高分子湿敏材料的设计、制备及性能和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共设计制备了四个系列共八种新型高分子湿敏材料:含硅聚电解质湿敏材料;季铵盐类聚电解质湿敏材料;吡咯基聚电解质湿敏材料;超支化聚合物湿敏材料。聚合物湿敏材料的制备是采用溶胶-凝胶、自由基共聚、紫外光辐射、接枝、原位生长等方法。并且,采用FT-IR、NMR、TGA、TEM、SEM、UV-Vis等手段对其组成和结构进行了表征。通过浸涂及静电纺丝方法在金叉指电极表面成膜,制备了湿敏元件。研究了湿敏元件的感湿特性,讨论了元件敏感层的组成、结构,微观形貌,及其制备工艺条件等因素对湿敏元件响应性能的影响,探讨了湿敏材料的感湿机理。
     利用溶胶-凝胶反应制备了具有交联结构的3-氨丙基三乙氧基硅烷季铵盐(APTS-BB)湿敏材料。考察了聚合物组成,预聚液浓度,季铵化试剂种类,以及制备工艺(季铵化时间,预聚液陈化及加热交联时间,电极结构)对湿敏元件感湿特性的影响。所制备的元件具有制备简便(一步法),响应灵敏度高(在97-11%RH相对湿度测量范围内,阻抗值变化四个数量级:10~3-10~7Ω),响应线性度好(R~2=0.977),湿滞小(1.1%),响应速度较快(吸湿30.1s,脱湿34.8s)等优异的性能,而且还具备良好的耐高温高湿,耐水,及耐溶剂特性。通过交流复阻抗谱分析,其湿敏行为与典型的聚电解质湿敏材料相一致,导电机理主要为离子导电。
     采用自由基聚合,制备了季铵盐/聚醚共聚湿敏材料。考察了聚醚/季铵盐共聚比例、掺杂盐含量、掺杂盐种类对湿敏元件感湿特性的影响。该元件具有极宽的湿敏响应区间(0-97%RH),极佳的响应线性度(R~2=0.997),以及较高的灵敏度(三个数量级:10~3-10~6Ω),较小的湿滞(1.6%RH)和较快的响应速度(吸湿48.6s,脱湿23.4s)。此外,该元件即使在~0%RH下,其依然保持了导电性(阻抗值:10~6Ω),可应用于低湿环境下湿度的监测。采用紫外光辐射法制备了具有交联结构的季铵盐-二乙烯基苯(PDB-DVB)湿敏材料。考察了季铵盐/二乙烯基苯共聚比例,交联剂种类,季铵盐基团预聚与否,紫外光辐射时间对湿敏元件感湿特性的影响。所制备的元件响应灵敏度高(97-22%RH测量范围内,阻抗值变化三个数量级:10~3-10~6Ω),响应线性度好(R~2=0.959),湿滞小(1%),响应速度快(吸湿9.1s,脱湿31.7s)。紫外光辐照交联法制备工艺简便(低温:<60℃,周期短:<1h),同时制备的元件具有较好的耐水性。
     采用接枝、氧化聚合的方法,制备了基于吡咯的聚电解质湿敏材料。考察了预聚液浓度、羧酸盐种类对湿敏元件感湿特性的影响。元件在0-97%RH测量范围内,阻抗变化两个数量级:10~4-10~6Ω,线性度为:R~2=0.988,具有快的响应速度(吸湿12.5s,脱湿15.2s)以及小的湿滞(4.7%RH)。元件在低湿(~0%RH)下仍具有电导性(阻抗值:10~6Ω),可以应用于低湿环境下相对湿度的检测。此外,对湿敏元件在低湿、高湿下的湿敏响应特性进行了研究,探讨了其湿敏机理。该湿敏元件同时具备电子及离子两种导电机制。
     以超支化聚酯H20为核,制备了具有超支化结构的羧酸盐以及季铵盐湿敏材料。考察了端基接枝种类、接枝数量及超支化结构对湿敏元件感湿特性的影响。元件在97-11%RH测试范围内,具有高的响应灵敏度(阻抗值变化三个数量级:10~3-10~6Ω),响应线性度为:R~2=0.902,小的湿滞(1%RH),以及较快的响应速度(吸湿9.08s,脱湿9.46s)。与线形聚合物湿敏材料相比,超支化季铵盐材料的阻抗值较低,湿敏响应范围较宽。
     利用熔融缩聚的方法制备了具有超支化结构的聚酰胺湿敏材料(HBPA)。通过季铵化反应可以提高材料的湿度敏感性,但材料的响应线性度有所下降。纯HBPA材料在低湿下阻抗值较高,通过共混、接枝两种方法将碳纳米管引入HBPA体系,有效降低了HBPA在低湿环境下的阻抗,扩大了其湿敏响应区间。
     探索了含硅聚电解质APTS-BB湿敏元件在有机溶剂微量水分测试中的应用,研究了元件在不同极性、不同水含量溶剂中的湿敏特性,及其动态敏化行为,并提出了相应的机理。采用静电纺丝的方法制备了APTS-BH纤维状湿敏材料,初步研究了纺丝液配比,纺丝时间,纺丝电压对元件感湿特性的影响。较之薄膜材料,纤维状湿敏材料的响应速度大大提高。
Four types of polymer humidity sensitive materials were designed and prepared, including silicon-containing polyelectrolytes,quaternaray ammonium salt polyelectrolytes,pyrrole based polyelectrolytes,and hyperbranched polymer humidity sensitive materials.These materials were synthesized by sol-gel,radical copolymerization,UV irradiation,graft,and in-situ polymerization method,respectively, and characterized by FT-IR,NMR,TGA,TEM,SEM,UV-Vis.Resisitive type humidity sensors were prepared by forming film on the interdigital gold electrodes with dip-coating and electrospinning methods.The humidity sensitive properties of the sensors have been investigated.The effects of the composition,structure and morphology of the sensitive films,preparation techniques on the sensing characteristics of the humidity sensors were discussed.The humidity sensitive mechanisms were explored.
     The 3-aminopropyltriethoxysilane quaternary ammonium salt(APTS-BB) humidity sensors with cross-linking structure were prepared by sol-gel method.The effect of component of the polymers,concentration of dip-coating solution,type of quaternization reagent,and the preparation techniques(quaternization reaction time, aging and cross-linking time of precursor solution,and electrode structures) on the humidity sensitive properties of sensors have been investigated.The sensors easy prepared(one-pot method) and exhibited high sensitivity(the impedance change from 10~3 to 10~7Ωin the range of 97%-11%RH),good linearity(R~2=0.977),small hysteresis (1.1%RH) and last response(adsorption time 30.1s,desorption time 34.8s). Furthermore,it was featured with good durability to high temperature and high humidity, and high resistance to water and solvents.The investigations on the humidity sensitive mechanism by complex impedance spectra revealed that the polymer showed sensing characteristics typical of polyelectrolytes,and ion conductivity in its conduction behavior.
