碱地肤抗盐碱胁迫的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化已成为一个世界性环境问题,土壤盐化与碱化往往相伴发生。盐胁迫和碱胁迫实际是两种不同性质的胁迫。碱胁迫比盐胁迫更复杂,具有更大的生态破坏力。本文以抗碱盐生植物碱地肤为材料,系统地探讨其抗盐碱生境的生理机制,尤其探讨了草酸积累、分布及其对碱地肤适应盐碱条件的生理贡献,以此为治理盐碱化生境提供重要的理论依据。
     一、盐碱胁迫下碱地肤体内渗透调节和离子平衡机制
     本文对碱地肤幼苗进行非胁迫和盐胁迫(盐度:200 mM,NaCl: Na_2SO_4 =1:1)或碱胁迫(盐度:200 mM,NaHCO_3: Na_2CO_3 = 1:1)处理。通过观测盐、碱胁迫后溶质积累变化及其分布差异,探讨了盐、碱胁迫下碱地肤的渗透调节和离子平衡机制的动态进程及其分布差异,更加深入地揭示了碱地肤响应盐碱胁迫的生理机制特点。碱地肤体内各种溶质对渗透调节或离子平衡的贡献各不相同,而且在盐碱胁迫下其贡献也发生动态变化。但无论如何,Na~+、K~+、有机酸、Cl-是盐胁迫下主要的渗透调节剂,而Na~+、K~+、有机酸是碱胁迫下主要的渗透调节剂。无论盐、碱胁迫,Na~+、K~+均是正电荷的主要贡献者,而有机酸为负电荷主要提供者。
     碱地肤的渗透调节、离子平衡同样存在部位差异。但共同之处是:K~+、Na~+和有机酸是碱地肤各部位主要的渗透调节物质。碱地肤不同部位正电荷主要来源于Na~+、K~+,负电荷主要来源于有机酸。值得注意的是,有机酸对渗透调节和离子平衡的贡献均主要集中体现在叶片。有机酸优先在决定光合生产力的叶片中发挥其生理作用,可以保证整个植株正常的生理代谢。此外,有机酸在盐、碱胁迫下的作用也存在差异,盐胁迫下有机酸作用较弱。这是由于碱地肤此时选择了耗能更少的Cl-和SO42-等无机离子进行离子平衡和渗透调节,可以认为无机离子选择性的吸收是碱地肤适应盐胁迫的重要生存策略,而有机酸的积累是其响应碱胁迫的关键性生理机制之一。
     二、盐碱胁迫下碱地肤体内有机酸代谢机制
     通过分析碱地肤体内有机酸组分的动态积累及其体内的分布差异,以探讨盐碱胁迫下碱地肤体内有机酸代谢调节机制特点。结果表明,在响应碱胁迫时,碱地肤不同部位也存在着不同的有机酸代谢调节方式。草酸主要分布在茎叶尤其是成熟叶片中;苹果酸为老茎中最主要有机酸;而琥珀酸为根中的主导有机酸。尽管如此,从整个植株来看,草酸仍然是其体内有机酸的主要成分,同时也是盐、碱胁迫下积累的主要有机酸。实验结果还表明,碱地肤根系不分泌草酸。综上可知,草酸只在碱地肤体内特别是决定光合生产力的成熟叶才发挥其生理作用,以保障植株的正常生理代谢。草酸为主有机酸的积累是决定碱地肤既抗盐又抗碱这一适应特性的内在因素之一。
     三、盐碱胁迫下草酸的生理贡献及其代谢特点
     通过分析草酸的生理作用及其相关代谢酶的活性变化,进一步明确草酸对其适应盐碱生境的生理贡献及其代谢特点。结果表明:草酸以小分子有机阴离子的形式存在于碱地肤体内,不仅对渗透调节和pH调节具有决定作用,也是在维持离子平衡中起主导作用的负电荷供体。实验还表明,碱地肤体内草酸的含量与其分解作用(OXO途径)并不大,而是主要取决于其合成作用。在外施盐、碱胁迫24h后,乙醇酸氧化酶(GO: EC1.1.3.1),异柠檬酸裂解酶(ICL: EC 4.1.3.1)和PEP羧化酶(PEPcase: EC 4.1.1.31)的活性均显著升高,通过相关分析的结果表明,GO才是合成草酸的关键酶。因此证明了GO才是决定草酸积累的关键限制因子。
     碱地肤在进化中形成了一套适应盐、碱胁迫的生理机制,即主要通过提高GO关键酶的活性来调动草酸为主的有机酸的代谢调节,以达到渗透调节、离子平衡及调节pH值的综合目的。
Soil salinization has become a global environmental problem. Soil alkalization and salinization frequently co-occur. The alkali stress and salt stress are two distinct kinds of stresses actually. Alkali-stress more complex and serious destructive effect on ecological environment than that salt-stress. In present study, we chosen an alkali-tolerant halophyte Kochia sieversiana as the test organism, probed the physiological mechanisms of K. sieversiana to salt and alkali stresses, especially, we revealed oxalic acid accumulation and distribution of K. sieversiana and its physiological contribution to the adaptability of K sieversiana to saline and alkaline conditions. On the basis of these improved the theoretical basis for the treatment of salt-alkalinized habitats.
