白榆耐盐生理生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用盆栽试验模拟盐胁迫方法,研究不同生境2年生白榆(ulmus pumila)幼苗在盐胁迫下的生理响应,探讨盐胁迫下不同生境白榆的耐盐性差异,探索不同生境白榆对胁迫的生理生态适应机制,旨在为滨海盐碱地造林的苗木选择、培育和引种提供理论依据。结果表明:随着土壤盐浓度的增加,中强度和轻度盐土生境白榆幼苗叶片的细胞膜透性、Na+含量和Na+/K+增幅低于非盐土生境;叶片脯氨酸、可溶性糖和K+含量增幅高于非盐土生境;叶片淀粉含量、净光合速率、蒸腾速率、胞间CO2浓度和气孔导度降幅均小于非盐土生境白榆。不同生境白榆耐盐性的强弱顺序为:中强度盐土生境(0.776%)>轻度盐土生境(0.737%)>非盐土生境(0.695%)。通过各项生理指标的综合比较,与非盐土生境相比,中强度和轻度盐土生境白榆对盐土环境的适应能力更强。
     通过控制土壤含盐量,研究盐胁迫对种子萌发、出苗、幼苗生长及对其光合性能的影响。探讨白榆萌芽和幼苗生长状况与土壤盐分的关系,这对于进一步揭示白榆适应盐渍环境的机理和实生苗繁育具有重要的理论价值和现实意义。随着盐胁迫浓度的增加,发芽率和发芽指数下降,发芽时间延长,幼苗出苗率、成苗率和存活率均呈现下降趋势,盐胁迫抑制了幼苗苗高和根长生长。白榆幼苗阶段耐盐能力弱,出苗后一些幼苗受土壤盐分胁迫又陆续死亡。盐胁迫使叶片光合系统量子产额和能量分配比率(φPo、Ψo和φEo)、单位面积光合机构的比活性参数(ABS/CSM、TRO/CSM、ETO/CSM)、单位面积内反应中心的数量(RC/CSO和RC/CSM)、性能指数( PIABS和PICSM)和推动力( DFCSM )降低,而单位面积光合机构的比活性参数(ABS/CSO)、热耗散的量子比率(φDo)和单位面积的热耗散(DIO/CSM)增加。
     通过控制土壤含盐量,研究盐胁迫对1年生白榆生长、生理特性、养分平衡、电阻抗参数以及光合作用的影响,探讨白榆幼苗适应盐渍环境的机理,为耐盐苗木的选育提供理论依据。研究结果表明:
     1.盐胁迫条件下,白榆叶片盐害指数增加,成活率、苗高的增长量和增长速率降低,白榆生长受到抑制。随着盐胁迫浓度的增加和胁迫时间延长细胞膜的透性和体内过氧化产物丙二醛(MDA)的含量增加,而白榆叶片内SOD、POD、CAT的活性,以及游离脯氨酸、可溶性糖含量则呈现先增加后降低的趋势。
     2.盐胁迫下,植物叶片矿质营养平衡被破坏,随着土壤盐浓度的增加和胁迫时间的延长,叶片中Na逐渐累积,使得白榆叶片中N、K、Ca、Mg含量均下降,P和Mn含量增加,Fe和Zn含量均呈现先上升后下降的趋势,白榆叶片中各种元素与Na比值降低。Na离子的累积影响参与生理代谢的主要营养离子吸收、分配和利用,使其不能正常发挥生理功能,同时白榆自身不断地进行调整以适应盐环境。
     3.盐浓度低于0.3 %,白榆叶片电阻抗图谱弧度和跨度差异不大,当盐浓度高于0.4%,弧度和跨度均呈减小趋势。随着土壤盐浓度的增加,白榆叶片电阻r、电阻r1、胞外电阻、胞内电阻、弛豫时间等电阻抗参数整体出现降低的趋势,而弛豫时间分布系数呈现先升后降的趋势。盐胁迫条件下,白榆叶片中胞外电阻、胞内电阻和弛豫时间与叶片N、K、Ca、Mg、Mn含量显著正相关,与Na含量极显著负相关,而与白榆叶片P、Fe、Zn含量不显著相关。
     4.盐胁迫条件下,Fm、φPo和ψo降低,QA传递电子的能力下降,引起φEo下降,φDo和FO显著提高;随着盐胁迫时间的延长,φPo、ψo和φEo逐渐降低,叶片φDo逐渐升高。随着胁迫时间的延长和盐浓度的增加,叶绿素含量、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(gs)逐渐下降,胞间CO2浓度(Ci)先下降后升高。盐胁迫使白榆叶片RC/CSO、RC/CSM、TRO/CSM、ETO/CSM、PIABS、PICSM和DFCSM都下降,DIO/CSM增加,盐胁迫使PSⅡ反应中心降解或失活,捕获的光能下降,破坏了白榆叶片电子传递链受体侧的电子传递,阻滞了叶绿素合成,降低了叶片PSII的活力,迫使叶片启动了相应的防御机制。
The pot experiment in salt stress simulation method was used to research physiological responses under salt stress of 2-year Ulmus pumila seedlings and their salt tolerance differences and physiological adoption mechanism in different habitats. Finally, the theory basis was provided for tree selection, cultivation and species introduction in coast saline-alkali soil forestation. The results revealed that the membrane permeability, Na content and Na/K in leaves of U. pumila which the seeds are taken from medium-salinity and mild-salinity habitats, were lower than that of samples in non-saline habitats with increasing of salt concentration. However, leaf proline content, soluble sugar and K content had a higher growth rate than that in non-saline habitats. In addition, the decreasing rate of leaf starch content, net photosynthetic rate(Pn),transpiration rate(Tr), intercellular CO2 concentration(Ci ) and stomatic conductance (gs) were lower than that in the non-saline habitats. The order of salt-resistance (high-low) of U. pumila was: medium-saline habitat (0.776%) > mild-saline habitat (0.737%) > non-saline habitat (0.695%). U. pumila from salinity habitat may have stronger saline environment adaptability than that in non-salinity habitat. Comparing with non-salt soil habitat, various physiological indices of U. pumila in moderate and low salt soil habitat showed stronger adaptability to salt soil environment.