     Copolymers of quaternary ammonium salt with polyether were prepared by radical copolymerization.The effect of ratio of methyl ether methacrylate/2-(dimethylamino) ethyl methacrylate quaternary ammonium salt(PEGMEMA/DB),doped content of NaClO_4,and type of doped salt on the humidity sensitive properties of sensors were investigated.The sensors prepared exhibited very wide sensitive range(0-97%RH), excellent linearity(R~2=0.997),high sensitivity(10~6-10~3Ω),small hysteresis(1.6%RH) and fast response(adsorption time 48.6s,desorption time 23.4s).Furthermore,the sensors maintained high conductivity even at very dry atmosphere,are promising to detect low humidity.Humidity sensors based on cross-linked quaternary ammonium salt were fabricated by UV irradiation method.The effect of ratio of poly[2-(dimethylamino) ethyl methacrylate quaternary ammonium salt]/divinyl benzene(PDB/DVB),type of crosslinking agent,prepolymerization of 2-(dimethylamino) ethyl methacrylate quaternary ammonium salt(DB),and irradiation time on the humidity sensitive properties of sensors were investigated.The sensors prepared exhibited high sensitivity (the impedance change from 10~3 to 10~6Ωin the range of 97%-22%RH),good linearity (R~2=0.959),small hysteresis(1%RH) and fast response(adsorption time 9.1s, desorption time 31.7s).The whole manufacture procedure was processed in low temperature(≤60℃) and can be accomplished in an hour.In addition,the sensors exhibited excellent durability against water.
     Pyrrole based polyelectrolytes(PY-PE) humidity materials were prepared by graft and oxidation polymerization.The effects of concentration of precursor solutions and type of carboxylic salt on the humidity sensitive properties of sensors were investigated. The sensors exhibited an impedance change of 10~4-10~6Ωin the range of 97%-0%RH, good linearity R~2 of 0.988,hysteresis of 4.7%RH and fast response(adsorption time 12.5s,desorption time 15.2s).The sensors maintained conductivity even at very low humidity atmosphere(~0%RH),which are promising to detect low humidity. Furthermore,the difference of sensitive behavior of sensors at low and high humidity atmosphere were investigated,the humidity sensitive mechanisms were explored.The sensor based on PY-PE exhibits both ionic and electronic conduction contributed to its conductivity.
     The humidity sensitive properties of hyperbranched polyester(H20) whose terminal hydroxyl group was converted to carboxylic salt and quaternary ammonium salt group have been investigated.It was found that the type and number of terminal groups,the hyperbranched structure can affected the humidity sensitive properties of H20 based sensors.The sensor prepared exhibited high sensitivity(the impedance change from 10~3 to 10~6Ωin the range of 97%-11%RH),linearity R~2 of 0.902,small hysteresis(1%RH) and fast response(adsorption time 9.08s,desorption time 9.46s).Compared with linear polymer humidity sensitive material,hyperbranched humidity sensitive material exhibited lower impedance and wider humidity measurement range.
     Hyperbranched Polyaniline HBPA was prepared by melt polycondensation.The sensitivity of HBPA can be improved by quaternized with n-butyl bromide or dibromobutane;however its linearity was decrease.Through mixing or grafting CNT into the HBPA can decrease the impedance of the sensors at dry atmosphere and broad its humidity measurement range.
     The applications of APTS-BB humidity sensor in the water detection of organic solvents have been explored.The humidity sensitive properties of sensors in the solvents with different polarity and water content,and dynamic sensing behaviors were investigated;the humidity sensitive mechanisms were explored.APTS-BH fibre humidity sensors were prepared by electrospining method.The effects of composition of electrospining solution,electrospining time,and electrospining voltage on the humidity sensitive properties of sensors were described.Compared with thin film material,the fibre material increased the response speed of the sensors.
引文
[1] F. W. Dunmore, An electrometer and its application to radio meteorography. J Res Nat Bur Std 1938,20,723-744.
    