     1. The mechanisms of ion balance and osmotic adjustment in Kochia sieversiana under salt- and alkali-stress
     In the present study, seedlings of Kochia sieversiana were exposed to the following conditions: non-stress, salt stress (molar ratio of NaCl: Na_2SO_4= 1:1, salinity: 200mM) and alkali stress (molar ratio of NaHCO_3: Na_2CO_3= 1:1, salinity: 200mM). The solutes accumulation and the differences in solutes distribution under salt- or alkali- stress were monitored in order to investigate the dynamic process and distribution differences of osmotic adjustment and ion balance in K. sieversiana during responding to salt and alkali stresses. Our work revealed the physiological mechanisms in K. sieversiana responding to salt and alkali stresses more deeply.
     The contributions of different solutes to osmotic adjustment and ion balance were different, and their contributions under salt- or alkali- stress were discrepant too. But anyhow Na~+, K~+, organic acid, and Cl~- were the main osmolytes under salt stress, while Na~+, K~+, organic acid were the main osmolytes under alkali stress. Whether under salt stress or under alkali stresses, Na~+ and K~+ were the main contributors to positive charge, and organic acid was the dominant contributor to negative charge.
     There were differences among different parts of K. sieversiana in the osmotic adjustment and ion balance, but the common point: K~+, Na~+ and organic acid were the main osmolytes in different parts of K. sieversiana. The positive charge mainly came from Na~+ and K~+, and the negative charge mainly came from organic acid in different parts. Remarkably, the contributions of organic acid to osmotic adjustment and ion balance was concentrated in leaves. Organic acid play physiological role preferentially in leaves, on which photosynthesis productivity was based, and ensured to maintain normal physiological metabolism in whole plant. The effects of organic acid on salt and alkali stresses were different, and its effect was weaker under salt stress. That was because that Cl- or SO42- were accumulated selectively in shoots, which accumulation process consumed less energy. The selective absorption of inorganic ions in K. sieversiana to adapt to salt stress is an important survival strategy, while the accumulation of organic acids was one of the key
     2. The mechanisms of organic acids metabolism in K. sieversiana under salt and alkali stresses
     The characteristic of mechanisms of organic acids metabolism under salt and alkali stresses were discussed by analyzing the dynamic accumulation and differences of distribution of organic acids in K. sieversiana.
     The results showed that different parts of K. sieversiana differed in organic acids metabolic regulation mechanisms of adaptability to alkali conditions. Oxalic acid was the main constituent in shoots, especially mature leaves; malic acid was the main organic acid in old stems; and succinic acid was the dominant organic acid in roots. However, for the whole plant, oxalic acid was the main organic acid observed in plants, and it was also the main organic acid observed in plants under either salt or alkali stress. The root secretion experiment indicated that oxalic acid was not detected in root exudates. Oxalic acid played its physiological action in functional leaves on which photosynthesis productivity is dependent on, and ensured plant had normal physiological metabolic. The accumulation of oxalic acid was one of the significant endogenous factors which determined the adaptive characteristics of both salt-resistance and alkali-resistance for K. sieversiana.
