芥菜型油菜胞质不育Hau CMS不育相关基因的鉴定及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育(CMS)是油菜杂种优势利用的主要途径。目前,国内外主要应用的油菜CMS系统有ogura CMS和polima CMS,其中ogura系统在欧洲应用较多,国内主要使用傅廷栋教授于1972年发现的polima胞质不育系统。然而,生产上杂交种的胞质单一化存在着潜在风险。因此,鉴定新的细胞质雄性不育类型及其胞质不育基因对于实现杂交种胞质来源多样化具有重要意义。本研究以hau CMS原始芥菜型油菜和转育的甘蓝型油菜保持系和不育系为实验材料,通过对hau胞质线粒体基因及侧翼特异区域进行序列结构及其表达,翻译分析;并进一步通过原核表达及植物遗传转化的方法,对hau胞质特异的异常开放读码框进行功能分析,鉴定hau胞质的不育相关基因。本研究的主要结果如下:
     1.hau胞质线粒体基因组特异区段的分析
     通过对不育系线粒体的功能基因侧翼序列进行染色体步移(genome walking)及序列对比分析,发现hau CMS线粒体atp6基因的下游与其芥菜型油菜保持系,甘蓝型油菜保持系存在明显差异。进一步对该区域进行BLAST分析,发现该区域可能包含一异常开放读码框(chimeric open reading frame)——orf288,与已报道的tour胞质的同源区域相似度较高(99.5%)。在所比较的序列内有四个位点的差异,hau CMS相对于tour胞质有三个碱基(485bp,785bp,802bp)的置换和一个碱基(764bp)的缺失,该开放阅读框与甘蓝型油菜油菜nap胞质线粒体orf286同源性为93%。
     2.hau胞质不育相关区域atp6/orf288的表达分析
     通过RT-PCR和northern杂交分析,证实了atp6和orf288在不育系线粒体中共转录;对orf288编码的氨基酸序列和结构进行分析,推测其编码的蛋白N端包含3个跨膜区。为了进一步验证orf288在不育系中可以翻译成蛋白,我们合成了ORF288部分氨基酸序列用于制备其特异的多克隆抗体。通过特异的多克隆抗体对不育系线粒体蛋白和花蕾总蛋白进行western杂交,结果表明orf288在hau CMS不育系中翻译成大小约32kD的蛋白。
     3.ORF288对大肠杆菌宿主菌具有毒害作用
     细胞质不育基因通过影响线粒体物质和能量代谢而导致植物雄性器官发育异常,而线粒体起源于共生在真核细胞中的细菌。因此,一些研究表明不育基因在大肠杆菌中表达,会抑制大肠杆菌的生长或对其具有致死作用。我们将orf288连入原核表达载体PET32a,在IPTG诱导下在BL21(DE3)菌株中表达。结果表明ORF288对大肠杆菌宿主细胞的增殖具有明显的抑制作用。这一结果说明orf288对大肠杆菌具有毒害作用,可能以同样的方式作用于植物线粒体,并进一步影响雄蕊发育。
     4.orf288的拟南芥遗传转化植株雄蕊败育
     为了进一步验证orf288的功能,我们构建了4个植物转化载体:(1)VNO:包含35S启动子,酵母Y187菌株coxⅣ基因的线粒体定位信号和orf288编码序列;(2)VN3:包含拟南芥AP3基因启动子,酵母Y187菌株coxⅣ基因的线粒体定位信号和orf288编码序列;(3) VNⅡ:包含拟南芥AP3启动子序列和orf288开放阅读框;(4)启动子驱动的GUS基因的载体。拟南芥转基因结果表明,VN3和VNII载体80%的转化植株表现为雄蕊败育,而VNO载体和AGUS对照载体转化植株的育性并没有变化。
     5.ORF288的亚细胞定位
     拟南芥转化实验表明,orf288在转化植株中表达能够导致植物育性的变化。其中VNⅡ载体转化植株表型与VN3一致。因此,我们推测orf288在细胞质基质中可以行使其功能或其自身可以定位到线粒体(在线粒体外表达)。通过PredSL和TargetP对ORF288氨基酸进行软件预测分析,其N端可能包含一段线粒体定位信号。为了进一步阐明orf288具有自身的线粒体定位信号,我们将其融合在GFP的N端,通过PEG介导的方法转化拟南芥原生质体,拟南芥原生质体瞬时表达结果表明,ORF288不需要外源信号肽协助就可以将自身定位到植物线粒体上。
Cytoplasmic male sterility(CMS) is one of the most important ways to produce hybrid seeds in rapeseed. For decades, polima and ogura systems are widely used CMS types around the world. The polima CMS discovered by professor Fu is the predominant system used in China, and the ogura CMS is widely used in several European countries. However, the homogenization of cytoplasm is not good for rapeseed production potentially. Therefore, characterization and identification of novel CMS system is beneficial for rapeseed production. In this study, we isolated and sequenced the specific mitochondrial fragments of hau cyoplasm, and then identified and analysed the transcripts and translated products of the specific chimeric open reading frame (ORF) by northern blotting and western blotting respectively. In order to further analyse the machanism of this orf, we transformed this orf to E. coli cells and wild type Arabidopsis. The main results are listed here:
     1. The specific mitochondrial genomic region of hau mitotype The flanking sequences of several mitochondrial genes in the male-sterile line were compared with those in the maintainer line. A chimeric fragment was found to be located downstream of the atp6gene in hau cyoplasm. A novel chimeric gene (named orf288) was found to be located downstream of the atp6gene in hau CMS sterile line. The BLAST searches indicated that this fragment shares high similarity (99.5%) with orf263in alloplasmic male-sterile Brassica lines (tour cyoplasm). There were four point mutations:one deletion at position764bp and three nucleotide changes at485bp,785bp and802bp in orf288. Multiple alignments of orf286and orf288showed that orf286from the mitochondrial genome of B. napus shares93%nucleotide sequence identity with orf288.