    [2] K.S. Shamala; L.C.S. Murthy; M.C. Radhakrishna; K. Narasimha Rao, Characterization of Al_2O_3 thin films prepared by spray pyrolysis method for humidity sensor. Sens Actuator, A 2007, 135, 552-557.
    
    [3]R.K. Nahar; V. K. Khanna, Ionic doping and inversion of the characteristic of thin film porous Al_2O_3 humidity sensor. Sens Actuator, B 1998,46, 35-41.
    
    [4] Kuyyadi P. Biju; Mahaveer K. Jain, Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO_2 thin films. Thin Solid Films 2008, 516,2175-2180.
    
    [5] W.P. Tai; J.G. Kim; J.H. Oh; Y.S. Kim, Preparation and humidity sensing behaviors of nanostructured potassium tantalate: titania films. Sens Actuator, B 2005, 105, 199-203.
    
    [6] M. Bayhan; N. Kavasoglu, A study on the humidity sensing properties of ZnCr_2O_4-K_2CrO_4 ionic conductive ceramic sensor. Sens Actuator, B 2006, 117, 261-265.
    
    [7] J. Shah; R.K. Kotnala; B. Singh; Hari Kishan, Microstructure-dependent humidity sensitivity of porous MgFe_2O_4-CeO_2 ceramic. Sens Actuator, B 2007, 128, 306-311.
    
    [8] J. Judith Vijaya; L. John Kennedy; G. Sekaran; B. Jeyaraj; K.S. Nagaraja, Effect of Sr addition on the humidity sensing properties of CoAl_2O_4 composites. Sens Actuator, B 2007, 123, 211-217.
    
    [9] X.H. Wang; J. Zhang; Z.Q. Zhu; J.Z. Zhu, Humidity sensing properties of Pd~(2+)-doped ZnO nanotetrapods. Appl Surf Sci 2007, 253, 3168-3173.
    
    [10] Y.S. Zhang; K. Yu; D.S. Jiang; Z.Q. Zhu; H.R. Geng; L.Q. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl Surf Sci 2005, 242, 212-217.
    
    [11] W.P. Tai; J.H. Oh, Fabrication and humidity sensing properties of nanostructured TiO_2-SnO_2 thin films. Sens Actuator, B 2002, 85, 154-157.
    
    [12] S.P.Yawale; S.S. Yawale; G.T. Lamdhade, Tin oxide and zinc oxide based doped humidity sensors. Sens Actuator, A 2007, 135, 388-393.
    
    [13] J. Yuk; T. Troczynski, Sol-gel BaTiO_3 thin film for humidity sensors. Sens Actuator, B 2003, 94, 290-293.
    
    [14] Z.Y. Wang; C. Chen; T. Zhang; H.L. Guo; B. Zou; R. Wang; F.Q. Wu, Humidity sensitive properties of K~+-doped nanocrystalline LaCo_(0.3)Fe_(0.7)O_3. Sens Actuator, B 2007, 126, 678-683.
    
    [15] R.K. Nahar; V.K. Khanna; W.S. Khokle ; P.J. George, A Cu-Al_2O_3-Al moisture sensor for high humidities. Microelectronics and Reliability 1987, 27, 451-456.
    
    [16] G. Sberveglieri; R. Anchisini; R. Murri; C. Ercoli; N. Pinto, An Al_2O_3 sensor for low humidity content: characterization by impedance spectroscopy. Sens Actuator, B 1996, 32, 1-5.
    
    [17] G. Sberveglieri; R. Murri; Nicola Pinto, Characterization of porous Al_2O_3-SiO_2/Si sensor for low and medium humidity ranges. Sens Actuator, B 1995, 23, 177-180.
    
    [18] R.K. Nahar, Study of the performance degradation of thin film aluminum oxide sensor at high humidity. Sens Actuator, B 2000, 63, 49-54.
    
    [19] Z. Chen; C. Lu, Humidity Sensors: A Review of Materials and Mechanisms. Sens Lett 2005, 3, 274-295.
    [20] T. Seiyama; N. Yamazoe; H. Arai, Ceramic humidity sensors. Sens Actuator 1983, 4, 85-96.
    
    [21] Y. Shimizu; H. Arai; T. Seiyama, Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens Actuator 1985, 7, 11-22.
    
    [22] Z. Chen; M.C. Jin; C. Zhen, Humidity sensors with reactively evaporated Al_2O_3 films as porous dielectrics. Sens Actuator, B 1990, 2, 167-171.
    
    [23] G. Sberveglieri; G. Rinchetti; S. Groppelli; G. Faglia, Capacitive humidity sensor with controlled performances, based on porous Al_2O_3 thin film growm on SiO_2-Si substrate. Sens Actuator, B 1994, 19,551-553.
    
    [24] E. Traversa; M. Baroncini; E.D. Bartolomeo; G. Gusmano; P. Innocenzi; A. Martucci; A. Bearzotti, Electrical humidity response of sol-Gel processed undoped and alkali-doped TiO_2-Al_2O_3 thin films. JEur Ceram Soc 1999, 19, 753-758.
    
    [25] M.K. Jain; M.C. Bhatnagar; G.L. Sharma, Effect of Li~+ doping on ZrO_2-TiO_2 humidity sensor. Sens Actuator, B 1999, 55, 180-185.
    
    [26] J.R. Ying; C.R. Wan; P.J. He, Sol-gel processed TiO_2-K_2O-LiZnVO_4 ceramic thin films as innovative humidity sensors. Sens Actuator, B 2000, 62, 165-170.
    
    [27] H.T. Sun; M.T. Wu; P. Li; X. Yao, Porosity control of humidity-sensitive ceramics and theoretical model of humidity-sensitive characteristics. Sens Actuator 1989, 19, 61-70.
    