     By controlling salt content in soil, the effects of salt stress on seed germination, emergence and seedling growth and photosynthetic performance were studied. With the insights of impact mechanism salinization soil on U. pumila seed germination, emergence and seedling growth, the relationship between U. pumila germination & seedling growth status and salt concentration in soil were discussed in the paper. Consequently, it showed that adaptability mechanism had great meaning during U. pumila seed germination, emergence and seedling growth stage. The results showed that: with increasing concentration of salt stress, not only the germination rate and germination index decreased, but also the time of seedling germination delayed significantly with the increasing intensity of salt-stress. The rate of emergence, planting percent and survival rate of Seedling decreased with the increase of salt concentration and salt stress inhibits the growth of seedling height and root length of U. pumila. Because of the salt tolerance is weak in Seedling stage, a large number of seedling died under salt stress. With the increase in salt stress, Yields or flux ratios (φPo、Ψo andφEo), Phenomenological energy fluxes(ABS/CSM、TRO/CSM and ETO/CSM),Density of reaction centers (RC/CSO and RC/CSM),Performance indexes( PIABS and PICSM)and Driving force per unit area basis (DFCSM)decreased, Absorption flux per CS(ABS/CSO),quantum yield for energy dissipation (φDo) and dissipated energy flux per CS ( DIO/ CSM ) increased.
     By controlling salt content in soil, the growth, physiological property, nutrient balance, impedance parameter and photosynthesis of 1-year U. pumila were studied. discuss U. pumila adaptability mechanism in salting habitat was discussed and the theory basis for salt tolerant seedling breeding was provided in the paper.
     1. Under salt stress condition, U. pumila leaf salt damage index increased and its survival percentage and growth rate decreased. As a result, U. pumila growth will be restrained. With the growth of salt stress concentration and extension of stress time, cell membrane permeability, relative conductivity and internal per-oxidation product MDA content increased. However, U. pumila leaf SOD, POD, CAT, free proline content and soluble sugar content increased to the maximum and then decreased.
     2. Under salt stress, mineral nutrition balance of plant leaves is damaged. With the growth of salt concentration in soil and extension of stress time, Na accumulates in leaves continuously. As a result, N, K, Ca and Ma content decreases in the leaf. Fe and Zn content increases. However, Fe and Zn content increases to the maximum and then decreases. In addition, ratio of all elements to Na is reduced in U. pumila leaf. Accumulation of Na has influence to main nutrition ion absorption and distribution and utilization during physiological metabolism. U. pumila cannot perform its normal physiological function. Meanwhile, U. pumila adjusts itself continuously to adopt the salt habitat.
     3. If salt concentration is lower than 0.3 %, it has little difference in radian and span in U. pumila leaf electrical impedance map. If the salt concentration is higher than 0.4%, radian and span presents a reduction trend. In different salt concentrations, U. pumila leaf electrical impedance parameter electric resistance r, electric resistance r1, exocellular resistance, internal resistance and relaxation time shows a reduction trend generally. However, relaxation time distribution coefficient increases to the maximum and then decreases. Under salt stress conditions, U. pumila leaf exocellular resistance, internal resistance and relaxation time has positive correlation with content of N, K, Ca, Mg and Mn and negative correlation with Na content. These parameters have no significant relationship with P, Fe and Zn content in U. pumila leaf.
     4. With the salt stress influence, Fm,φPo andψo decreases, QA electron delivery capability is also reduced, which can results inφEo reduction and significant growth of φDo and FO With extension of salt stress time,φPo,ψo andφEo decrease andφDo in leaf increases. With addition of salt stress time and concentration, chlorophyll content, net photosynthetic rate (Pn), transpiration rate (Tr) and stomatic conductance (gs) decreases gradually. Intercellular CO2 concentration (Ci) increases to the maximum and then decreases. Salt stress pushes reduction of RC/CSO, RC/CSM, TRO/CSM, ETO/CSM, PIABS, PICSM and DFCSM in U.pumila leaf. However, it can enhance DIO/CSM. In addition, salt stress results in PSⅡreaction center degradation or inactivation and decreased light energy collection volume. It also breaks electron delivery in U. pumila leaf electron delivery chain receptor side, defers chlorophyll composition and reduces leaf PSII activity. As a result, it activates corresponding defense mechanism in leaf.