     3. Physiological contribution of oxalic acid and the characteristics of its metabolism in K. sieversiana under salt and alkali stresses
     The contribution of oxalic acid to salt-alkalinized soil adaptability and the characteristic its metabolism were identified by studying the physiological action of oxalic acid and change of its related enzyme activities. The results showed that oxalic acid anion was not only an organic osmotic regulator, but also a negative charge donator, playing leading roles in maintaining ion balance and pH adjustment in vivo. Results also showed that the oxalic acid content in K. sieversiana and its decomposition (OXO way) were not entirely relevant, but mainly depended on its synthesis. K. sieversiana were exposed to salt stress and alkali stress after 24 hours, GO, ICL and PEPcase activities increased significantly. The analysis of correlation showed that GO was a key enzyme for oxalic acid biosynthesis. Therefore, this proved that GO was the key limiting factor for the accumulation of oxalic acid.
     K. sieversiana in evolution formed physiological mechanisms to adaption of alkali and salt stresses, mainly by increasing the activity of key enzyme GO to mobilize the metabolism of oxalic acid-based regulation, in order to achieve comprehensive purposes of osmotic adjustment, ion balance and pH regulation.
引文
[1]Yang C W, Shi D C, Wang D L. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge) [J]. Plant Growth Regulation, 2008, 56 (2):179-190.
    [2]石德成,赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J].草业学报,1997,6(2):51-61.
    [3]Waisel Y. Biology of halophytes[M]. New York: Academic Press, 1972. 200-231.
    [4]Ungar I A. Influence of salinity and temperature on seed germination[J].Ohio Journal of Science, 1967, 67:120-123.
    [5]杨春武,贾娜尔.阿汗,石德成,等.复杂盐碱条件对星星草种子萌发的影响[J].草业学报,2006, 15: 45– 51.
    [6]陈月艳,孙国荣,李景信. Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J].草业科学,1997,14 (2):27-30.
    [7]Todd P E, Irwin A U, Forrest Meekins J.The effect of different salt of Sodium and Potassium on the germination of Atriplex prostrata(Chenopodiaceae) [J]. Journal of plant nutrition, 1997, 20(12): 1723-1730.
    [8]Macke A, Ungar I A. The effect of salinity on seed germination and early growth of Puccinellia mittalliana Can[J]. J Bot, 1971, 49: 515-520.
    [9]Shi D C, Wang D L. Effect s of various salt-alkali mixed stresses on Aneurolepi dium chinense ( Trin ) Kitag[J]. Plant and Soil, 2005, 271:15-26.
    [10]Shi D C, Sheng Y. Effect of various salt-alkaline mixed st ress conditions on sunflower seedlings and analysis of their stress factors[J]. Environmental and Experimental Botany, 2005, 54: 8-21.
    [11]石德成,盛艳敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002,28 (4):461-467.
    [12]Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J]. Photosynthetica, 2008, 46: 107-114.
    [13]石德成,盛艳敏,赵可夫.复杂盐碱生态条件的人工模拟及其对羊草生长的影响[J].草业学报,1998,7(1):36-41.
    [14]麻莹,曲冰冰,郭立泉,等.盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点[J].草业学报,2007,16(4):25-33.
    [15]陆静梅,李建东.松嫩平原5种盐生牧草耐盐结构研究[J].草业学报,1996,5(2):9-13.
    [16]王波,张金才,宋凤斌,等.盐碱胁迫对燕麦光合特性的影响[J].中国农学通报,2007,23(5):235-238.
    [17]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报:自然科学版,2002,26(5) :19-26.
    [18]Muller M, Santarius K A. Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity[J]. Plant Phyiol, 1978, 62: 326-333.
    [19]石德成,殷立娟. Na2CO3胁迫下羊草苗的胁变反应及其数学分析[J].植物学报,1992,34(5):144-149.
    [20]颜宏,石德成,尹尚军,等.盐碱胁迫对羊草体内N及几种有机代谢产物积累的影响[J].东北师大学报(自然科学版),2000,32(3):47-52.
    [21]高庆义,王宝山.高粱叶中有机渗透调节物质对NaCl胁迫的响应[J].山东师大学报,1998,13(3):300-305.
    [22]郑国琦,许兴,邓西平,等.盐分和水分胁迫对枸杞幼苗渗透调节效应的研究[J].干旱地区农业研究,2002,20(2):56-59.
    [23]王锁民,朱兴运.渗透调节在碱茅幼苗适应盐逆境中的作用初探[J].草业学报,1993,2(3):40-46.
