,1999,27(10):1-3.
    [72]R.Manning,A.Antonopoulos,R.R.Le,et al..Experimental measurement of nonlinear polarization rotation in semiconductor optical amplifiers.Electron.Lett.,2001,37(4):229-231.
    [73]黄黎蓉,黄德修,黄永箴.双折射对基于半导体光放大器的干涉型器件.光学学报,2003,23(4):407-411.
    [74]T.D.Visser,H.Blok,and D.Lenstra.Theory of polarization dependent amplification in a slab waveguide with anisotropic gain and losses.IEEE J.Quantum Electron.,1999,35:240-249.
    [75]H.Dorren,D.Lenstra,Y.Liu,M.Hill,and G.Khoe.Nonlinear polarization rotation in semiconductor optical amplifiers:theory and application to all-optical flip-flop memories.IEEE J.Quantum Electron.2003,39:141.
    [76]A.H.Gnauck.Advanced amplitude and phase coded formats for 40-Gb/s fiber transmission.The 17th Annual Meeting of the IEEE,LEOS 2004,2:605-606.
    [77]A.Umbach.Photoreceivers from 40 Gbit/s to 100 Gigabit Ethernet.OFC 2008:OMS1.
    [78]A.L.Campillo.Interchannel nonlinear crosstalk in analog polarization modulated WDM systems.J.Lightwave Technol.,2006,24(3):1186-1193.
    [79]L.E.Nelson,T.N.Nielsen,H.Kogelnik.Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission.IEEE Photon.Technol.Lett.,2001,13(7):738-740.
    [80]P.J.Winzer and R.Essiambre.Advanced Modulation Formats for High-Capacity Optical Transport Networks.J.Lightwave Technol.,2006,24:4711-4728.
    [81]G.Kramer,A.Ashikhmin,A.Wijngaarden,and X.Wei.Spectral efficiency of coded phase-shift keying for fiber-optic communication.J.Lightw.Technol.,2003,21:2438-2445.
    [82]R.A.Griffin and A.C.Carter.Optical differential quadrature phase shift key(ODQPSK) for high-capacity optical transmission.OFC,Anaheim,CA,2002,Paper:WX6.
    [83]T.Ito,K.Mino,Y.Inada,et al.Ultra-long transmission performance evaluation of 43Gbit/s CSRZ-DPSK DWDM signal using 4,300km DMF line.Optical Fiber Communication Conference(OFC),2005.
    [84]S.Weisser,L.Raddatz,et al.170 Gbit/s single-polarization transmission over 650 km SSMF with 130 km spans using RZ-DPSK.Optical Fiber Communication Conference(OFC),2005.
    [85]Carena,A.;Curri,V.;Gaudino,et al.Polarization modulation in ultra-long haul transmission systems:a promising alternative to intensity modulation.ECOC 1998.1:429-430.
    [86]Y.W.Song,Z.Pan,Y.Arieli,etal.Enhanced Suppression of Nonlinearity-Induced Crosstalk in WDM Systems Using Optical Polarization Shift Keying.CLEO/QELS 2003:CThQ2.
    [87]S.Benedetto,R.Gaudino,and P.Poggiolini.Direct detection of optical digital transmission based on polarization shift keying modulation.IEEE J.Select.Areas Commun.,1995:13.
    [88]S.Benedetto,R.Paoletti,P.Poggiolini,etal.Coherent and direct-detection polarization modulation system experiments.In Proc.ECOC '94,Sept.1994,1:67-71.
    [89]E.Dietrich,B.Enning,R.Gross,H.Knupke.Heterodyne transmission of a 560 Mbit/s optical signal by means of polarisation shift keying.Electronics Letters,1987,23(8):421-422.
    [90]S.Benedetto and P.Poggiolini.Theory of polarization shift keying modulation.IEEE Trans.On Comm.,1992,40(4):708-721.
    [91]Y.Han and G.Li.Direct detection differential polarization-phaseshift,keying based on Jones vector.Opt.Expr.,2004,12(24):5821-5826.