     2. The expression analysis of atp6/orf288region in hau cytoplasm The RT-PCR and northern blotting analysis revealed that orf288is cotranscriped with atp6in hau male-sterile line. This chimeric gene (orf288) was predicted to encode a32kD protein with a triple transmembrane region. To confirm that this gene was actually translated, a peptide antigen of ORF288was synthesized and used to produce a polyclonal antibody. A band of approximately32kD was detected exclusively for the male-sterile protein samples extracted from mitochondrial and buds. Western blotting analysis showed that this predicted open reading frame was translated in the mitochondria of male-sterile plants.
     3. ORF288is toxic to E.coli host cells It has been widely accepted that mitochondria have evolved from an a-proteobacterial endosymbiont into vital eukaryotic organelles. Several researchers found that CMS-associated genes are toxic to host E.coli cells. To examine the function of orf288, its coding sequence was cloned into the expression region of a PET32a vector, and IPTG was used to induce its expression in E. coli. The growth of the host bacteria was repressed significantly with the expression of ORF288. This result means that ORF288is toxic to host cells. Therefore, we predicted that it may affected the function of plant mitochondria, and then suppressed the development of stamens.
     4. Expression of orf288in Arabidopsis significantly impairs the development of anthers To investigate the association of this chimeric gene with the male abortion of the hau CMS sterile line, four constructs were prepared and transformed into A. thaliana.(1) The VNO construct contained a35S promoter and orf288, which was fused to the mitochondrial transit peptide sequence of the nuclear coxIV gene of yeast for mitochondrial targeting.(2) VN3:The fused ORF that was driven by the AP3promoter was specifically designed to investigate its effects on floral organs. VNII vector was constructed, in which orf288was driven by the AP3promoter but lacked the coxIV presequence.(4) AGUS construct with the β-glucuronidase (GUS) gene driven by the AP3promoter was transformed into the plants as control. Almost80%of transgenic plants with VN3and VNII fragemts failed to develop anthers.
     5. The subcellular localization of ORF288The transformation experiments indicated that orf288can affected development of stamens in transgenic plants. The trangenic plants even with VNII aslo develped no pollen. Therefore, we predicted that orf288is functional in the cytoplasmic matrix or is targeted to the mitochondria without the assistance of an external transit peptide. PredSL and TargetP were used to predict the subcellular localization of ORF288and the result showed that the N-terminal sequence could have its own signal function. To confirm that ORF288is able to anchor to the mitochondria, the entire ORF was fused with GFP, and the fusion protein was expressed transiently in Arabidopsis protoplasts using the PEG transfection method. The result indicated that without the external signal presequence, ORF288that is expressed in the cellular matrix additionally targets itself to the mitochondria.
引文
1. 傅廷栋.论油菜的起源进化与三系选育.中国油料,1989,1:7-10.
    2. 傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000.
    3. 李传国,梁世胡,伍应运,张其文.红莲型优质籼稻不育系粤泰A及其杂交稻组合粤优938的选育与利用.2007中国科协年会专题论坛“红莲型杂交水稻学术专题研讨会”,2007,湖北武汉.
    4. 李传国,伍应运,仲维功,陈志德.粤泰A(HL)与珍汕97A(WA)育种特性评价.江苏农业科学,1996,5:4-7.
    5. 李绍清.水稻红莲型细胞质雄性不育与育性恢复的分子机理.[博士学位论文].武汉:武汉大学图书馆,2004.
    6. 李团银,张福耀,李三棉,韦耀明,柳青山.高粱新型细胞质雄性不育系A2V4A选育及其应用研究中国农学通报,1995,11:10-13.
    7. 李阳生,朱仁山,李绍清,余金洪,朱英国.优质高产广适应性红莲型杂交稻选育.农产品加工(创新版),2009,3:78-80
    8. 罗荡平,刘振兰,徐红,郭晶心,吴豪,张群宇,叶珊,纪宠辉,吴鸿,刘耀光.败型水稻细胞质雄性不育基因的起源、进化、和不育发生机理.植物分子生物学与现代农业——2010全国植物生物学研讨会,2010,中国天津.
    9. 梅德圣,李云昌,胡琼.甘蓝型油菜属间体细胞杂种雄性不育材料的研究.中国油料作物学报,2003,25:72-75.