引文
[1]张永锋,梁正伟,隋丽,等.盐碱胁迫对苗期紫花苜蓿生理特性的影响[J].草业学报,2009,18(4):230-235.
    [2]莫海波,殷云龙,芦治国,等. NaCl胁迫对4种豆科树种幼苗生长和K+、Na+含量的影响[J] .应用生态学报, 2011, 22(5): 1155-1161.
    [3]陈现臣,吕有军,王彩霞.等渗PEG和NaCl溶液对西葫芦种子萌发及幼苗生长的影响[J] .种子,2008,27(4),74-76.
    [4]马闯,张文辉,刘新成.等渗的盐分和水分胁迫对杠柳种子萌发的影响[J] .植物研究, 2008, 28(4): 465-470.
    [5]渠晓霞,黄振英.盐生植物种子萌发对环境的适应对策[J].生态学报, 2005, 25(9): 2389-2398.
    [6]de-Lacerda C F, Cambraia J, Oliva M A,et al. Soluteaccumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J].Environmental and Experimental Botany:2003,49(2):107-120.
    [7]刘丽云.盐胁迫对不同冬小麦品种萌芽及幼苗的影响及其钙的缓解效应研究[D].泰安:山东农业大学,2007.
    [8]杨春武,贾娜尔·阿汗,石德成,等.复杂盐碱条件对星星草种子萌发的影响[J].草业学报, 2006, 15(5): 45-51.
    [9]任艳萍,古松,江莎.温度、光照和盐分对外来植物黄顶菊种子萌发的影响[J].云南植物研究, 2008, 30(4): 477-484.
    [10]薛建国.盐胁迫对不同冬小麦品种萌芽及幼苗的影响及其钙的缓解效应研究[D].兰州:甘肃农业大学,2008.
    [11]李海云,赵可夫,王秀峰.盐对盐生植物种子萌发的抑制[J].山东农业大学学报,2002,33(2): 170-173.
    [12]邵红雨,孔广超,齐军仓.植物耐盐生理生化特性的研究进展[J].安徽农业通报,2006,12(9):51-53.
    [13]廉彭彭.盐胁迫对白滨藜和疣苞滨藜种子萌发及早期幼苗生长的影响[D].乌鲁木齐:新疆农业大学,2008.
    [14]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报, 2009,25(4):124-128.
    [15]鱼小军,师尚礼,龙瑞军.生态条件对种子萌发影响研究进展[J].草业学报,2006,23(10):44-49.
    [16]Salman Gulzar,ajmal K M.Seed germination of a halophytic grass Aeluropzrs lagopoides. Annals of Botany.2001,87(3):319-324.
    [17]杨起简,周禾.不同钠盐胁迫对豌豆幼苗超弱发光的影响[J].核农学报,2003,17(2):111-114.
    [18]段德玉.盐分与养分胁迫对盐生植物盐地碱蓬和二色补血草种子萌发、生长及渗透调节物[D].石家庄:中国科学院石家庄农业现代化研究所,2004.
    [19]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [20]吴成龙,周春霖,尹金来,等.NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响[J].西北植物学报,2006,26( 11) :2289-2296.
    [21]李伟强,刘小京,赵可夫,等.NaCl胁迫下3种盐生植物生长发育及离子在不同器官分布特性研究[J].中国生态农业学报,2006,14(2) :49-52.
    [22]李国雷.盐胁迫下13个树种反应特性的研究[D].泰安:山东农业大学,2004.
    [23]聂晶.五个垂直绿化树种的耐盐特性及耐盐性评价[D].泰安:山东农业大学,2004.
    [24]宋立奕.盐胁迫对青檀幼苗生长及生理特性的影响[D].南京:南京林业大学,2004.
    [25]朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4): 332-338.
    [26]杨文翔.盐胁迫对三个海棠砧木品种生理及生长的影响[D].南京:南京林业大学,2011.
    [27]王素平,郭世荣,李璟,等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报,2006,17(10):1883-1888.
    [28]蒋高明.植物生理生态学[M].北京:高等教育出版社,2004.133-160.
    [29]王景艳,刘兆普,刘玲,等.盐胁迫对长春花幼苗生长和生物碱含量的影响应用[J].应用生态学报,2008,19(10):2143-2148.
    [30]丁一,池春玉,苍晶.NaCl胁迫对黑麦草几种抗逆生理指标的影响[J].安徽农学通报,2010,16(13):63-65.
    [31]叶芳芳.盐胁迫对宁夏枸杞生长及耐盐性的研究[D].银川:宁夏大学,2009.
    [32]Mittler R.Oxidative stress antioxidants and stress tolerance[J].Trends in Plant Science,2002, 7(9): 405-410.
    [33]Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress. Journal of Experomental Botany[J], 2002, 53(372):1227-1236
    [34]陈段芬,李宪松,邸葆,等.甲醛对5种花卉质膜透性和保护酶活性的影响[J].华北农学报,2007,22(3):84-87.