    [92]Naser Tarhuni,Timo O.Korhonen,and Mohammed Elmusrati.State of Polarization Encoding for Optical Code Division Multiple Access Networks.Journal of ElectroMagnetic Waves and Applications,2007,21:1313-1321.
    [93]周木春,陈延如,赵琦,袁兴起.激光偏振编码制导中铌酸锂晶体编码技术研究.光学学报,2006,26(2):290-293.
    [94]唐志列,李铭等.相位-偏振编码的量子保密通信系统的研究.物理学报,2005,54(6):78-83.
    [95]方捻,王陆唐,郭淑琴,黄肇明.偏振态移位键控光混沌通信系统的保密性.光学学报,2006,26(61:812-817.
    [96]G.Gupta,K.Fukuchi,T.Ogata.Highly efficient 1 Tb / s(50ch × 20Gb / s) 2000 km RZ transmission experiment by suppressing XPM with optimized pulsewidth.OFC 2000,1:152.
    [97]C.Yu,L.S.Yan,etal.Width tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber.IEEE Photon.Technol.Lett.,2005,17(3):636-638.
    [98]N.Onodera,A.Lowery,L.Zhai,Z.Ahmed,and R.Tucker.Frequency multiplication in actively mode-locked semiconductor lasers.Appl.Phys.Lett.1993,62:1329.
    [99]M.Jeon,H.Lee,J.Ahn,K.Kim,D.Lim,and E.Lee.Pulse-amplitude-equalized output from a rational harmonic mode-locked fiber laser.Opt.Lett.1998,23:855.
    [100]G.Lin and J.Wu.Tenth-order rational-harmonic frequency multiplication and detuning of optical pulse injection-locked erbium-doped fiber laser.Appl.Opt.,2005,44:2416.
    [101]B.Bakhshi,P.Andrekson.40 GHz actively modelocked polarisation maintaining erbium fibre ring laser.Electron.Lett.,2000,36(5):411-413.
    [102]P.Gunning,J.K.Lucek,D.G.Moodie et al..Gainswitched DFB laser diode pulse source using continuous wave light injection for jitter suppression and an electroabsorption modulator for pedestal suppression.Electron.Lett.,1996,32(11):1010-1011.
    [103]S.Iezekiel,C.Snowden,M.Howes.Generation of ultrashort optical pulses by microwave modulation of laser diodes.IEE Colloquium on Applications of Ultrashort Pulses for Optoelectronics,1989,Step.1-7.
    [104]T.Komukai,T.Yamamoto,Satoki Kawanishi.Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings.IEEE Photon.Technol.Lett.2005,17(8):1746-1748.
    [105]胡浩,于晋龙,张立台,李岩,江阳,杨恩泽.10 GHz超低抖动光短脉冲源.中国激光,2007,34(9):1241-1244.
    [106]X.Yang,Z.Li,E.Tangdiongga,et al..Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity.Opt.Express,2004,12:2448-2453.
    [107]D.Tang,H.Zhang,L.Zhao and X.Wu.Observation of high-order polarization-locked vector solitons in a fiber laser.Physical Review Letters,2008,accepted.
    [108]M.Nakazawa,E.Yoshida,Y.Kimura,Ultrastable harmonically and regeneratively modelocked polarisation-maintaining erbium fibre ring laser.Electronics Letters,1994,30(19):1603-1605.
    [109]T.Papakyriakopoulos,K.Vlachos,A.Hatziefremidis,and H.Avramopoulos.Optical clock repetition rate multiplier for high speed digital optical logic circuits.Opt.Lett.1999,24:717.
    [110]Schares,R.Paschotta,L.Occhi,et al..40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs.J.Lightwave Technol.2004,22:859.
    [111]R.M.Craig,S.L.Gilbert,et al..High-resolution,nonmechanical approach to polarization dependent transmission measurements.J.Lightwave Technol.1998,7:1285-1294.
    [112]J.Q.Zhou,H.Dong,et al..Two-state method for polarization dependent loss measurement.Optical Fiber Technology.2007,13(2):139-142.
    [113]廖延彪.光纤光学.北京:清华大学出版社,2000:119.
    [114]R.W.Schmieder.Stokes-algebra formalism.J.Opt.Soc.Am.1969,59:297.