    [24]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学,2004,15(3):511-516.
    [25]孙宝启,李玉京.硝酸还原酶与氮素利用的关系及其在作物遗传育种中的应用[J].北京农业大学学报,1993,19(3):29– 33.
    [26]Hoff J, Truong HN, Caboche M. The use of mutants and transgenic plants to study tritrate axximilatin[J]. Plant cell Environ, 1994, 17: 489-506.
    [27]阎秀峰.植物次生代谢生态学[J].植物生态学报,2001,25(5):639-640.
    [28]戴勋.植物次生代谢[J].昭通师范高等专科学校校报,2002,24(5):35-38.
    [29]张士功,高吉寅,宋景芝.水杨酸和阿司匹林对小麦盐害的缓解作用[J].植物生理学报,1998,25(2):159 -164.
    [30]张士功,高吉寅,宋景芝.水杨酸和阿司匹林对盐胁迫下小麦种子萌发的作用[J].植物生理学通讯,1999,35(1):29 -32.
    [31]时再冉,崔兴国,刘志华.混合盐碱胁迫对旱稻种子萌发的影响[J].种子,2006,25(2):25-31.
    [32]郑爱珍,王启明.水杨酸与植物逆境胁迫[J].安徽农业科学,2006,34(5):844- 845.
    [33]Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges: Recent development[J]. Plant Science, 1999, 140 (2) : 103- 125.
    [34]Kasukabe Y, He LX, Nada K, et al. Overexp ression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the exp ression of various stress-regulated genes in transgenic A rabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45 (6): 712- 722.
    [35]Kumria R, RajamMV. Ornithine decarboxylase transgene in tobacco affects polyamines, in vitromorphogenesis and response to salt stress[J]. Journal of Plant Physiology, 2002, 159 (9) : 983- 990.
    [36]Liu JH, Nada K, Honda C, et al. Polyamine biosynthesis of app le callus under salt stress: Importance of the arginine decarboxylase pathway in stress response[J]. Journal of Experimental B otany, 2006, 57 (11): 2589- 2599.
    [37] Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance[J]. Plant Science, 2002, 163 (5): 987- 992.
    [38]赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中的贡献的影响[J].植物学报,1999,4:1287-1292.
    [39]徐云岭,余叔文.植物适应逆境过程中的能量消耗[J].植物生理通讯,1990,6: 70-73.
    [40]Munns R. Why measure osmotic adjustment[J]. Aust J Plant Physiol, 1988, 15: 717-726.
    [41]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21.
    [42]Delauney A J, Uerma D P S. Proline biosynthesis and osmoregulation in plants[J]. Plant J, 1993, 4(2): 215-223.
    [43]Liu J Y, Yi Y J, Zhao K F. The effects of salinity on ions content, betaine level and BADH activity of Suaeda salsa seedling[J]. Acta Botanica Sinica, 1994, 36(8): 622- 626 ( in Chinese).
    [44]周贺芳,邹志荣,杨兴娟.外源Ca2+对盐胁迫下甜瓜植株的缓解效应[J].安徽农业科学,2007,35(9):2543-2544,2546.
    [45]石德成,殷立娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    [46]石德成,盛艳敏.不同盐度的混合盐对羊草的胁迫效应[J].植物学报,1998,40(12):1136-1142.
    [47]郑慧莹,李建东著.松嫩平原盐生植物与盐碱化草地的恢复[M].北京:科学出版社,1999.51-64.
    [48]Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenui?ora under alkaline stress[J]. Acta Bot Sin, 2002, 44: 537–540.
    [49]Guo L Q, Shi D C, Wang D L. The Key Physiological Response to Alkali Stress by the Alkali-Resistant Halophyte Puccinellia tenui?ora is the Accumulation of Large Quantities of Organic Acids and into the Rhyzosphere[J]. J Agronomy Crop Science, 2009, 196: 123-135.
    [50]Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294: 263–276.
    [51]彭新湘,李明启.植物中的草酸及其代谢[J].植物生理学通讯,1992,28(2):93-96.
    [52]Osmond C B. Oxalate and ionic equilibria in Australian salt bushes[J].Nature, 1963, 198: 503-504.
    [53]Francechi V R. Calcium oxalate formation is a rapid and reversible process in lemna minor L[J]. Protoplasr, 1989, 148: 130-137.
    [54]Trinchant J C. Acetylene reduction by symbiosomes and free bacteroids from broad bean nodules-Role of oxalate [J]. Plant physiol, 1994, 105: 555-561.
    [55]彭新湘,李明启.光呼吸代谢物乙醇酸、乙醛酸和草酸对烟草叶片硝酸还原的影响[J].植物生理学报,1987,4:182-188.
    [56]彭新湘,李明启,等.草酸对黄瓜根铁还原的促进作用[J].植物生理学报,2000,26(4):311-316.
    [57]Franceschi V R, Nakata P A. Calcium Oxalate in plants: formation and function[J]. Annual Review of Plant Biology, 2005, 56: 41-71.
    [58]张英鹏.氮素营养对菠菜累积草酸的调控作用及机理研究[D]:[博士学位论文].杭州:浙江大学环境与资源学院,2005.
    [59] Yang C W, Guo W Q, Shi D C. Physiological roles of organic acid in Alkali-tolerance of the Alkali-tolerance halophyte Chloris virgata[J]. Agron J, 2010, 102: 1081-1089.
    [60]Ma J F, Hirada TE S, Ma Tsumoto H. High aluminum resistance in buckwheat. Oxalate acid detoxifies aluminum internally [J]. Plant Physiol, 1998, 117: 753-759.
    [61]李宝盛,彭新湘,等.植物中草酸积累与光呼吸乙醇酸代谢的关系[J].植物生理报,2000,26(2):148-152.
    [62]Bhatti J S, Comerford N B, Johnston C T. Infouence of soil organic matter removal and pH on oxalate sorption onto a spodic horizon[J]. Soil Sci Am, 1998, 62: 152-158 .
    [63]Hue NV, Ccraddock GR, Adams F. Effect of organic acid on aluminum toxicity in subsoils[J]. Siol Sci Sco Am J, 1986, 50: 28-34.
    [64]Ginting S, Johnson B B, Wilkens. Alleviation of phytotoxicity on soybean growth by organic anions in nutriens[J]. Aust J Plant Physiol Science, 1998, 276: 1566-1563.
    [65]Bahia Filho A F C, Magnavaca R, Schaffert R E, et al. Identification, utilization, and economic impact maize germplasm tolerant to low levels of P and toxic levels of exchangeable Al in Branzilian soils. In: MONIZ A C; FURLANI, A M C; SCHAFFERT, R. et al. (Eds) Plant-soil interactions at low pH: sustainable agriculture and forestry production. Campinas: Sociedade Brasileira de Ciência do Solo, 1997. 59-70.
    [66]Mhcharromah E, Kue J. Oxalate and phosphates induce systemic resistance disease cause by fungi bacteria and vieuses in cucumber[J].Crop Protection, 1991, 10: 265-270.
    [67]张宗申,彭新湘,姜子德,等.非生物诱抗剂草酸对黄瓜叶片中过氧化酶的系统诱导作用[J].植物病理学报,1998,28(2):145-150.
    [68]杨荣金,彭新湘,等.草酸诱导黄瓜抗炭疽病的机理研究[J].植物病理学报,2000,30 (2):153-157.
    [69]Peng XX, Liu YH, Li M Q. Protective role of oxalate against oxidative stress induced degradation of Ribulose-1,5-bisphosphate carboxylase /oxygenase[J]. Acta Phytophysiol Sin, 2000, 118: 861-865.
    [71]Libert B, Franceschi VR. Oxalate in crop plants[J]. Agric Food Chem, 1987, 35: 926-938.
    [72]Zhang YP, Lin XY, Zhang Y S, et al. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach[J]. Plant Nutr, 2005, 28: 2011–2025.
    [73]Scheible WR, Morcuende R, Czechowski T, et al. Genome-wide reprogramming of primaryand secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiol, 2004, 136: 2483–2499.
    [74] Tian H, Jiang L, Liu E, et al. Dependence of nitrate-induced oxalate accumulation on nitrate reduction in rice leaves[J]. Physiologia Plantarum, 2008, 133: 180–189.
    [75]李宝盛,彭新湘.植物叶片中抗坏血酸含量与草酸积累的关系[J].植物生理学通讯,2006,42(1):31-33.
    [76]Kpodar M P, Piquemal M, et al. Relations entre nutrion azotee at metabolisme photores piratoire chezare plante a oxalate fagopyrum esculentum[J]. physiolveg, 1978, 16: 117-130.
    [77]Ahmed AK, Johnson KA. The effect of the ammonium : nitrate ration total nitrogen ,salinity(NaCl)and calcium on the oxalate levels of Tetragonia tetragonioides Pallas[J]. Kunz Hort Sci Biotech, 2000, 75(5): 533—538.
    [78]Zindler-Frank E, Honow R, Hesse A. Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation[J]. Plant Physio1, 2001, 158:139—144.
    [79]Mazen AMA, Zhang D, Franceschi VR. Calcium oxalate formation in Lemna minor physiological and ultrastructural aspects of high capacity calcium sequestration[J]. New Phytologist, 2003, 161: 435-448.
    [80]Kostman T A, Tarlyn N M, Loewus F A, et al. Biosynthesis of L-ascorbic acid and conversion of carbons1 and of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts[J]. Plant Physiol, 2001, 125: 634-640.
    [81]Kostman T A, Koscher J R. L-galactono-gamma-lactone dehydrogenase is present in calcium oxalate crystal idioblastsof two plant species[J]. Plant Physiology and Biochemistry, 2003, 41(3): 201-206.
    [82]Richardson K E, Tolbert N E. Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase [J]. Biol Chem, 1961, 236(5): 1280-1284.
    [83]Dvaies D D, Asker H. Synthesis of oxalic acid by enzymes from lettuce leaves[J]. Plant Physiol, 1983, 72: l34-138.
    [84]Fujii N, Watanabe M, Watanabe Y, et al. Relationship between oxalate synthesis and glycolate cycle in spinach[J]. J Jpn Soc Hort Sci, 1994, 62: 789-794.
    [85]刘拥海,彭新湘,俞乐.荞麦与大豆叶片中草酸含量差异及其可能的原因[J].植物生理与分子生物学学报,2004,30(2):201-208.
    [86]Franceschi VR. Oxalic acid metabolism and calcium oxalate formation in Lemna minor[J]. Plant Cell Environ, 1987, 10: 397-406.
    [87]Watanabe Y, Fujii N, Terayama H, et al. Comparison of enzyme activities in oxalate synthesis between Spinacia oleracea L and Brassica campestris L[J]. Soil Sci Plant Nutr, 1995, 41: 89-94.
    [88]Millerd A, Morton R K, Wells J R E. Role of isocitrate lyase in synthesis of oxalic acid in plants[J]. Nature, 1962, 196: 955-956.
    [89]Giachetti E, Pinzauti G, et al. Isocitrate lyase from higher plants[J]. Phytochemistry, 1987, 26: 2439-2446.
    [90]Horner HT, Kausch AP, Wagner BL. Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyiin liquidroot culture[J]. J Plant Sci, 2000, 161(1): 861-868.
    [91]Svedruzi? D, Jónsson S, Toyota CG, et al. The enzymes of oxalate metabolism: unexpectedstructures and mechanisms[J]. Arch Biochem Biophys, 2005, 433(1): 176-192.
    [92]王冰山. Germin基因的克隆和人溶菌酶基因的合成及其在烟草和油菜中的表达[D]:[博士学位论文].北京:中国农业科学院,2000.
    [93]郭立泉.星星草抗碱生理适应机制的研究[D]:[博士学位论文].长春:东北师范大学生命科学学院,2009.
    [94]麻莹.盐碱混合胁迫下抗碱盐生植物碱地肤的渗透调节及其离子平衡特点[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2007.
    [95]Yang J L, Zheng S J, He Y F, et al. Comparative studies on the effect of a protein -synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L roots[J]. Plant Cell Environ, 2006, 29: 240- 246.
    [96]Yang Y Y, Song W Y, Suh H S, et al. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance[J]. Plant Physiol, 2000, 124: 1019-1026.
    [97]Choi Y E, Harada E, Wada M, et al. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes[J]. Planta, 2001, 213: 45-50.
    [98] Yang H, Yang Z M, Zhou L X, et al. Ability of Agrogyron elongatum to accumulate the single metal cadmium, copper, nickel and lead and root exudation of organic acids[J]. J Environ Sci, 2001, 13: 368-375.
    [99]Wang B S,Zhao K F. Comparison of extractive methods of Na+ and K+ in wheat leaves[J]. Plant Physiol Commun, 1995, 3: 50-52 (in Chinese).
    [100]Zhu G L, Deng X W, Zuo W N. Determination of free proline in plants[J]. Plant Physiol Commun, 1983, 1: 35-37.
    [101]Shanghai Institute of Plant Physiology of Chinese Academy of Sciences, Shanghai Institute of Plant Physiolog. modern Experiment enchiridion of Plant Physiology[M]. Beijing: Science press, 1999. 200-204.
    [102]Grieve C M, Grattan S R. Rapid assay for determination of water-soluble quaternary-amino compounds[J]. Plant Soil, 1983, 70: 303–307.
    [103]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant physiology, 1988, 87: 547–550.
    [104]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol 2008, 59: 651–681.
    [105]Parida A K,Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotox Environ Safe, 2005, 60: 324–349.
    [106]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol. 2003, 6: 441-445.
    [107]Song J Feng G, Tian C Y, et al. Osmotic adjustment traits of Suaeda physophra,Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions[J]. Plant science, 2006, 170: 113-119.
    [108]Kern A.J, Dyer W E. Glycine Betaine biosynthesis is induced by salt stress but repressed by auxinic herbicides in Kochia scoparia[J]. Journal Plant Growth Regulation, 2004, 23: 9-19.
    [109]Ghoulam C, Foursy A, Fares K. Effects of salt-stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environ Exp Bot, 2002, 47: 39-50.
    [110]Liu Z H, Shi L R, Bai L R, et al. Effects of Salt Stress on the Contents of Chlorophyll and Organic Solutes in Aeluropus littoralis var. sinensis Debeaux[J]. Journal of Plant Physiology and Molecular Biology, 2007, 2: 165-172.
    [111]Franceschi V R, Horner H T. Calcium oxalate crystals in plants[J]. Bot Rev, 1980, 46: 361-427.
    [112]刘志华,赵可夫.盐胁迫对獐茅生长及Na+和K+含量的影响[J].植物生理与分子生物学学报,2005,31(3):311-316.
    [113]Khan MA, Ungar IA, Showalter AM. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L) Forssk[J]. J Arid Environ, 2000, 45: 73–84.
    [114]Sagi M, Dovrat A, Kipnis T, Lips H. Ionic balance, biomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass[J]. J Plant Nutr, 1997, 20: 1291–1316.
    [115]Munns R. Comparative physiology of salt and water stress[J]. Plant cell Environ, 2002, 25: 239–250.
    [116]Dai X C, Peng X X, Li M Q. Changes in oxalate content of tobacco plants under phosphorus deficiency[J]. Plant Physiol Commun. 2001, 37: 515-516.
    [117]殷立娟,石德成,薛萍.松嫩平原草原5种耐盐牧草体内K+、Na+的分析与积累的研究[J].植物生态学报,1994,18 (1):34-40.
    [118]邹邦基.钠的植物营养与生态生理[J].植物生理学通讯,1980, 5:5-11.
    [119]田晓艳,刘延吉,郭迎春.盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响[J].草业科学,2008,25(10):34-38.
    [120]Yin S J, Shi D C, Yan H. Difference of strain responses between the plant of Na2CO3 stressed Puccinellia tenuiflora[J]. Acta Prataculturae Sin, 2001, 10: 101-106.
    [121]Greenwa Y H, Munn S R. Mechanism of salt to lerance in monhalophytes[J]. Ann Rev Plant Physiol, 1980, 31: 149-190.
    [121]侯彩霞,汤章城.钾离子对盐诱导菠菜甜菜碱累积的影响[J].植物生理学报,1998,24(2):131-135.
    [122]Weigel P, Weretilnyk E A, Hanson A D, Betaine aldehyde oxidation by spinach chloroplasts[J]. Plant physio1, 1986, 82: 753-759.
    [123]López-Bucio J, Nieto-Jacobo MF, Ramrez-Rodrguez V, et al. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Sci, 2000, 160: 1-13.
    [124]王黎黎.盐碱胁迫下与渗透调节和离子平衡相关溶质在碱蓬体内动态积累与分布特征[D]:[硕士学位论文].长春:东北师范大学生命科学学院,2010.
    [125]Liu X H, Peng X X. Formation of oxalate in tobacco leaves and the downward transport[J]. J Trop Subtrop Bot, 2002, 10: 183-185.
    [126] Lin H T, Shi Y X. The infusion of organic acids secretions in tea rhizosphere under Pb and Cd stresses[J]. Shandong Agr. Sci, 2005, 2: 32–34.
    [127]Thomas B K, David R P, Richard W Z. Organic acid secretion as a mechanism of aluminum resistance: a model incorporating the root cortex, epidermis and the external unstirred layer[J]. J Exp Bot, 2005, 56:1856–1865.
    [128]Sze H , Li X, Palmgren M G. Energization of plant cell membranes by H+ -pumping ATPase: regulationand biosynthesis[J]. Plant Cell, 1999, 11: 677–689.
    [129]Maeshima M, Nakanishi Y, Matsuura-Endo C, et al. Proton pumps of the vacuolar membrane in growing plant cells[J]. J. Plant. Res, 1996, 109: 119–125.
    [130]黄沆,付崇允,周德贵,等.植物磷吸收的分子机理研究进展[J].分子植物育种,2008,6 (1):117-122.
    [131] Reid R J, Smith F A. The cytoplasmic pH state. Rengel Z. (eds). Handbook of plant growth [M]. New York: Marcel Dekker, 2001. 149– 711.
    [132]Raven, J A. H+ and Ca2+ in phloem and symplast: relation of relative immobility of the ions to the cytoplasmic nature of the transport paths[J]. New phytol, 1977, 79: 465-480.
    [133]Booker F L, Reid C D, Brunschon H S, et al. Photosynthesis and photoresp iration insoybean[Glycinem ax (L) Merr] Chronically eposed to elecated carbon dioxide and ozone[J]. J Exp Bot, 1997, 48: 1843– 1852.
    [134]Macnicol P K, Jacobsen J V. Endosperm acidification and related metabolic changes in the developing barley grain[J]. Plant Physiol, 1992, 98: 1098–1104.
    [135]Brock M, Darley D, Textor S, et al. 2-Methylisocitrate lyases from the bacterium Escherichia coli and the Wlamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes[J]. Eur J Biochem. 2001, 268: 3577–3586.
    [136]Zhang Z, Collinge D B, Thordal-Christensen H. Ethanol increases sensitivity ofoxalate oxidase assay and facilitates direct activity attaining in SDS gels[J]. Plant Mol Biol Rep, 1996, 14: 266-272.
    [137]Wagner G, Loewus F A. The biosynthesis of (+)-tartaric acid in Pelargon~um crispum[J]. Plant Physio1, 1973, 52: 651-654.
    [138]Davey M X, Van Montagu M, InzéD, et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing[J]. Journal of the Science of Food and Agriculture, 2000, 80: 825-860.
    [139]Ku MS, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nature Biotech, 1999, 17: 76-80.
    [140]熊瑛,李友军,郭天财.小麦淀粉合成相关酶的研究现状[J].河南科技大学学报(农学版),2004,24(2):6-9.
    [141]Chang C C, Beevers H. Biogenesis of oxalate in plant tissues[J]. Plant Physiology, 1968, 43: 1821-1828.
    [142]刘拥海.植物草酸代谢调控机理的研究[D]:[博士学位论文].华南农业大学,2002.
    [143]Mahmut Caliskan. The metabolism of oxalic acid[J]. Turk J Zool, 2000, 24: 103–106.
    [144]Lane B G, Dunwell J M, Ray J A, et al. Germin, a protein marker of early plant development, is an oxalate oxidase[J]. J Biol Chem, 1993, 268: 12239-12242.
    [145]Hurkman W J, Tanaka C K. Effect of salt stress on Germin gene expression in barley roots[J]. Plant Physiol, 1996, 110: 971-977.
    [146]Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme[J]. Plant Molecular Biology, 1999, 39: 539-549.
    [147]刘胜毅,Fitt B D L,刘仁虎,等.油菜防卫素和草酸氧化酶基因的克隆与诱导表达水平研究[J].中国油料作物学报,2004,3:44-55.
    [148]冯洁,Makoto Takano.水稻抗稻瘟病防御系统中草酸氧化酶的鉴定[J].农业生物技术学报,2004,3:79-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700