    [35]Neill S J,Desikan R,Clarke A,et al.Hydrogen peroxide and nitric oxide as signaling molecules in plants[J]. Journal of Experomental Botany, 2002, 53(372):1237-1247.
    [36]王瑞刚,陈少良,刘力源,等.盐胁迫下3种杨树的抗氧化能力与抗盐性研究[J].北京林业大学学报,2005,27(03):46-52.
    [37]杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    [38]舒卫国,陈受宜.植物在渗透胁迫下基因表达及信号传递[J].生物工程进展,2000,20(3):3-6.
    [39]陈托兄.不同生育时期紫花首楷秋眠型标准品种耐盐机制研究[D].北京:北京林业大学,2009.
    [40]王聪.菜用大豆种子对NaCl胁迫的生理响应研究[D].南京:南京农业大学,2009.
    [41]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants[J].Annals of Botany, 2003,91:503-527.
    [42]Shabala S N, Shabala S I, Martynenko A I, et al.Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyII fluorescence of maize leaves: a comparative survey and prospects for screening[J]. Australian Journal of Plant Physiology,1998,25(5): 609-616.
    [43]罗庆云,赞丙军,刘友良.NaCl胁迫下Cl-和Na+对大豆幼苗胁迫作用的比较[J].中国农业科学,2003, 36(11): 1390-1394.
    [44]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.279-300.
    [45]崔强.四种引进树种对大庆地区土壤盐碱胁迫的生理响应[D].哈尔滨:东北林业大学,2010.
    [46]李悦,陈忠林,王杰,等.盐胁迫对翅碱蓬生长和渗透调节物质浓度的影响[J].生态学杂志,2011,30(1):72-76.
    [47]Zhu J K.Plant salt tolerance[J].Trends in Plant Science,2001,6,66-71.
    [48]马建华,郑海雷.植物耐盐的分子生物学基础[J].生物学杂志,2007,24(11):5-8.
    [49]钟国辉,王建林.外源甜菜碱对氯化钠胁迫下白菜叶片的保护效应[J].植物生理学通讯,1997, 33(5):333-335.
    [50]Hare P D,CressW A, van Staden J. The effects of exogenous proline and proline analogues on in vitro shoot organogenesis in A rabidopsis[J]. Plant Growth Regulation, 2001,34(2):203-207.
    [51]汪良驹,刘友良,马凯.盐胁迫下无花果细胞质膜和液泡膜H+-ATPase活性对脯氨酸积累的影响[J].植物生理学报, 2000,26(3):232-236.
    [52]Aubert S, Hennion F, Bouchereau A,et al.Subcellular coppartmentation of proline in the leaves of the subantartic Kerguelen cabbage Pringlea antiscorbutica R- Br in vivo C - 13 - NMRstudy[J].Plant Cell Environ,1999,22:255-259.
    [53]Bethke P C,Drew M C. Stomatal and nonstomatal components to inhibition of photosythesis in leaves of capspcum annuum during progressive exposure to NaCl salinity[J].Plant Physiol,1992, 99:219-226.
    [54]Wolf D J. Effect of NaCl salinity on flows and partitioning of C. N.and mineral lons in whole plants of white Lupin,Lupinus albus L[J].Journal of Experimental Botany,1992,43:777-788.
    [55]郭书奎.NaCl胁迫抑制小麦、玉米幼苗光合作用机理的研究[D].济南:山东师范大学.2001.
    [56]Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter acc-umulation in developing rice grains[J].Envirorunent and Experimental Botany,1999,42: 211-220.
    [57]张川红,沈应柏,尹伟伦,等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002, 38(2):27-31.
    [58]方连玉.盐胁迫对欧洲赤松光合作用的影响及耐盐性评价[D].哈尔滨:东北林业大学,2011.
    [59]钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响[J].植物营养与肥料学报,2006,12(6):875-880.
    [60]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006, 37(2):302-305.
    [61]文笑.盐胁迫对台湾桤木幼苗生理生化和光合特性影响的研究[D].福州:福建农林大学,2011.
    [62]闰艳华,姜国斌,侯和胜.杨树内源激素对NaCl胁迫的响应[J].西北农业学报,2011,20(9): 160-164.
    [63]Bana M, Mark T. Mechanisms of salinity tolerance[J].Annual Review of Plant Biology 2008,59: 651-681.
    [64]张红董,树亭.玉米对盐胁迫的生理响应及抗盐策略研究进展[J].玉米科学,2011,19(1):64-69
    [65]周红兵,王迎春,石松利,等.NaCl胁迫对盐生植物长红砂幼苗内源激素的影响[J].内蒙古农业大学学报,2010,41(5):531-535.
    [66]左志锐.百合耐盐机理及其遗传多样性研究[D].北京:中国农业大学,2005.
    [67]郝治安,吕有军等.植物抗盐机制研究进展[J].河南农业科学,2004(11):30-33.
    [68]周芬.拟南芥受盐胁迫的细胞及生理生化研究[D].武汉:武汉大学,2004.
    [69]华春,王仁雷.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[J].山东农业大学学报(自然科学版),2004,35(1): 27-31.
    [70]秘彩莉,黄占景,邵素霞,等.近似等位基因系小麦盐胁迫下叶绿体超微结构下比较研究[J].电子显微学报,2001,20(2):98-101.
    [71]李增裕,孙建设,孙宁,等.苹果耐盐性研究进展[J].河北农业大学学报,2003(5):45-48.
    [72]景璐,刘涛,白玉娥.草本园林植物耐盐性研究进展[J].中国农学通报,2011,27(13):284-289.
    [73]夏汉平,刘世忠.香根草等三种植物的抗盐性比较[J].应用与环境生物学报,2006,6(1):7-17.
    [74]Meyer M T,Smith M A,.Knight S L.Salinity effects on St. Augustine grass: A novel system to quantify stress response [J]. Journal of Plant Nutrition,1989,12(7):898-908.
    [75]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993.259-271.
    [76] Mansour MMF, Salama KHA. Cell ular basis of salinity tolerance in plants[J].Environmental and Experimental Botany,2004(52):113-122.
    [77]Tingjun M, Liu QL, Zhuo Li. Tonoplast H_-ATPase in response to salt stress in populus euphratica cell suspensions [J]. Plant Science, 2002(163): 499-505.
    [78] Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity [J]. Plant Science, 2001(161): 613~619.
    [79] Masood A, Shah N A, Zeeshan M, Abraham G. Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides) [J]. Environmental and Experimental Botany, 2005(8):1~7.
    [80]Yong Y, Nora F Y, ChangY L. Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species[J].Aquatic Botany, 2005(83):193-205.
    [81]王伟.中山衫无性系幼苗耐盐特性及机理研究[D].南京:南京林业大学,2010.
    [82]王良睦,王文卿,王谨,等.厦门地区耐盐园林植物的筛选[J].园林植物栽培与繁育,2001(6),65-67.
    [83] Niknam S R, McComb J. Salt tolerance screening of selected Australian woody species-a review[J]. Forest Ecology and Management,2000,139:1-19.
    [84]刘永霞.硅对金丝小枣盐胁迫的缓解效应及其机理[D].南京:南京林业大学,2007.
    [85]杨晓慧,蒋卫杰.提高植物抗盐能力的技术措施综述[J].中国农学通报,2006,22(1): 88-91.
    [86]阮海华,沈文鹰,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报,2001,(23):1993-1997.
    [87]李庆贱.白榆家系苗期耐盐碱对比试验与优良家系选择[D].北京:北京林业大学,2010.
    [88]贝军,张建国,李敬川,等.白榆刺槐毛白杨优良无性系在重盐碱地适应能力初报[J].河北林业科技,1995,8:11-12.
    [89]夏尚光.美国岩榆的引种育苗技术与耐盐耐旱特性研究[D].江苏:南京林业大学,2005.
    [90]刘炳响.白榆耐盐差异性研究[D].保定:河北农业大学,2005.
    [91]刘炳响,梁海永,李子敬,等.不同盐碱条件下白榆器官中K+、Na+、Ca2+和Mg2+分布特征[J].西北林学院学报,2008,23(5):7-11.
    [92]张建锋,龙庄如,梁玉堂.盐分对白榆试管苗生长特性的影响[J].林业实用技术,1992,06:18-19.
    [93]刘苹.白榆半同胞家系、无性系遗传变异与早期选择研究[D].泰安:山东农业大学,2003.
    [94]时瑞亭.白刺优良无性快繁技术与白榆家系阻抗研究[D].北京:北京林业大学,2011.
    [95]张丽丽.不同白榆无性系耐盐性差异比较[D].保定:河北农业大学,2009.
    [96]孙晶,王庆成,刘强,等. NaHCO3胁迫下朝鲜接骨木和茶条槭苗木的生长及生理响应[J].林业科学,2010,46(8):71-77 .
    [97]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.110-113.
    [98]缴丽莉,路丙社,白志英,等.四种园林树木抗寒性的比较分析[J].园艺学报,2006,33(3): 667-670.
    [99]周广生,梅方竹,周竹青,等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学,2003,36(11):1378-1382.
    [100]张朝阳,许桂芳.利用隶属函数法对4种地被植物的耐热性综合评价[J].草业科学,2009 ,26(2):57-60 .
    [101]王军,周美学,许如根,等.大麦耐湿性鉴定指标和评价方法研究[J].中国农业科学, 2007, 40(10):2145-2152.
    [102]白玉娥,易津,谷安琳,等.盐胁迫对11种禾本科牧草根系细胞膜透性的影响[J].干旱地区资源与环境,2001, 15(5):51-54.
    [103]杨传平,焦喜才,刘文祥,等.树木的细胞膜透性与抗盐性[J].东北林业大学学报,1997,25(1):1-3.
    [104]徐猛,马巧荣,张继涛,等.盐胁迫下不同基因型冬小麦渗透及离子的毒害效应[J].生态学报,2011,31(3):784-792.
    [105]王树凤,陈益泰,孙海菁,等.盐胁迫下弗吉尼亚栎生长和生理生化变化[J].生态环境,2008, 17(2):747-750.
    [106]张金凤,孙明高,夏阳,等.盐胁迫对石榴和樱桃脯氨酸含量和硝酸还原酶活性及电导率的影响[J].山东农业大学自然科学版, 2004,35(2):164-168.
    [107]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].植物学报,2000,17(6):536-542.
    [108]刘会超,孙振元,彭镇华.NaCl胁迫对五叶地锦生长及某些生理特性的影响[J].林业科学, 2004,40(6):63-67.
    [109]张永锋,梁正伟,隋丽,等.盐碱胁迫对苗期紫花苜蓿生理特性的影响[J].草业学报,2009,18(4): 230-235.
    [110]刘建新,赵国林,胡浩斌,等.NaCl胁迫对骆驼蓬属植物渗透调节作用的影响[J].干旱地区农业研究,2006,24(5):115-119.
    [111]李树华,许兴,惠红霞等.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na+、K+吸收的影响[J].西北植物学报, 2002,22(3):587-594.
    [112]裘丽珍,黄有军,黄坚钦,等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报农业与生命科学版,2006,32(4):420-427.
    [113]陈敏,彭建云,王宝山.整株水平上Na+转运体与植物的抗盐性[J].植物学通报,2008,25(4):381-391.
    [114]Yong Y, NoraFung Y T, Chang Y L, et al. Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species[J]. Aquatic Botany,2005,83(3): 193-205
    [115]Lin W, Xun G. Response of two coast redwood (Sequoia sempervirens Endl.) varieties to moderate levels of salt and boron spray measured by stress symptoms: Implications for landscape irrigation using recycled water[J]. Environmental and Experimental Botany,2006, 58(1-3):130-139.
    [116]Song J, Chen M, Feng G, et al. Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa[J]. Plant and Soil, 2009, 314(1-2): 133-141.
    [117]宁建凤,郑青松,邹献中,等.罗布麻对不同浓度盐胁迫的生理响应[J].植物学报,2010,45(6):689-697.
    [118]Amjad M, Nisar A S, Mohd Z, et al. Differential response of antioxidant enzymesto salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides) [J]. Environmental and Experimental Botany,2006,58(1-3):216-222.
    [119]王波,张金才,宋凤,等.燕麦对盐碱胁迫的生理响应[J].水土保持学报,2007, 21(3): 86-89.
    [120]刘金萍,高奔,李欣,等.盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J].生态学报,2010,30(20):5485-5490.
    [121]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants[J].Annals of Botany, 2003, 91(5):503-527.
    [122]Muhammad A.Some important physiological selection criteria for salt tolerance in plants[J]. Flora Morphology Distribution Functional Ecology of Plants,2004,199(5):361-376.
    [123]朱学艺,王锁民,张承烈.河西走廊不同生态型芦苇对干旱和盐渍胁迫的响应调节[J].植物生理学通讯,2003,39(4):371-376.
    [124]周婵,杨允菲.松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应[J].应用生态学报, 2003,14(11):1842-1846.
    [125]苏秀红,强胜,宋小玲.不同地理种群紫茎泽兰耐热性差异的比较分析[J].西北植物学报,2005, 25(9):1766-1771.
    [126]师东,张爱勤.盐碱胁迫对两种补血草种子萌发的影响[J].草业科学,2011,28(8):1445-1450.
    [127]彭清青,李春杰,宋梅玲,等.不同酸碱条件下内生真菌对三种禾草种子萌发的影响[J].草业学报,2011,20(5):72-78.
    [128]芦翔,汪强,赵惠萍,等.盐胁迫对不同燕麦品种种子萌发和出苗影响的研究[J].草业学报,2009,26(7):77-81.
    [129]刘慧霞,申晓蓉,郭正刚.硅对紫花苜蓿种子萌发及幼苗生长发育的影响[J].草业学报,2011,20(1):155-160.
    [130]Strasserf RJ,Srivastava A, Govindjee.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry And Photobiology,1995,61(1):32-42.
    [131]李鹏民,高辉远,Strasser R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559-566.
    [132]Pandey DM,Kang KH,Yeo UD.Effects of excessive photon on the photosynthetic pigments and violaxanthin de-epoxidase activity in the xanthophyll cycle of spinach leaf[J]. Plant Science, 2005,168(1):161-166.
    [133]白志英,李存东,赵金锋,等.干旱胁迫对小麦代换系叶绿素荧光参数的影响及染色体效应初步分析[J].中国农业科学,2011,44(1):47-57.
    [134]纪荣花,于磊,鲁为华,等.盐碱胁迫对芨芨草种子萌发的影响[J].草业科学,2011,28(2):245-250.
    [135]刘金萍,高奔,李欣,等.盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J].生态学报,2010,30(20):5485-5490.
    [136]党伟光,高贤明,王瑾芳,等.紫茎泽兰入侵地区土壤种子库特征[J].生物多样性,2008,16(2):126-132.