    [115]J.F.Cornwell.Group theory in physics:an introduction.California:Academic Press,1997.
    [116]S.-Y.Lu and R.A.Chipman.Interpretation of Mueller matrices based on polar decomposition.J.Opt.Soc.Am.A,1996,13(5):1106-1113.
    [117]刘丁酉.矩阵分析.武汉:武汉大学出版社,2003:169-170.
    [118]P.Theocaris,E.Gdoutos,著.杨霁辉译.光测弹性学矩阵理论.北京:科学出版社,1987.
    [119]M.-J.Li,X.Chen,and D.A.Nolan.Fibers with low polarization mode dispersion.J.Lightwave Technol.,2004,22(4):1066-1077.
    [120]A.Galtarossa and L.Palmieri.Spatially resolved PMD measurements.J.Lightw.Technol.,2004,22(4):1103-1115.
    [121]S.Pietralunga,M.Ferrario,M.Tacca,M.Martinelli.Local birefringence in unidirectionally spun fibers.J.Lightwave Technol.2006,24(11):4030-4038.
    [122]D.Chowdhury and D.Nolan.Perturbation model for computing optical fiber birefringence from a two-dimensional refractive-index profile.Opt.Lett.,1995,20:1973-1975.
    [123]M.Koshiba,K.Hayata,M.Suzuki.Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems.IEEE Transactions on Microwave Theory and Techniques.1985,33(10):900-905.
    [124]J.K.Shaw,A.M.Vengsarkar,and R.O.Claus.Direct numerical analysis of dual-mode elliptical-core optical fibers.Opt.Lett.,1991,16:135-137.
    [125]M.Loch,W.Lieber,H.Etzkorn,and W.E.Heinlein.Highly accurate characterization of dispersion-optirnized single-mode fibers.J.Opt.Quantum Electron.,1987,19:24-27.
    [126]M.Loch and W.Heinlein.High-resolution measurement of birefringence profiles in stress-induced polarization-maintaining fibers.J.Lightwave Technol.,1989,7:1213-1216.
    [127]M.Eguchi and M.Koshiba.Accurate finite-element analysis of dual-mode highly elliptical-core fibers.J.Lightwave Technol.1994,12:607-613.
    [128]关荣锋,李占涛,侯斌.类矩形保偏光纤应力双折射分析.红外与毫米波学报,2005,24(1):45-48.
    [129]M.P.Varnham,D.N.Payne,A.J.Barlow,and R.D.Birch.Analytic solution for the birefringence produced the thermal stress in polarization-maintaining optical fibres.J.Lightwave Technol.,1983,LT-1:32-339.
    [130]P.L.Chu and R.A.Sammut.Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber.J.Lightwave Technol.,1984,2(5):650-662.
    [131]K.H.Tsai,K.S.Kim,T.F.Morse.General solutions for stress-induced polarization in optical fibers.J.Lightwave Technol.,1991,9(1):7-16.
    [132]S.C.Rashleigh.Origins and control of polarization effects in single-mode fibers.J.Lightwave Technol.,1983,LT-1:312-331.
    [133]杜庆华等.弹性理论.北京:科学出版社,1986.
    [134]余德浩等.自然边界元方法的数学理论.北京:科学出版社,1993.
    [135]K.Okamoto,T.Hosaka,and T.Edahiro.Stress analysis of optical fibers by a finite element method.IEEE J.Quantum Electron.,1981,QE-17:2123-2129.
    [136]S.P.Timoshenko and J.N.Goodier,Theory of Elasticity,3rd.New York:McGraw-Hill Book Company,1970.
    [137]A.J.Barlow and D.N.Payne.The stress-optic effect in optical fibers.IEEE J.Quantum Electron.,1983,19:834-839.
    [138]Zhengyong Li,Chongqing Wu,H.Dong,P.Shum.Stress distribution and induced birefringence analysis for pressure vector sensing based on single mode fibers.Optics Express 2008,16(6):3955-3960.
    [139]A.Siddiqui and H.Sherief.Liquid crystal polarisation controller for use in fiber communication systems.OFC'89,1989:WQ21.