    [28] V. Ducere; A. Bernes; C. Lacabanne, A capacitive humidity sensor using cross-linked cellulose acetate butyrate. Sens Actuator, B 2005, 106, 331-334.
    
    [29] Y. Sakai; Y. Sadaoka; M. Matsuguchi, Humidity sensors based on polymer thin films. Sens Actuator, B 1996, 35, 85-90.
    
    [30] H. Grange; C. Bieth; H. Boucher; G. Delapiere, A capacitive humidity sensor with every fast response time and very low hysteresis. Sens Actuator 1987, 12, 291-296.
    
    [31]A.R.K. Ralston; C.F. Klein; P.E. Thoma; D.D. Denton, A model for the relative environmental stability of a series of polyimide capacitance humidity sensors. Sens Actuator, B 1996, 34, 343-348.
    
    [32] T. Kuroiwa; T. Hayashi; A. Ito; M. Matsuguchi; Y. Sadaoka; Y. Sakai, A thin film polyimide based capacitive type relative humidity sensor. Sens Actuator, B 1993, 13, 89-91.
    
    [33] M. Matsuguch; T. Kuroiwa; T. Miyagishi; S. Suzuki; T. Ogura; Y. Sakai, Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens Actuator, B 1998,52,53-57.
    
    [34] M. Matsuguchi; Y. Sadaoka; Y. Sakai; T. Kuroiwa; A. Ito. A capacitive-type humidity sensor using cross-linked poly(methyl methacrylate) thin films. J. Electrochem. Soc. 1991, 138, 1862-1865.
    
    [35] A. R. K. Ralston; J. A. Tobin; S. S. Bajikar; D. D. Denton, Comparative performance of linear, cross-linked, and plasma-deposited PMMA capacitive humidity sensors. Sens Actuator, B 1994, 22, 139-147.
    
    [36] M. Matsuguchi; M. Yoshida; T. Kuroiwa; T. Ogura, Depression of a capacitive-type humidity sensor's drift by introducing a cross-linked structure in the sensing polymer. Sens Actuator, B 2004, 102,97-101.
    
    [37] M. Matsuguchi; Y. Takahashi; T. Kuroiwa; T. Ogura; S. Obara; Y. Sakai, Effect of sensing film thickness on drift phenomenon of capacitive-type humidity sensors. J Electrochem Soc 2003, 150, H192-H195.
    
    [38] J. Perez; C. Freyre, A poly(ethylene terephthalate)-based humidity sensor, Sens Actuator, B 1997, 42, 27-30.
    
    [39] T. Kuroiwa; T. Miyagishi; A. Ito; M. Matsuguchi; Y. Sadaoka; Y. Sakai, A thin-film polysulfone-based capacitive-type relative-humidity sensor. Sens Actuator, B 1995,25, 692-695.
    
    [40] P.M. Harrey; B.J. Ramsey; P.S.A. Evans; D.J. Harrison, Capacitive-type humidity sensors fabricated using the offset lithographic printing process. Sens Actuator, B 2002, 87,226-232.
    
    [41] M. Matsuguchi; M. Shinmoto; Y. Sadaoka; T. Kuroiwa; Y. Sakai, Effect of the degree of cross-linking on the characteristics of a PVCA capacitive-type humidity sensor. Sens Actuator, B 1996,34,349-355.
    
    [42] Y. Sadaoka; M. Matsuguchi; Y. Sakai; K. Takahashi, Effect of sorbed water on the dielectric constant of some cellulose thin films. J Mater Sci Lett 1988, 7, 121-124.
    
    [43] M. Matsuguchi; S. Umeda; Y. Sadaoka; Y. Sakai, Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens Actuator, B 1998, 49, 179-185.
    
    [44] M. Matsuguchi; E. Hirota; T. Kuroiwa; S. Obara; T. Ogura; Y. Sakai, Drift phenomenon of capacitive-type relative humidity sensors in a hot and humid atmosphere. J Electrochem Soc 2000, 147, 2796-2799.
    
    [45] C. Dias; M. Rosa; M. Pinho, Structure of water in asymmetric cellulose ester membranes — and ATR-FTIR study. J Membr Sci 1998, 138, 259-267.
    
    [46] C.W. Lee; H.S. Park; J.G. Kim; B.K. Choi; S.W. Joo; M.S. Gong, Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes. Sens Actuator, B 2005, 109, 315-322.
    
    [47] Y. Sakai; Y. Sadaoka; M. Matsuguchi; V. L. Rao; M. Kamigaki, A humidity sensor using graft copolymer with polyelectrolyte branches. Polymer 1989, 30, 1068-1071.
    
    [48] Y Sakai; M. Matsuguchi; Y. Sadaoka; K. Hirayama, Humidity sensor composed of interpenetrating polymer networks of hydrophilic and hydrophobic methacrylate polymers. J Electrochem Soc 1993, 140,432-436.
    
    [49] Y. Li; Y.S. Chen; C. Zhang; T.X. Xue; M.J. Yang, A humidity sensor based on interpenetrating polymer network prepared from poly(dimethylaminoethyl methacrylate) and poly(glycidyl methacrylate). Sens Actuator, 52007, 125, 131-137.
    
    [50] C.W. Lee; S.W. Joo; M.S. Gong, Polymeric humidity sensor using polyelectrolytes derived from alkoxysilane cross-linker. Sens Actuator, 5 2005, 105, 150-158.
    
    [51] Y. Sakai; Y. Sadaoka; K. Ikeuchi, Humidity sensors composed of grafted copolymers. Sens Actuator 1986,9, 125-131.
    
    [52] Y. Sakai; Y. sadaoka; H. Fukumoto, Humidity-sensitive and water-resistive polymeric materials. Sens Actuator 1988, 13, 243-250.
    
    [53] S. Otsuki; Y. Dozen, Humidity sensing characteristics of photochemically crosslinked polyelectrolytes. Kobunshi Ronbunshu 1988, 45, 549-553.
    
    [54] Y. Sakai; Y. Sadaoka; M. Matsuguch, A humidity sensor using cross-linked quaternized polyvinylpyridine. J Electrochem Soc 1989, 136, 171-174.
    
    [55] M. V. Russo; G. Iucci; G. Polzonetti; A. Furlani, Organic conducting polymers: synthesis, characterization and conductivity of polyethynylfluorenol. Polymer 1992, 33,4401-4409.
    
    [56] A. Bearzotti; A. D'Amico; G. Iucci; M. V. Russo, Fast humidity response of a metal halide-doped novel polymer. Sens Actuator, B 1992, 7, 451-454.
    
    [57] A. Furlani; G. Iucci; M. V. Russo; A. Bearzotti; A. D'Amico, Thin films of iodine - polyphenylacethylene as starting materials for humidity sensors. Sens Actuator, B 1992, 7, 447-450.
    
    [58] E. Quartarone; P. Mustarell; A. Magistris; M.V. Russo; I. Fratoddi; A. Furlani, Investigations by impedance spectroscopy on the behaviour of poly(N,N-dimethylpropargylamine) as humidity sensor. Solid State Ion 2000, 136-137, 667-670.
    
    [59] Y. Li; M.J. Yang, A novel highly reversible humidity sensor based on poly(2-propyn-2-furoate). Sens Actuator, B 2002, 86, 155-159.
    
    [60] Y. Li; M.J. Yang, Humidity sensitive properties of a novel soluble conjugated copolymer: ethynylbenzene-co-propargyl alcohol. Sens Actuator, B 2002, 85, 73-78.
    
    [61] Y. Li; M.J. Yang; G Casalbore-Miceli; N. Camaioni, Humidity sensitive properties and sensing mechanism of π-conjugated polymer p-diethynylbenzene-co-propargyl alcohol. Synth Met 2002, 128, 293-298.
    
    [62] Y. Li; M.J. Yang, Humidity sensitive properties of substituted polyacetylenes. Synth Met 2002, 129,285-290.
    
    [63] Y. Li; M. J. Yang, Bilayer thin film humidity sensors based on sodium polystyrenesulfonate and substituted polyacetylenes. Sens Actuator, B 2002, 87, 184-189.
    
    [64] I. Fratoddi; P. Altamura; A. Bearzotti; A. Furlani; M. V. Russo, Electrical and morphological characterization of poly(monosubstituted)acetylene based membranes: application as humidity and organic vapors sensors. Thin Solid Films 2004,458, 292-298.
    
    [65] S. Jain; S. Chakane; A.B. Samui; V.N. Krishnamurthy; S. V. Bhoraskar, Humidity sensing with weak acid-doped polyaniline and its composites. Sens Actuator, B 2003, 96, 124-129.
    
    [66] K. Ogura; R.C. Patil; H. Shiigi; T. Tonosaki; M. Nakayama, Response of protonic acid-doped poly(o-anisidine)/poly(vinyl alcohol) composites to relative humidity and role of dopant anions. J Polym Sci A: Polym Chem 2000, 38, 4343-4352.
    
    [67] K. Ogura; T. Saino; M. Nakayama; H. Shiigi, The humidity dependence of electrical conductivity of a soluble polyaniline-poly(vinyl alcohol) composite film. J Mater Chem 1997, 7, 2363-2366.
    
    [68] K. Ogura; T. Tonosaki; H. Shiigi, AC impedance spectroscopy of humidity sensor using Poly(o-phenylenediamine)/poly(vinyl alcohol) composite film. J Eleclrochem Soc 2001, 148, H21-H27.
    
    [69] Milind V. Kulkarni; A.K. Viswanath; P.K. Khanna, Synthesis and humidity sensing properties of conducting poly(N-methyl aniline) doped with different acids. Sens Actuator, B 2006, 115, 140-149.
    
    [70] Milind V. Kulkarni; Anjali A. Athawale, Poly(2,3-dimethylaniline) as a competent material for humidity sensor. J Appl Polym Sci 2001, 81, 1382-1387.
    
    [71] Milind V. Kulkarni; Annamraju Kasi Viswanath; P.K. Khanna, Synthesis and characterization of poly(N-methyl aniline) doped with sulphonic acids: Their application as humidity sensors. J Appl Polym Sci 2006, 99, 812-820.
    
    [72] K. Ogura; H. Shiigi; M. Nakayama; A. Ogawa, Thermal properties of poly(anthranilic acid) (PANA) and humidity-sensitive composites derived from heat-treated PANA and poly(vinyl alcohol). J Polym SciA: Polym Chem 1999, 37, 4458-4465.
    
    [73] S. McGovern; G. Spinks; G. Wallace, Micro-humidity sensors based on a processable polyaniline blend. Sens Actuator, B 2005, 107, 657-665.
    
    [74] N. Parvatikar; S. Jain; S. Khasim; M. Revansiddappa; S.V. Bhoraskar; M.V.N. Ambika Prasad, Electrical and humidity sensing properties of polyaniline/WO_3 composites. Sens Actuator, B 2006, 114,599-603.
    
    [75] R. Nohria; R. Khillan; Y. Su; R. Dikshit; Y. Lvov; K. Varahramyan, Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens Actuator, B 2006, 114, 218-222.
    [76] W.C. Geng; N. Li, X.T. Li; R. Wang; J.C. Tu; Tong Zhang, Effect of polymerization time on the humidity sensing properties of polypyrrole. Sens Actuator, 5 2007, 125, 114-119.
    
    [77] J.H. Cho; J.B. Yu; J.S. Kim; S.O. Sohn; D.D. Lee; J.S. Huh, Sensing behaviors of polypyrrole sensor under humidity condition. Sens Actuator, B 2005, 108, 389-392.
    
    [78] M. Vasquez; G.J. Cruz; M.G. Olayo; T. Timoshina; J. Morales; R. Olayo, Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer 2006, 47, 7864-7870.
    
    [79] R.P. Tandon; M.R. Tripathy; A.K. Arora; Surat Hotchandani, Gas and humidity response of iron oxide—Polypyrrole nanocomposites. Sens Actuator, B 2006, 114, 768-773.
    
    [80] Y. Li, L.J. Hong; M.J. Yang, Crosslinked and quaternized poly(4-vinylpyridine)/polypyrrole composite as a potential candidate for the detection of low humidity. Talanta 2008, 75, 412-417.
    
    [81] A. Furlani; G. Iucci; M. V. Russo; A. Bearzotti; A. D'Amico, Thin films of iodine-polyphenylacethylene as starting materials for humidity sensors. Sens Actuator, B 1992, 7, 447-450.
    
    [82] L. S. Hwang; J. M. Ko; H. W. Rhee; C. Y. Kim, A polymer humidity sensor. Synth Met 1993, 55-57,3671-3676.
    
    [83] Y. Sakai; Y. Sadaoka; M. Matsuguchi, Humidity sensors based on polymer thin films. Sens Actuator, B\996, 35, 85-90.
    
    [84] Y. Sakai; M. Matsuguchi; T. Hurukawa, Humidity sensor using cross-linked poly(chloromethyl styrene). Sens Actuator, B 2000, 66, 135-138.
    
    [85] M.S. Gong; M.H. Lee; H.W. Rhee, Humidity sensor using cross-linked copolymers containing viologen moiety. Sens Actuator, 5 2001, 73, 185-191.
    
    [86] Y. Sakai; M. Matsuguchi; N. Yonesato, Humidity sensor based on alkali salts of poly(2-acrylamido-2-methylpropane sulfonic acid). Electrochim Acta 2001, 46, 1509-1514.
    
    [87] C.W. Lee; H.W. Rhee; M.S. Gong, Humidity sensor using epoxy resin containing quaternary ammonium salts. Sens Actuator, B 2001, 73, 124-129.
    
    [88] S.H. Park; J.S. Park; C.W. Lee; M.S. Gong, Humidity sensor using gel polyelectrolyte prepared from mutually reactive copolymers. Sens Actuator, B 2002, 86, 68-74.
    
    [89] F. Tailoka; D. J. Fray; R. V. Kumar, Application of Nation electrolytes for the detection of humidity in a corrosive atmosphere. Solid State Ion 2003, 161, 267-277.
    
    [90] S.Y. Son; M.S. Gong, Polymeric humidity sensor using phosphonium salt-containing polymers. Sens Actuator, B 2002, 86, 168-173.
    
    [91] Y. Li; M.J. Yang; Y. She, Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate). Sens Actuator, B 2005, 107, 252-257.
    
    [92] C.P.L. Rubinger; C.R. Martins; M.-A. De Paoli; R.M. Rubinger, Sulfonated polystyrene polymer humidity sensor: Synthesis and characterization. Sens Actuator, B 2007, 123, 42-49.
    
    [93] M. Ueda; K. Nakamura; K. Tanaka; H. Kita; K.I. Okamoto, Water-resistant humidity sensors based on sulfonated polyimides. Sens Actuator, B 2007, 127,463-470.
    
    [94] P.G. Su; I.C. Chen; R.J. Wu, Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicateas sensing material for measurement of humidity. Anal Chim Acta 2001, 449, 103-109.
    
    [95] C.W. Lee; S.W. Joo; M.S. Gong, Polymeric humidity sensor using polyelectrolytes derived from alkoxysilane cross-linker. Sens Actuator, 5 2005, 105, 150-158.
    
    [96] P.G. Su; C.L. Uen, A resistive-type humidity sensor using composite films prepared from poly(2-acrylamido-2-methylpropane sulfonate) and dispersed organic silicon sol. Talanta 2005, 66, 1247-1253.
    [97]Z.W.Yao;M.J.Yang,A fast response resistance-type humidity sensor based on organic silicon containing cross-linked copolymer.Sens Actuator,B 2006,117,93-98.
    [98]X.Lv;Y.Li;L.J.Hong;D.Luo;M.J.Yang,A highly water-resistive humidity sensor based on silicon-containing polyelectrolytes prepared by one-pot method.Sens Actuator,B 2006,124,347-351.
    [99]P.G.Su;Y.L.Sun;C.S.Wang;C.C.Lin,Humidity sensing and electrical properties of hybrid films prepared from[3-(methacrylamino)propyl]trimethyl ammonium chloride,aqueous monodispersed colloidal silica and methyl methacrylate.Sens Actuator,B 2006,119,483-489.
    [100]G.Casalbore-Miceli;M.J.Yang;Y.Li;A.Zanelli;A.Martelli;S.Chen;Y.She;N.Camaioni,A polyelectrolyte as humidity sensing material:Influence of the preparation parameters on its sensing property.Sens Actuator,B 2006,114,584-590.
    [101]M.R.Yang;K.S.Chen,Humidity sensors using polyvinyl alcohol mixed with electrolytes.Sens Actuator,B 1998,49,240-247.
    [102]M.Matsuguchi;T.Uno;A.Yamanaka;T.Kuroiwa;T.Ogura;Yoshiro Sakai,Improvements in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly(vinyl alcohol) film.Sens Actuator,B 2004,97,74-80.
    [103]G.Casalbore-Miceli;M.J.Yang;Y.Li;N.Camaioni;A.Martelli;A.Zanelli,Effect of the doping level on the conductance of polymer-salts complexes in the presence of humidity.Sens Actuator,B 2004,97,362-368.
    [104]P.G.Su;Y.L.Sun;C.C.Lin,Humidity sensor based on PMMA simultaneously doped with two different salts.Sens Actuator,B 2006,113,883-886.
    [105]C.D.Feng;S.L.Sun;H.Wang;C.U.Segre;J.R.Stetter,Humidity sensing properties of Nafion and sol-gel derived SiO_2/Nafion composite thin films.Sens Actuator.B 1997,40,217-222.
    [106]P.G.Su;W.Y.Tsai,Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate).Sens Actuator,B 2004,100,417-422.
    [107]Y.Li;M.J.Yang;Y.She,A novel resistive humidity sensor based on sodium polystyrenesulfonate/TiO_2 nanocomposites.Chin J Polym Sci 2002,3,237-241.
    [108]J.Wang;W.P.Yan;J.C.Zhang;F.B.Qiu;T.Zhang;G.F.Liu;B.K.Xu,Property analysis and humidity sensitivity of the composite material of BaTiO_3 and RMX.Mater Chem Phys 2001,69,288-291.
    [109]J.Wang;Q.H.Lin;R.Q.Zhou;B.K.Xu,Humidity sensors based on composite material of nano-BaTiO_3 and polymer RMX.Sens Actuator,B 2002,81,248-253.
    [110]J.Wang;B.Xu;J.Zhang;G.Liu;T.Zhang;F.Qiu;M.Zhao,Humidity sensors of composite material of nanocrystal BaTiO_3 and polymer(R)_nM~+X~-.J Mater Sci Lett 1999,18,1603-1605.
    [111]J.Wang;B.K.Xu;S.P.Ruan;S.P.Wang,Preparation and electrical properties of humidity sensing films of BaTiO_3/polystyrene sulfonic sodium.Mater Chem Phys 2003,78,746-750.
    [112]Y.Li;M.J.Yang;Y.She,Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites.Talanta 2004,62,707-712.
    [113]J.Wang;F.Q.Wu;K.H.Shi;X.H.Wang;P.P.Sun,Humidity sensitivityof composite material of lanthanum ferrite/polymer quaternary acrylic resin.Sens Actuator,B 2004,99,586-591.
    [114]P.G.Su;S.C.Huang,Humidity sensing and electrical properties of a composite material of SiO_2 and poly-[3-(methacrylamino)propyl]trimethyl ammonium chloride.Sens Actuator,B 2005, 105, 170-175.
    
    [115] P.G. Su; C.J. Ho; Y.L. Sun; I.C. Chen, A micromachined resistive-type humidity sensor with a composite material as sensitive film. Sens Actuator, B 2006, 113, 837-842.
    
    [116] P.G. Su; Y.L. Sun; C.C. Lin, Novel low humidity sensor made of TiO_2 nanowires/poIy(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance. Talanta 2006, 69, 946-951.
    
    [117] J. Wang; G. Song, Mechanism analysis of BaTiO_3 and polymer QAR composite humidity sensor. Thin Solid Films 2007, 515, 8776-8779.
    
    [118] H.W. Chen; R.J. Wu; K.H. Chan; Y.L. Sun; P.G. Su, The application of CNT/Nafion composite material to low humidity sensing measurement. Sens Actuator, B 2005, 104, 80-84.
    
    [119] A. Star; T.R. Han; V. Joshi, J. Stetter, Sensing with Nafion Coated Carbon Nanotube Field-Effect Transistors. Electroanalysis 2004, 16, 108-112.
    
    [120] Y.S. Chen; Y. Li; M.J. Yang, Humidity sensitive properties of NaPSS/MWCNTs nanocomposites. J Mater Sci 2005,40, 5037-5039.
    
    [121] H. Vedala; J. Huang; X.Y. Zhou; G Kim; S. Roy; W.B. Choi, Effect of PVA functionalization on hydrophilicity of Y-junction single wall carbon nanotubes. Appl Surf Sci 2006, 252, 7987-7992.
    
    [122] J. Yeow; J. She, Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology 2006, 17, 5441-5448.
    
    [123] H.H. Yu; T. Cao; L.D. Zhou; E.D. Gu; D.S. Yu; D.S. Jiang, Layer-by-Layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films. Sens Actuator, B 2006, 119, 512-515.
    
    [124] P.G. Su; Y.L. Sun; C.C. Lin, A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sens Actuator, B 2006, 115, 338-343.
    
    [125] P.G. Su; S.C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material. Sens Actuator, 5 2006, 113, 142-149.
    
    [126] P.G. Su; C.S. Wang, In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sens Actuator, B 2007, 124, 303-308.
    
    [127] J. Barkauskas, Investigation of conductometric humidity sensors, Talanta 1997, 44, 1107-1112.
    
    [128] N. Tsubokawa; S. Yoshikawa; K. Maruyama; T. Ogasawara; K. Saitoh, Responsibility of electric resistance of polyethyleneimine-grafted carbon black against alcohol vapor and humidity. Polym Bull 1997, 39, 217-224.
    
    [129] M. Okazaki; K. Maruyama; M. Tsuchida; N. Tsubokawa, A novel gas sensor from poly(ethyleneglycol)-grafted carbon black. Responsibility of electric resistance of poly(ethylene glycol)-grafted carbon black against humidity and solvent vapor, Polym J 1999, 31, 672-676.
    
    [130] Y.B. Shim; J.H. Park, Humidity sensor using chemically synthesized poly(1,5-diaminonaphthalene) doped with carbon. J Electrochem Soc 2000, 147, 381-385.
    
    [131] Y. Li; L.J. Hong; Y.S. Chen; H.C. Wang; X. Lu; M.J. Yang, Poly(4-vinylpyridine)/carbon black composite as a humidity sensor. Sens Actuator, B 2007, 123, 554-559.
    
    [132] Larry L. Miller; Robert G. Duan; David C. Tully; Donald A. Tomalia, Electrically Conducting Dendrimers. J Am Chem Soc 1997, 119, 1005-1010.
    
    [133] B.W. Koo; C.K. Song; C. Kim, CO gas sensor based on a conducting dendrimer. Sens Actuator, B 2001,77,432-436.
    [134] C. Kim; E. Park; C.K. Song; B.W. Koo, Ferrocene end-capped dendrimer: synthesis and application to CO gas sensor. Synth Met 2001, 123, 493-496.
    
    [135] T. Vossmeyer; B. Guse; I. Besnard; R.E. Bauer; K. Mullen; A. Yasuda, Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties. Adv Mater, 2002, 14,238-242.
    
    [136] N. Krasteva; B. Guse; I. Besnard; A. Yasuda; Tobias Vossmeyer, Gold nanoparticle/PPI-dendrimer based chemiresistors: Vapor-sensing properties as a function of thedendrimer size. Sens Actuator, B 2003, 92, 137-143.
    
    [137] M. Sulu; A. Altindal; O. Bekaroglu, Synthesis, characterization and electrical and CO_2 sensing properties of triazine containing three dendritic phthalocyanine. Synth Met 2005, 155, 211-221.
    
    [138] W. Daoud; J. Xin; Y. Szeto, Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sens Actuator, B 2005, 109, 329-333.
    
    [139] X.F. Huang; D.R. Sheng; K.F. Cen; H. Zhou, Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating. Sens Actuator, B 2007, 127, 518-524.
    
    [140] D. Aussawasathien; J.-H. Dong; L. Dai, Electrospun polymer nanofiber sensors. Synth Met 2005, 154,37-40.
    
    [141] B. Ding; M Yamazaki; S. Shiratori, Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sens Actuator, B 2005, 106, 477-483.
    
    [142] T. Maddanimath; I.S. Mulla; S.R. Sainkar; K. Vijayamohanan; K.I. Shaikh; A.S. Patil; S. P. Vernekar, Humidity sensing properties of surface functionalised polyethylene and polypropylene films. Sens Actuator, B 2002, 81,141-151.
    
    [143] R.V. Dabhade; D.S. Bodas; S.A. Gangal, Plasma-treated polymer as humidity sensing material—a feasibility study. Sens Actuator, B 2004, 98, 37-40.
    
    [144] C.W. Lee; D.H. Nam; Y.S. Han; K.C. Chung; M.S. Gong, Humidity sensors fabricated with polyelectrolyte membrane using an ink-jet printing technique and their electrical properties. Sens Actuator, B 2005, 109, 334-340.
    
    [145] B. Yang; B. Aksak; Q. Lin; M. Sitti, Compliant and low-cost humidity nanosensors using nanoporous polymer membranes. Sens Actuator, B 2006, 114, 254-262.
    
    [146] K. Liu; Y. Li; L.J. Hong; M.J. Yang, Humidity sensitive properties of an anionic conjugated polyelectrolyte. Sens Actuator, B 2008, 129,24-29.
    
    [147] G. Casalbore-Miceli; Y.S. Chen; E.M. Girotto; Y. Li; A.W. Rinaldi; M.J. Yang; A. Zanelli, Prompt responsive sensors for water detection in organic solvents. Sens Actuator, B 2006, 119, 577-582.
    
    [148] G. Casalbore-Miceli; A. Zanelli; A.W. Rinaldi; N. Camaioni; M.J. Yang; Y. Li; E.M. Girotto, Electric properties of polyelectrolyte films in moist solvents. Sens Actuator, B 2007, 125, 120-125.
    
    [149] G. Casalbore-Miceli; A. Zanelli; A. W. Rinaldi; E. M. Girotto; M.-J. Yang; Y.-S. Chen; Y. Li, A Model of Polyelectrolyte Conductance in Moist Solvents as a Basis of Water Sensors. Langmuir 2005,21,9704-9708.
    
    [150] J. Liu; M. Agarwal; K. Varahramyan; E. Berney IV; W. Hodo, Polymer-based microsensor for soil moisture measurement. Sens Actuator, B 2008, 129, 599-604.
    
    [151] W. M. Sigmund; G. Weerasekera; C. Marestin; S. Styron; H. Zhou; M. Z. Elsabee; J. Ruhe, G. Wegner; R. S. Duran, Polymerization of Monolayers of 3-Substituted Pyrroles. Langmuir 1999, 15, 6423-6427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700