    10.万正杰.芥菜型油菜细胞质雄性不育系hau CMS的遗传分类和利用研究.[博士学位论文].武汉:华中农业大学图书馆,2008.
    11.汪静,曹墨菊,朱英国,潘光堂,荣廷昭.玉米不育系及其保持系线粒体atp6基因转录本编辑位点研究.遗传,2007,29:731-737.
    12.王中华.水稻BT型细胞质雄性不育和恢复基因的克隆及其互作机理研究.[博士论文].广州:华南农业大学图书馆,2004.
    13.张方东.玉米S组CMS胞质育性相关基因的克隆与结构分析.[博士学位论文].武汉:华中农业大学图书馆,1999.
    14.张天真.作物育种学总论.北京:中国农业出版社,2003,144-164.
    15.张晓国,朱英国,余金洪,梅启明.水稻雄性不育新质源的研究.武汉植物学研究,1996,14:110-116.
    16.朱英国,李阳生,朱仁山,余金洪,李绍清.关于加强红莲型杂交水稻种子工程建设,稳步推进红莲型杂交水稻产业化,打造湖北种业品牌的的建议报告.2007中国科协年会专题论坛“红莲型杂交水稻学术专题研讨会”,2007,湖北武汉.
    17. Abad, A.R., B.J. Mehrtens, and S.A. Mackenzie, Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell,1995.7:271-285.
    18. Abdelnoor, R.V., R. Yule, A. Elo, A.C. Christensen, G. Meyer-Gauen, and S.A. Mackenzie, Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA,2003.100: 5968-5973.
    19. Akagi, H., M. Sakamoto, C. Shinjyo, H. Shimada, and T. Fujimura, A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet,1994.25:52-58.
    20. Arrieta-Montiel, M., A. Lyznik, M. Woloszynska, H. Janska, J. Tohme, and S. Mackenzie, Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics,2001.158:851-864.
    21. Ashutosh, P. Kumar, V. Dinesh Kumar, P.C. Sharma, S. Prakash, and S.R. Bhat, A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm. Plant Cell Physiol,2008.49:284-289.
    22. Beckett, J.B., Classification of Male-Sterile Cytoplasms in Maize (Zea mays L.). Crop Science,1971.11:724-727.
    23. Bellaoui, M., M. Grelon, G. Pelletier, and F. Budar, The restorer Rfo gene acts post-translationally on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids. Plant Mol Biol,1999.40:893-902.
    24. Bentolila, S., A.A. Alfonso, and M.R. Hanson, A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA, 2002.99:10887-10892.
    25. Bonhomme, S., F. Budar, D. Lancelin, I. Small, M.C. Defrance, and G. Pelletier, Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Molecular and General Genetics 1992.235:340-348.
    26. Bousselle, Cytoplasmic male sterility in rape(B,napus). Cruciferae Newsletter,1980.
    27. Brown, G.G., N. Formanova, H. Jin, R. Wargachuk, C. Dendy, P. Patil, M. Laforest, J. Zhang, W.Y. Cheung, and B.S. Landry, The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J,2003.35:262-272.
    28. Carlsson, J., U. Lagercrantz, J. Sundstrom, R. Teixeira, F. Wellmer, E.M. Meyerowitz, and K. Glimelius, Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J,2007.49:452-462.
    29. Castandet, B., D. Choury, D. Begu, X. Jordana, and A. Araya, Intron RNA editing is essential for splicing in plant mitochondria Nucleic Acids Res,2010.38:7112-7121.
    30. Chase, C.D. and V.M. Ortega, Organization of ATPA coding and 3'flanking sequences associated with cytoplasmic male sterility in Phaseolus vulgaris L.. Curr Genet,1992.22:147-153.
    31. Chaumont, F., B. Bernier, R. Buxant, M.E. Williams, C.S. Levings,3rd, and M. Boutry, Targeting the maize T-urfl3 product into tobacco mitochondria confers methomyl sensitivity to mitochondrial respiration. Proc Natl Acad Sci, USA,1995. 92:1167-1171.
    32. Christensen, C.A., S.W. Gorsich, R.H. Brown, L.G. Jones, J. Brown, J.M. Shaw, and G.N. Drews, Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell,2002.14:2215-2232.
    33. Conley, C.A. and M.R. Hanson, Tissue-Specific Protein Expression in Plant Mitochondria. Plant Cell,1994.6:85-91.
    34. Cui, X., R.P. Wise, and P.S. Schnable, The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science,1996.272:1334-1336.
    35. Das, S., S. Sen, A. Chakraborty, P. Chakraborti, M.K. Maiti, A. Basu, D. Basu, and S.K. Sen, An unedited 1.1 kb mitochondrial orfB gene transcript in the wild abortive cytoplasmic male sterility (WA-CMS) system of Oryza sativa L. subsp. indica. BMC Plant Biology,2010.10:39.
    36. Desloire, S., H. Gherbi, W. Laloui, S. Marhadour, V. Clouet, L. Cattolico, C. Falentin, S. Giancola, M. Renard, F. Budar, I. Small, M. Caboche, R. Delourme, and A. Bendahmane, Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep,2003.4: 588-594.
    37. