向日葵对碱胁迫和盐胁迫适应机制比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤碱化问题日益突出,并且其对环境的破坏力远远大于土壤盐化。目前,不同层面的研究均表明碱胁迫和盐胁迫是两种性质截然不同的胁迫,这两种胁迫对植物的伤害作用不同,而且植物对二者的适应机制也明显不同。向日葵是土壤碱化后唯一可种植的油料作物,但是至今对其抗盐碱性,尤其是抗碱机制未见有系统的报道。本文采用了不同于以往的室内实验路线,以期更贴近生产实际。在人工模拟天然盐碱生境的条件下,播种抗碱性较强的向日葵种子白葵杂六号,通过分析盐胁迫、碱胁迫和盐碱混合胁迫下从种子萌发到幼苗形成及幼苗生长等不同生理阶段的生理响应,来探讨盐胁迫和碱胁迫对向日葵的作用机制以及向日葵对其适应机制。其主要实验结果及结论如下:
     1盐、碱胁迫对向日葵种子萌发和幼苗形成的影响
     从种子萌发到成苗阶段对植物适应盐碱环境至关重要,甚至在一定程度上决定着植物能否在盐碱生境定居和繁衍后代。我们的结果表明:在适度的胁迫强度下(≤120mM),盐胁迫仅延迟向日葵出苗时间,而并未影响出苗率和成苗率;但当胁迫强度超过120mM,盐胁迫则导致出苗率及成苗率急剧下降。碱胁迫并未明显延迟向日葵出苗时间和降低出苗率,但却导致成苗率急剧下降,甚至在60mM碱胁迫强度下,幼苗全部死亡。这说明碱胁迫对植物不同生理阶段的影响明显不同。外界高pH并不影响种子的吸水,但当胚根突破种皮后,高pH则会直接作用于根细胞,破坏其结构和功能,导致萌发的胚内有毒离子急剧增加,使其受害而难以长成正常的幼苗。这说明,碱胁迫所造成的高pH是限制成苗的主要因素。
     2盐、碱胁迫对向日葵幼苗生长和光合作用的影响
     虽然部分幼苗能够在盐胁迫和碱胁迫下存活,但光合和生长都不同程度地受到抑制,而且碱胁迫的抑制程度明显大于相同盐度的盐胁迫。碱胁迫下干重、叶面积、株高、净光合速率、气孔导度、蒸腾速率的下降程度都明显大于盐胁迫下。通过对光合电子传递过程(叶绿素荧光参数)深入分析发现,盐胁迫并未使光合系统Ⅱ受到损伤,而碱胁迫则明显破坏光合系统Ⅱ,降低光合电子传递效率,这可能就是向日葵净光合速率在碱胁迫下明显低于盐胁迫的主要原因。
     3盐、碱胁迫对向日葵矿质营养的影响
     盐、碱胁迫下向日葵体内矿质元素积累明显不同。盐胁迫下氮、磷、硫、铁等元素的含量非但没下降反而有所升高;而盐碱混合胁迫下,几乎所有矿质营养元素的含量均明显降低。碱胁迫下的高pH导致矿质营养水平的急剧下降可能是碱胁迫对生长和光合抑制作用甚于盐胁迫的主要原因之一。
     4盐、碱胁迫下向日葵体内渗透调节及离子平衡机制
     本文比较了各个溶质在胁迫条件下对渗透调节的贡献。结果表明K+是向日葵地上部分主要的无机渗透调节物质,而可溶性糖则是向日葵体内主要的有机渗透调节剂。我们推测向日葵根中可能有一个特殊的控制Na+、K+转运机制,抑制Na+向茎叶转移,而促进K+向上传输,使叶片保持一个高K+低Na+的稳态,这可能是向日葵相对耐盐碱性的主要原因。碱胁迫特别是高碱胁迫会导致细胞内离子严重失衡、pH不稳定,向日葵可能通过提高有机酸合成来维持体内离子平衡和pH稳定。
     5盐、碱胁迫下向日葵体内DNA甲基化响应特点
     实验结果表明,向日葵叶片的DNA甲基化水平明显高于根,并且根和叶的DNA甲基化位点都集中于CG/CHG。通过对根、叶DNA甲基化变异率分析发现,两种胁迫下,向日葵根中DNA甲基化变异率均明显高于叶,而且无论是根还是叶,甲基化变化都集中在CG/CHG位点。根系由于直接接触各种土壤胁迫,会率先感受并传递胁迫信号,并且会迅速做出适应性响应,根中DNA甲基化变异的模式不同于叶,其变异率也明显高于叶,说明DNA甲基化可能直接参与根中胁迫信号的产生和传递,同时也表明:盐碱胁迫下根部所进行的DNA水平上的调节过程不仅比地上部分更直接更迅速,也更复杂。此外,不论根还是叶,碱胁迫下DNA甲基化变异率明显大于盐胁迫,这从表观遗传学层面进一步证明盐胁迫和碱胁迫是两种性质不同的胁迫,不但作用机制不同,而且植物对其适应机制也明显不同。根的调节作用是向日葵抗碱的关键所在,DNA甲基化在这一调节过程中可能起重要作用,但具体机制有待进一步研究。
Soil alkalization is becoming increasingly prominent, and its destructive power is greater than soil salinization. Salt stress and alkali stress are two kinds of stresses not only in aspects of their effects on plant, but also in the response of plant to them. Sunflower is the only oil crop under alkaline condition, but the tolerance, especially, the mechanisms of alkali-tolerant have not been reported systematically. In this paper, our experiment formation is different from the previous laboratory experiment, to be closer to natural conditions. In this study, we firstly simulated saline and alkaline conditions, and then the sunflower seeds-baikuiza 6-were sowed and stressed under salt stress and alkali stress. We analyzed the effects of salt stress, alkali stress and salt-alkaline mixed stress on sunflower and eco-physiological adaptive mechanisms of sunflower to its salt-aklaline habitat. Major experiment results and conclusions were as follows:
     1. Effects of salt stress and alkali stress on seed germination and seedling survival in sunflower
     It is a critical statge of plant from seed germination and seedling growth to adapting to saline and alkaline environment, and to some exent which decide whether plant can live and reproduce or not. Our experiment showed the emergence time was delayed under salt stress when≤120mM,but the emergence rate and seedling survival rate did not decrease significantly. With increasing stress intensity, the emergence rate and seedling survival rate delayed signigicantly. Under alkali stress, the emergence rate and emergence time did not change, but the seedling survival rate decreased sharply, even when salinity was 60 mM,the seedlings were all died under alkali stress. This indicated the effects were significantly different among different growth stages under alkali stress. High pH did not interfere with seed water absorption, but was directly on the root cells when radicel borke through seed coat and destroyed their stucture and function, and led to increase in toxic ions, making it difficult to seedlings. This showed high pH caused by alkali stress was main factor to limiting seedlings.
     2. Effects of salt stress and alkali stress on growth and photosynthesis in sunflower
     Although some seedlings could survive under salt stress and alkali stress, photosynthesis and growth were inhibited, and the inhibition was greater under alkali stress than that under salt stress. The decreases of dry matter, leaf area, height, net photosynthetic rates, stomatal conductance and transpiration rates under alkali stress were greater than those under salt stress. By analyzing the photosynthetic electron transfer processes (chlorophyll fluorescence parameters), we found alkali stress damaged the photosynthetic systemⅡ, and reduced the efficiency of photosynthetic electron transport, but salt stress did not. These data indicated that high pH damaged the photosynthetic systemⅡand interferred photosynthetic electron transport, this might be the main reason that PN was lower under alkali stress than that under salt stress.
     3. Effects of salt stress and alkali stress on mineral nutrition in sunflower
     The experimental results indicated that the accumulation of mineral elements was markedly different under salt and alkali stresses. The contents of N, P, S and Fe did not decrease, but increased under salt stress; while contents of almost all mineral nutrients declined under salt-alkaline mixed stress. It was clear that mineral nutrition deficits was a main reason that the inhibitions of growth and photosynthesis under alkali stress were more severe than those under salt stress.
     4. Effects of salt stress and alkali stress on osmotic adjustment and ion balance in sunflower
     We compared the contributions of various osmolytes under stress. The results showed K+ was the main inorganic osmolyte in shoots, but the solute sugar was the main organic osmolyte in sunflower. At moderate stress, it may be a special mechanism which controls Na+,K+ transport in the roots of sunflower. Sunflower roots could control Na+ but promote K+ transfer to leaves, maintaining low Na+ high K+ status of leaves. This may be the main reason that sunflower is the relative salt and alkali-tolerant crop. Alkali stress especially high alkali stress could cause ion imbalance and pH instability, and sunflower synthesized organic acids to keep ion balance and adjust pH.
     5. The response characteristics of DNA methylation in sunflower under salt stress and alkali stress
     The results showed the DNA methylation in leaves were much higher than that in roots and the simultaneous CG/CHG methylation was the main pattern. Under two stresses, the roots had greater variation than that in leaves. Moreover, the methylation variation of roots and leaves were both concentrated in CG/CHG sites. Because the roots have contact with various soil stresses directly, and can feel and transport the signals, and then make the adaptive responses quickly. DNA methylation patterns in roots were different from in leaves, and the variation was significantly greater than that in leaves. Those proved that DNA methylation might be directly involved the signals generation and transminssion in roots and the regulation of the roots on DNA level was faster and more complex than that leaves. In addition, the DNA methylation variations in roots and leaves under alkali stress were both significantly greater than those under alkali stress, this proved salt stress and alkali stress were two kinds of stresses once again. The regulation of sunflower roots is a key in alkali-tolerant, and DNA methylation plays an important role in the regulation processes, but the mechanisms deserve further investigation.
引文
[1]赵可夫,范海,宋杰,等.盐生植物利用与区域农业可持续发展[M].北京:气象出版社, 2002. 1-19.
    [2]李彬,王志春,孙志高等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究, 2005, 23, (2): 152-158.
    [3]龚洪柱.盐碱地造林学[M].北京:中国林业出版社, 1988. pp10.
    [4]俞仁培,陈德明.我国盐碱土资源及其开发利用[J].土壤通报, 1999, 30(4): 158-159.
    [5]Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2): 239-250.
    [6]Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii[J]. Ann Bot, 2000, 85: 225-232.
    [7]石德成,殷丽娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报, 1993, 35: 144-149.
    [8]颜宏,石德成,尹尚军.外施Ca~(2+)、ABA及H3PO4对盐碱胁迫的缓解效应[J].应用生态学报, 2000, 11(6): 889-892.
    [9]石德成,赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J].草叶学报, 1997, 6(2): 51-61.
    [10]Li C Y, Fang B, Yang C W, et al. Effects of Various Salt–Alkaline Mixed Stresses on the State of Mineral Elements in Nutrient Solutions and the Growth of Alkali Resistant Halophyte Chloris Virgata[J]. J Plant Nutr, 2009, 32(7): 1137-1147.
    [11]Yang C W, Jianaer A, Li C Y, et al.Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata[J]. Photosynthetica, 2008, 46(2): 273-278.
    [12]刘杰,张美丽,张义,等.人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响.作物学报, 2008, 34(10): 1818-1825.
    [13]Yang C W, Zhang M L, Liu J, et al. Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). Photosynthetica, 2009, 47 (1): 55-60.
    [14]Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47(1): 79-86.
    [15]Liu J , Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stresses. Photosynthetica, 2010, 48(1), 127-134.
    [16]Liu J, Guo W Q, Shi D C. Seed germination, seedling survival and physiological response of sunflowers under saline and alkaline conditions. Photosynthetica, 2010, 48(2): 278-286.
    [17]尹尚军,石德成,颜宏.碱胁迫下星星草的主要胁变反应[J].草业学报, 2003, 12(4): 51-57.
    [18]Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedings and analysis of their stress factors[J]. Environ Exp Bot, 2005, 54(1): 8-21.
    [19]盛彦敏,石德成,肖洪兴,等.不同程度中碱性复合盐对向日葵生长的影响[J].东北师范大学报自然科学版, 1999, (4): 65-69.
    [20]Tanji K K. Agricultural Salinity Assessment and Management [M]. New York: American Society of Civil Engineers, 1990, pp1-112.
    [21]郝志刚,胡自治,朱兴运.碱茅耐盐碱性的研究[J].草业学报, 1994, 3 (3): 27-36.
    [22]Macke A J ,Ungar I A. The effect s of salinity on germination and growth of Puccinellia nuttalliana[J]. Can J Bot, 1991, 49(4): 515-519.
    [23]Levitt J. Responses of plants to environmental stress[M]. New York : Academic Press, 1980. pp365-434.
    [24]杨春武,贾娜尔·阿汗.复杂盐碱条件对星星草种子萌发的影响[J].草业学报, 2006, 15(5): 45-51.
    [25]李长有.盐碱地四种主要致害盐分对虎尾草胁迫作用的混合效应与机制[D]. [博士学位论文].长春:东北师范大学, 2009.
    [26]Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages[J]. Sci Hortic, 2000, 86(3): 247-260.
    [27]周玲玲,冯元忠,吴玲,等.新疆六种盐生植物的解剖学研究[J].石河子大学学报, 2002, 6(3): 217-221.
    [28]肖雯.五种盐生植物营养器官显微结构观察[J].甘肃农业大学学报, 2002, 37(4): 421-427.
    [29]朱宇旌,张勇,胡自治,等.小花碱茅叶适应盐胁迫的显微结构研究[J].中国草地, 2001, 23(2): 19-22.
    [30]陆静梅,李建东,张洪芹.吉林西部草原区7种耐盐碱双子叶植物结构研究[J].应用生态学报, 1996, 7(3) : 283-286.
    [31]肖雯,张振霞,贾恢先.几种盐地植物根解剖结构的研究[J].甘肃农业大学学报, 1998, 33(1): 90-93.
    [32]Cui S M, Wakana T, Naosuke N. Effects of sodium chloride on root and leaf mineral concentrations and root anatomy in Citrus Sudachi[J]. Sci Rep Fac Agr, 2002, (38): 23-31.
    [33]Maslenkora L T, Zanev Y, Popova L P. Adaptation to salinity as monitored By PSII oxygen evolving reactions in barley thylakoids[J]. J Plant Phyiol, 1993, 142(5): 629-634.
    [34]孔令安,郭洪海,董晓霞.盐胁迫下杂交酸模超微结果影响的研究[J].草业学报, 2000, 9(2): 53-57.
    [35]Donovan L A, GriséD J, West J B, et al. Predawn disequilibrium between plant and soil water potentials in two cold desert shrubs[J]. Oecologia, 1999, 120(2): 209-217.
    [36]Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J]. EMBO J, 1991, 10(7): 1723- 1732.
    [37]郭文忠,刘声锋,李丁仁,等.硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响[J].中国农学通报, 2003, 19(15): 28-31.
    [38]Kurban H, Saneoka H, Nehlra K, et al. Effect of salinity on growth, photosynthesis and mineralcomposition in leguminous plant Alhagi pseudoalhagi[J]. Soil. Sci. Plant Nutr, 1999, 45(4): 851-862.
    [39]Alakhverdiev S I, Sakamoto A, Nishiama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystemsⅠandⅡin Synechococcus sp[J]. Plant physiol, 2000, 123(3): 1047-1056.
    [40]张俊莲,陈勇胜,武季玲,等.向日葵对盐逆境伤害的生理反应及耐盐性研究[J].中国油料作物学报, 2003, 25(1): 45-49.
    [41]罗俊,张木清,吕建林.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J].福建农林大学学报, 2000, 29(1): 18-22.
    [42]胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响[J].园艺学报, 2001, 28 (1): 41-46.
    [43]Hong S S , Xu D Q. Difference in response of chlorophyⅡfluorescence parameters to strong light between wheat and soybean leaves[J]. Chin Sci Bull, 1997, 42(8): 684-688.
    [44]Krause G H , Weis E. Chlorophyll fluorescence and photosynthesis: The basics Annual Review[J]. Plant Physiol, 1991, 42: 313-349.
    [45]张守仁.叶绿素荧光诱导动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    [46]刘家尧,衣艳君,张承德,等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J].曲阜师范大学学报自然科学版, 1997, 23(4): 80-83.
    [47]王波,宋凤斌,等.植物耐盐性研究进展[J].农业系统科学与综合研究, 2007, 23(2): 214.
    [48]赵险飞.盐胁迫和干旱胁迫下杨树细胞内Ca2+和Ca2+-ATPase变化[D]. [硕士学位论文].北京:北京林业大学, 2005.
    [49]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant physiol, 1988, 87(3): 547- 550.
    [50]刘伟,潘廷国,柯玉琴.盐胁迫对甘薯叶片氮代谢的影响.福建农业大学学报[J], 1998, 27(4): 490-494.
    [51]杨春武.虎尾草和水稻抗碱机制研究[D]. [博士学位论文].长春:东北师范大学, 2010.
    [52]郭立泉.星星草抗碱生理适应机制的研究[D]. [博士学位论文].长春:东北师范大学, 2009.
    [53]Soussi M, Llueh C, Oeana A. Comparative study of nitrogen fixation and carbon metabolism in two chick-pea cultivars under salt stress[J]. J Exp Bot, 1999, 50(340): 1701-1708.
    [54]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报, 2004, 15(3): 511- 516.
    [55]赵可夫,卢元芳,范海,等.九龙口红树林秋茄和白骨壤的渗透调节物质及其在渗透调节中的贡献[J].海洋与湖沼, 1999, 30(1): 372-376.
    [56]赵可夫,李军.盐胁迫对3种单子叶盐生植物渗透调节物质及其在渗透调节中贡献的影响[J].植物学报, 1999, 41(12): 287-292.
    [57]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报, 2001, 18(5): 587-596.
    [58]郭书奎,赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报, 2001, 27(6): 461-466.
    [59]Yang C H, Crowley D E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status[J]. App Environ Microb, 2000, 66(1): 345-355.
    [60]Johnson J F, Allan D L, Vance C P. Phosphorus stress-induced proteoid roots show alteredmetabolism in Lupinus albus[J]. Plant Physiol, 1994, 104(2): 657-665.
    [61]Jones D L. Organic acids in the rhizosphere-a critical review[J]. Plant Soil, 1998, 205(1): 25-44.
    [62]Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an Alkali-tolerant plant Puccinelia tenuiflora under Alkaline stress[J]. Acta Bot Sin, 2002, 44(5): 537-540.
    [63]石德成.磷酸中和缓解Na2CO3对星星草的胁迫作用[J].草业学报, 1995, 4(4): 34-38.
    [64]Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J]. Plant Soil, 2007, 294(1-2): 263-276.
    [65]Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmoticadjustment and ionic balance of an alkali-resistanthalophyte Suaeda glauca(Bge.)[J]. Plant Growth Regul, 2008, 56(1): 179-190.
    [66]徐华华.盐碱胁迫对虎尾草有机酸代谢、光合及荧光特性的影响[D]. [硕士学位论文].长春:东北师范大学, 2009.
    [67]李新玲,徐香玲.植物DNA甲基化与表观遗传[J].中国农学通报, 2008, 24 (1): 123-126.
    [68]黑淑梅,慕明涛. DNA甲基化在植物生长发育中的作用[J].安徽农业科学, 2007, 35 (21): 6368-6369.
    [69]钟兰,王建波. DNA超甲基化在小麦耐盐胁迫中的作用[J].武汉植物学研究, 2007, 25 (1): 102-104.
    [70]Dyachenko O V, Zaharchenko N S, Shevchuk T V, et al. Effect of hypermethylation of CCWGG sequences in DNA of Mesem bryanthem um crystallinum plants on their adaptation to salt stress[J]. Biochemistry (Moscow), 2006, 71(4): 461-465.
    [71]利容千,王建波.植物逆境细胞及生理学[M].武汉武汉大学出版社, 2002, pp190-237.
    [72]Volkmar K M, Hu Y, Steppuhn H. Physiological responses of plants to salnilty: A review[J]. Can J Plant Sci, 1998, 78: 19-27.
    [73]Saiz J F, Leidi E O. Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings?[J]. Plant Soil, 1997, 190(1): 67-75.
    [74]Hajibagheri M A, Yeo A R, Flowers T J, et al. Salinity resistance in Zea mays: fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids[J]. Plant Cell Environ, 1989, 12(7): 753-757.
    [75]Rodríguez H G, Roberts J K M, Jordan W R, et al. Growth water relations and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress[J]. Plant Physiol, 1997, 113(3): 881-893.
    [76]Smirnoff C, Thonke B, Popp M. The compatibility of D-pinitol and 1D-1-O-methyl- muco- inositol with malate dehydrogenase activity[J]. Bot Acta, 1990, 103(6): 270-273.
    [77]Mansour M M F, Salama K H A. Cellular basis of salinity tolerance in plants[J]. Environ Exp Bot, 2004, 52(2): 113-122.
    [78]Moftah A E, Michel B E. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves[J]. Plant Physiol, 1987, 83(2): 238-240.
    [79]麻莹,曲冰冰,郭立泉,等.盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点[J].草业学报, 2007, 16(4): 25-33.
    [80]刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报, 2005, 31(4): 389-395.
    [81]孙志宾,齐兴云,张洪涛,等. NaCl对拟南芥(Arabidopsis thaliana)生长与渗透调节的影响[J].山东科学, 2006, 19(3): 7-14.
    [82]Sulpiee R, Gibon Y, Cornic C, et al. Interaction between exogenous glycine betaine and the photorespiratory pathway in canola leaf discs[J]. Physiol Plant, 2002, 116(4): 460-467.
    [83]Rhodes D, Pich P J, Brunk D G, et a1. Development of two isogenic sweet corn hybrids difering of glycinebetaine content[J]. Plant Physiol, 1989, 91(3): l112-1121.
    [84]Saneoka H, Nagasaka C, Hahan D T, et a1. Salt tolerance of glycine betaine-defcient and-containing maize lines[J]. Plant Physiol, 1995, 107(2): 631-638.
    [85]Yang X H, Lu C M. Photosynthesis is impmved by exogenous glycinebetaine in salt-stressed maize plants[J]. Physiol Plant, 2005, 124(3): 343-352.
    [86]许锁链,柯学,陈凯,等.甜菜碱与植物抗逆性机理的研究进展[J].安徽农学通报. 2010, 16(7): 52-54.
    [87]Park E J, Jeknci? Z, Chen T H H, et a1. The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato[J]. Plant biotechnol J, 2007, 5(3): 422-430.
    [88]徐柱文. NaC1胁迫下五种一年生苜蓿的耐盐性比较研究[D].兰州:甘肃农业大学, 2006.
    [89]肖雯,贾恢先.几种盐生植物抗盐生理指标的研究[J].西北植物学报, 2000, 20(5): 818-825.
    [90]袁琳,克热木·伊力.盐胁迫对阿月浑子可溶性糖、淀粉、脯氨酸含量的影响[J].新疆农业大学学报, 2004, 27(2): 19-23.
    [91]Khavari-Nejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars[J]. Photosynthetica,1998, 35(1), 151-154.
    [92]Readdy M P, Sanish S, Iyengar E R R. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. Under saline conditions[J]. Photosynthetica, 1992, 26(2): 173-179.
    [93]Iyengar E R R, Reddy M P. Photosynethesis in highly salt-tolerant plants. In: Pesserkali, M. (ED.), Handbook of photosynthesis[J]. Marshal Dekar, Baten Rose, USA, 1996, 897-909.
    [94]Zhu, J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6(5): 441-445.
    [95]Pardo J M, Quintero F J. Plants and sodium ions: keeping company with the enemy[J]. Genome Bio, 2002, 3(6): 1017-1021.
    [96]邓林.胡杨与盐敏感杨树ATPase活性、离子区域化及抗盐性比较研究[D]. [硕士毕业论文].北京:北京林业大学, 2005.
    [97]Apse M P, Aharon G S, Sn eddenW A, et al. Salt tolerance conferred by overexpress ion of a vacuolar Na+/H+Antiport in Arabidopsis[J]. Science, 1999, 285 (5431): 1256-1258.
    [98]Gaxiola R A, Li J, Undurraga S, et al. Drought- and salt- tolerant plants result from overexpression of the AVP1H+-pump[J]. PNAS, 2001, 98(20): 11444-11449.
    [99]Shi H, Lee B, Wu S J, et al. Overexpress ion of a plasma membrane Na+/H+ an tiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotech, 2003, 21(1): 81-85.
    [100]王镭,徐德昌,朱延明,等.离子平衡调节基因及其在植物耐盐基因工程中的应用[J].东北林业大学学报. 2008, 36(6): 80-83.
    [101]Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells[J] . BBA-Biomembranes,2000, 1465(1-2): 140-151.
    [102]龚春梅.干旱地区水分梯度下植物光合碳同化途径适应性变化机制研究[D]. [博士学位论文].兰州:兰州大学, 2007.
    [103]杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展, 2006, 28(4): 70-76.
    [104]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社, 1999.
    [105]颜宏,赵伟,陈文静,等.不同盐溶液的引发对向日葵种子萌发的影响[J].中国科技论文在线.
    [106]孔东,史海滨,霍再林,等.河套地区不同盐分含量土壤对向日葵生长的影响[J].沈阳农业大学学报, 2004, (5-6): 414-416.
    [107]张俊莲,沉勇胜,武季玲,等.向日葵对盐逆境伤害的生理反应及耐盐性研究[J].中国油料作物学报, 2003, 25(1): 45-49.
    [108]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves[J]. Sci Hort-amsterdam, 2004, 103(1): 93-99.
    [109]寇伟锋.海水及海水养殖废水灌溉菊芋、油葵效应研究[D]. [硕士学位论文].南京:南京农业大学, 2006.
    [110]Ballesteros E, Kerkeb B, Donaire J P, et al. Effects of salt stress on H-ATPase activity of plasma membrane-enriched vesicles isolated from sunflower roots[J]. Plant Sci, 1998, 134(2): 181-190.
    [111]Herrera-Rodríguez M B, Pérez-Vicente R, Maldonado J-M. Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses[J]. Plant Physiol Biochem, 2007, 45(1): 33-38.
    [112]Dehmer K J , Friedt W. Evaluation of different microsatellite motifs for analysing genetic relationships in cultivated sunflower (Helianthus annuus)[J] . Plant Breeding, 1998, 117(1): 45-48.
    [113]Gonzalez D H , Valle E M. Interaction between proteins containing homeodomains associated to leucine zippers from sunflower[J]. BBA, 1997, 1351(1-2): 137-149.
    [114]Gerhard Rǒbbelen, R.Keith Downey, Amram Ashri. Oil crops of the word[M]. New York: McGraw-Hill Publishing Company. 1989. pp301-312.
    [115]董贵俊.向日葵(Helianthus annuus L.)种子资源相关的基础研究[D]. [博士学位论文].北京:中国科学院研究生院, 2006.
    [116]南京农学院.土壤农化分析[M].农业出版社, 1980. pp124-129.
    [117]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynth Res, 1986, 10(1-2): 51-62.
    [118]波钦诺克(苏).植物生物化学分析方法[M].科学出版社, 1981. pp46-48.
    [119]张美善.高粱叶片和胚乳DNA甲基化水平和模式的遗传与变异研究[D]. [博士学位论文].长春:东北师范大学, 2007.
    [120]Thompson D I, Edwards T J, Van Staden J. Evaluating asymbiotic seed culture methods and establishing Disa (Orchidaceae) germinability in vitro: Relationships, requirements and first reports for threatened species[J]. Plant Growth Regul, 2006, 49(2-3): 269-284.
    [121]Thompson D I, Edwards T J, Van Staden J. A novel dual-phase culture medium promotesgermination and seedling establishment from immature embryos in South African Disa (Orchidaceae) species[J]. Plant Growth Regul, 2007, 53(3): 163-171.
    [122]孙国荣,陈月艳,关旸,等.盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化[J].植物研究, 1999, 19(4): 455-451.
    [123]陈月艳,孙国荣,阎秀峰. Na2CO3对星星草种子酶活性的影响[J].草地学报, 2002, 10(3): 194-197.
    [124]Rubio-Casal A E, Castillo J M, Luque C J, et al. Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans[J]. J Arid Environ, 2003, 53(2): 145- 154.
    [125]叶武威,刘金定.氯化钠和食用盐对棉花种子萌发的影响[J].中国棉花, 1994, 21(3): 14-15.
    [126]杨春武,李长有,尹红娟,等.小冰麦(Triticum aestivum-Agropyron inter medium)对盐胁迫和碱胁迫的生理响应[J].作物学报, 2007, 33(8): 1255-1261.
    [127]Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2): 239-250.
    [128]Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii[J]. Ann Bot, 2000, 85(2): 225-232.
    [129]Thompson D I, Edwards T J, Van Staden J. A novel dual-phase culture medium promotes germination and seedling establishment from immature embryos in South African Disa (Orchidaceae) species[J]. Plant Growth Regul, 2007, 53(3): 163-171.
    [130]Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and praline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environ Exp Bot , 2002, 47(1): 39-50.
    [131]Parida A K, Das, A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicol Environl Safety, 2005, 60(3): 324-349.
    [132] Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J]. Plant Soil, 2005, 271(1-2): 15-26.
    [133]颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响[J].应用生态学报, 2005, 16(8): 1497-1501.
    [134]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Biol, 2003, 6(5): 441-445.
    [135]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651-681.
    [136]Aziz I, Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan[J]. Aquat Bot, 2000, 70(3): 259-268.
    [137]Khan M, Ungar I A., Showalter A M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk[J]. J Arid Enciron, 2000, 45(1): 73-84.
    [138]Santa-Cruz A, Matinez-Rodiguez M M, Perez-Alfocea F, et al. The rootstock effect on the tomato salinity response depends on the shoot genotype[J]. Plant Sci, 2002, 162(5): 825-831.
    [139]Backhausen J E, Kitzmahn C, Scheibe R. Competition between electron acceptors in photosynthesis: Regulation of the malate valve during CO2 fixation and nitrate reduction[J]. Photosynt.Res, 1994, 42(1): 75-86.
    [140]Scheible W R, Gonzalez-Fontes A, lauerer M, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. Plant Cell,1997, 9(5): 783-798.
    [141]Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants.Trends Plant Sci, 1998, 3(10): 389-395.
    [142]Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains[J]. Environ Exp Bot, 1999, 42(3): 211-220.
    [143]Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.)[J]. Environ Exp Bot, 2006, 56(2): 136- 146.
    [144]Wei Y, Xu X, Tao H, et al. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil[J]. Ann Appl Biol, 2006, 149(3): 263-269.
    [145]Bethke P C, Drew M C. Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J]. Plant Physiol, 1992, 99(1): 219-226.
    [146]James R A, Munns R, Cammerer S V, et al. Photosynthetic capacity is related to the cellular and subbcelluar partitioning of Na+, K+ and Cl- in salt-affected barely and durum wheat[J]. Plant Cell Environ, 2006, 29(12): 2185-2197.
    [147]石德成,赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J].草业学报, 1997, 6(2): 51-61.
    [148]Reddy M P, Vora A B. Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S&H) leaves under NaCl salinity[J]. Photosynthetica, 1986, 20(1): 50-55.
    [149]Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research[J]. Photosynthetica, 2003, 41(3): 321-330.
    [150]Cramer G R, Laüchli A E, Pstein E. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton[J]. Plant Physiol, 1986, 81(3): 792-797.
    [151]Cervera M T Ruiz-Garcia L, Martínez-Zapater J . Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J]. Mol Genet Genomics, 2002, 268(4): 543- 552.
    [152]Reyna-López G E, Simpson J, Ruiz-Herrera J,. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms[J]. Mol Gen Genet, 1997, 253(6): 703-710.
    [153]Messeguer R, Ganal M W, Steffens J C, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA[J]. Plant Mol Biol, 1991, 16(5): 753-770.
    [154]Xiong L Z, Xu C G, Saghai Maroof M A, et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Mol Gen Genet, 1999, 261(3): 439-446.
    [155]Sha A H, Lin X H, Huang J B, et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis[J]. Mol Genet Genomics, 2005, 273(6): 484-490.
    [156]Wada Y, Miyamoto K, Kusano T, et al. Association between up-regulation ofstress-responsive genes and hypomethylation of genomic DNA in tobacco plants[J]. Mol Genet Genomics, 2004, 271(6): 658-666.
    [157]Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis[J]. Cell, 2006, 126(6): 1189-1201.
    [158]Zilberman D, Gehring M, Tran R, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription[J]. Nat Genet, 2007, 39: 61-69.
    [159]Lister R, O’Malley R C, Tonti-Filippini J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis[J]. Cell, 2008, 133(3): 523-536.
    [160]Cokus S J, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature, 2008, 452: 215-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700