    [140]H.C.Lefevre.Single-mode fibre fractional wave devices and polarization controllers.Electronics Letters.1980,16:778.
    [141]H.Shimizu,S.Yamazaki,T.Ono,and K.Emura.Highly practical fiber squeezer polarization controller.J.Lighwave Technol.1991,9:1217.
    [142]W.Shieh and H.Kogelnik.Dynamic eigenstates of polarization.IEEE Photon.Technol.Lett.2001,13:40.
    [143]A.C.Tamhane,Statistics and data analysis from elementary to intermediate.Prentice Hall,2000.
    [144]Zhengyong Li,Chongqing Wu,H.Dong,et al.Cascaded dynamic eigenstates of polarization analysis for piezoelectric polarization control.Optics Letters,2007,32(19):2900-2902.
    [145]A.D.Ellis,D.M.Patrick,D.Flannery,et al.Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes.J.Lightwave Technol.,1995,13(5):761.
    [146]R.J.Manning,A.D.Ellis,A.J.Poustie,et al.Semiconductor laser amplifiers for ultrafast all-opticalsignal processing.J.Opt.Soc.Am.B,1997,14(11):3204-3216.
    [147]吴建伟,夏光琼,吴正茂.基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析.物理学报,2004,4:133-137.
    [148]K.Yiannopoulos,K.Vyrsokinos,E.Kehayas,et al..Rate multiplication by double-passing fabry-Perot filtering.IEEE Photon.Technol.Lett.,2003,15(9):1294-1296.
    [149]L.Q.Guo and M.J.Connelly.A Poincar(?) Approach to Investigate Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers and its Application to All-Optical Wavelength Conversion.Proc.of SPIE 2007,6783:678325.
    [150]洪伟,黄德修,孙军强,刘德明.半导体光放大器(SOA)皮秒增益和折射率非线性的数值模拟.中国激光,2003,9:8-11.
    [151]Zhengyong Li,Chongqing Wu,et al.Matrix-based Polarization Analysis and Application of Semiconductor Optical Amplifiers.Chinese Physics Letters,2008,25(11):1325-1328.
    [152]黄黎蓉,陈洪峰,黄德修,刘德明.半导体光放大器中几种非线性效应关系研究.华中科技大学学报(自然科学版),2004,1:89-91.
    [153]W.Wang,K.Allaart,and D.Lenstra.Semiconductor optical amplifier gain anisotropy:confinement factor against material gain.Electron.Lett.,2004,4:1602-1603.
    [154]J.Xu,X.Zhang,J.Dong,D.Liu,and D.Huang.All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier.Opt.Lett.,2007,32:3029.
    [155]K.Sala,G.Wallace,and G.Hall.CW autocorrelation measurements of picosecond laser pulses.IEEE J.Quantum Electronics,1980,16:990-996.
    [156]Zhengyong Li and Chongqing Wu.Phenomenological model analysis for semiconductor optical amplifiers and application to time-domain digital polarization encoding.Optics Letters,2008,33(18):2032-2034.
    [157]Y.W.Song,Z.Pan,Y.Arieli,et al.Enhanced suppression of nonlinearity-induced crosstalk in WDM systems using optical polarization shift keying.Proc.CLEO,2003:1731-1733.
    [158]A.L.Campillo.Interchannel Nonlinear Crosstalk in Analog Polarization Modulated WDM Systems.J.Lightwave Technol.,2006,24:1186.
    [159]N.Gisin,G.Ribordy,W.Tittel,et al.Quantum cryptography.Rev.Mod.Phys.,2002,74:145-195.
    [160]L.Cimini,I.Habbab,R.John,A.Saleh.Preservation of polarisation orthogonality through a linear optical system.Electronics Letters,1987,23(25):1365-1366.
    [161]吴重庆.光通信导论.北京:清华大学出版社,2008:52
    [162]D.Dahan,G.Eisenstein.Numerical comparison between distributed and discrete amplification in a point-to-point 40-Gb/s 40-WDM-Based transmission system with three different modulation formats.J.Lightwave Technol.,2002,20(3):379-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700