    [137]陈炳东,黄高宝,陈玉梁,等.盐胁迫对油葵根系活力和幼苗生长的影响[J].中国油料作物学报,2008,30(3):327-330.
    [138]李存桢,刘小京,杨艳敏,等.盐胁迫对盐地碱蓬种子萌发及幼苗生长的影响[J].中国农学通报,2005,21(5):209-212.
    [139]景艳霞,袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J].草业学报,2011,20(2):134-139.
    [140]桂仁意,刘亚迪,郭小勤,等.不同剂量~(137)Cs-γ射对毛竹幼苗叶片叶绿素荧光参数的影响[J].植物学报,2010,45(1): 66-72.
    [141]贾永霞,孙锦,王丽萍,等.低氧胁迫下黄瓜植株热耗散途径[J].应用生态学报,2011,22(3):707-712.
    [142]艾军勇,张道勇,牟书勇,等.EDTA对波士顿蕨吸收Hg的影响及其光合响应[J].应用与环境生物学报,2011,17(2):219-222.
    [143]Yamane Y,Shikanai T,Kashino Y,et al. Reduction of QA in the dark:Another cause of fluorescence Fo increases by high temperature in higher plants[J].Photosynthesis Research,2000,63(1):23-34.
    [144]Appenroth KJ,Stckel J,Srivastava A,et al. Multiple effect of chromate on the photosynthetic apparatus of Spirodela polyrhiza asprobed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution,2001, 115(1):49-64.
    [145]Van Heerden PDR, Tsimilli-Michael M, Kruger GHJ,et al. Dark chilling effects on soybean genotypes during vegetative development:Parallel studies of CO2 assimilation,chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J].Physiologia Plantarum,2003,117(4): 476-491.
    [146]Chen HX,Li WJ,An SZ,et al. Characterization of PSⅡphotochemistry and thermostability in salt-treated Rumex leaves[J].Journal of Plant Physiology,2004,161(3):257-264.
    [147]宋旭丽,胡春梅,孟静静,等.NaCl胁迫加重强光胁迫下超大甜椒叶片的光系统II和光系统I的光抑制[J].植物生态学报,2011,35(6):681–686.
    [148]张谧,王慧娟,于长青.超旱生植物沙冬青高温胁迫下的快速叶绿素荧光动力学特征[J].生态环境学报,2009,18(6): 2272-2277.
    [149]Strivastava A, Strasser RJ. Stress and stress management of land plants during a regular day[J].Journal Plant Physiology,1996,148(3-4):445–455.
    [150]van Heerden PDR,Strasser RJ,Kruger GHJ. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics[J].Physiologia Plantarum,2004, 121(2):239-249.
    [151]吴长艾,孟庆伟,邹琦,等.小麦不同品种叶片对光氧化胁迫响应的比较研究[J].作物学报,2003,29(3):339-344.
    [152]孙山,张立涛,高辉远,等.晴天条件下光、温变化对苹果绿色果皮原初光化学反应的影响应用生态学报[J]. 2009,20 (10):2431- 2436.
    [153]Morosinotto T,Caffarri S,Dal’Osto L,et al. Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids[J]. Physiologia Plantarum,2003,119(3):347-354.
    [154]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(4):124-128.
    [155]张纪涛,徐锰,韩坤,等.盐胁迫对番茄幼苗的营养及生理效应[J].西北农业学报,2011,20(2):128-133.
    [156]夏阳,林杉,张福锁,等.淋洗对盐胁迫下大豆生长和矿质营养基因型差异的研究[J].土壤学报,2003,40(1):155-159.
    [157]张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长极其耐盐性[J].生态学报,2009,29(5):2264-2271.
    [158]秦景,董雯怡,贺康宁,等.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报, 2009,18(3):1031-1036.
    [159]张燕,方力,李天飞,等.钙对烟草叶片热激忍耐和活性氧代谢的影响[J].植物学通报2002,19(6):721-726.
    [160]张颖,杨迎霞,郏艳红,等.利用离体叶片鉴定杨树耐盐潜力[J].植物学报,2011,46 (3):302–310.
    [161]何树斌,刘国利,杨惠敏.不同水分处理下紫花苜蓿刈割后残茬的光合变化及其机制[J].草业学报,2009,18 (6):192–197.
    [162]陆开形.盐胁迫对大豆光合作用和抗氧化系统的影响极其调控机制[D].杭州:浙江大学,2008.
    [163]Kapila Kumara G D,夏宜平,朱祝军,等.外源水杨酸对盐胁迫下非洲菊抗氧化酶活性和生理特性的影响[J].浙江大学学报(农业与生命科学版) ,2010,36 (6):591-601.
    [164]郑春芳,姜东,戴廷波,等.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响[J].生态学报,2010,30 (5): 1174-1183.
    [165]Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
    [166]刘琛,丁能飞,傅庆林,等.盐胁迫对3种蔬菜幼苗抗氧化酶活性的影响[J].安徽农业科学,2010,38 (1): 115-116.
    [167]秦伟,韩晶,克热木·伊力.盐胁迫对榅桲种子萌发率、成苗率和酶活性的影响[J].新疆农业科学,2009,46 (1): 23-27.
    [168]刘霞. Na2CO3胁迫对蚕豆幼苗生长及光合特性的影响[D].济南:山东师范大学,2008.
    [169]景艳霞,袁庆华.NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J].草业学报,2011,20 (2): 134-139.
    [170]肖鑫辉,李向华,刘洋.高盐碱胁迫下野生大豆(Glycine soja)体内离子积累的差异[J].作物学报,2011,37(7):1289?1300.
    [171]Parida A K,Das A B,Mittra B.Effects of salt on growth,ion accumulation,photosynthesis and leaf anatomy of the mangrove,Bruguiera parviflora[J].Trees-Struct Funct,2004,18(2) :167-174.
    [172]Xu C X, LiuY L, Zheng Q S, et al. Silicate improves growth and ion absorption and distribution in aloevera under salt s tress. Journal of Plant Physiology and Molecular Biology, 2006, 32(1) :73-78.
    [173]夏阳,梁慧敏,束怀瑞,等.几种肥料根际施用对盐胁迫下苹果矿质营养平衡的影响[J].园艺学报,2005,32(1): 6-10.
    [174]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报2009,25(04):124-128
    [175]雷钧杰,聂新辉,尤春源,等.盐分胁迫下四翅滨藜耐盐营养生理的研究[J].新疆农业科学2010,47(11),116-119.
    [176]夏阳,梁慧敏,王太明,等.盐胁迫对苹果器官中钙镁铁锌含量的影响[J].应用生态学报,2005,16(3):431-434.
    [177]张钢,肖建忠,陈段芬.测定植物耐寒性的电阻抗图谱法[J].植物生理与分子生物学学报,2005,31(1):19-26.
    [178]刘晓红,黄廷林,王国栋,等.盐胁迫对小麦叶片电阻抗图谱参数的影响[J].浙江大学学报(农业与生命科学版),2009,35(5):564-568.
    [179]姚琳.基于电阻抗图谱法检测流苏抗盐性研究[D].保定:河北农业大学,2011.
    [180]孟昱.盐胁迫对毛竹实生苗叶片电阻抗参数及叶绿素荧光特性的影响[D].保定:河北农业大学,2010.
    [181]Burr KEB, Hawkins CDB, L’Hirondelle SJL, et al. Methods for measuring cold hardiness of conifers. In: Bigras FJ, Colombo SJ (eds). Conifer Cold Hardiness. Dordrecht, The Netherlands:Kluwer Academic Pubishers. 2001, 369-401.
    [182]Repo T, Oksanen E, Vapaavuori E. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones[J]. Tree Physiology, 2004, 24: 833-843.
    [183]Mancuso S, Rinaldelli E. Response of young mycorrhizal and non-mycorrhizal plants of olive tree(Olea europaea L.) to saline conditions. II. Dynamics of electrical impedance parameters of shoots and leaves[J]. Advances in Horticultural Science,1996,10: 135-145.
    [184]王爱芳.干旱胁迫下白皮松苗木电阻抗及生理指标的比较研究[D].保定:河北农业大学,2010.
    [185]李亚青,张钢,郤书鹏,等.白皮松茎和针叶的电阻抗参数与抗寒性的相关性[J].林业科学,2008,44(4),28-34.
    [186]刘晓红,王国栋,张钢.干旱胁迫下小麦叶片的电阻抗图谱参数与生理参数的关系[J].西北植物学报,2007,27(5):0859- 0863.
    [187]王玉萍,何文亮,程李香,等.不同海拔珠芽蓼叶片类囊体膜色素含量及光系统功能变化[J].草业学报,2011,20(1):75-81.
    [188]曾杰,曾凡江, Arndt S K,等.NaCl对骆驼刺幼苗生长、生理和离子分布特性的影响[J].科学通报,2008, 53(增刊Ⅱ):151-158.
    [189]赵昕,吴雨霞,赵敏桂,等.NaCl胁迫对盐芥和拟南芥光合作用的影响[J].植物学通报,2007,24 (2):154-160.
    [190]杨淑萍,危常州,梁永超.盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响[J].中国农业科学,2010,43(8):1585-1593.
    [191]郑国琦,许兴,徐兆桢,等.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北农业学报,2002,11(3):1355-1359.
    [192]高辉远,邹琦.大豆光合日变化过程中气孔限制和非气孔限制的研究[J].西北植物学报,1993,13(2):96-102.
    [193]刘霞.Na2CO3胁迫下蚕豆光合作用的气孔和非气孔限制[J].安徽农业科学,2010,38(6): 2861-2862,2913.
    [194]丁菲,杨帆,张国武,等.NaCl胁迫对构树幼苗叶片水势、光合作用及Na+、K+吸收和分配的影响[J].林业科学研究,2009, 22( 3):428-433.
    [195]唐薇,罗振,温四民,等.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报,2007,19 (1) :28-32.
    [196]惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,23 (1) :5-9.
    [197]薛伟,李向义,林丽莎,等.短时间热胁迫对疏叶骆驼刺光系统II、Rubisco活性和活性氧化剂的影响植物生态学报[J].2011,35(4):441–451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700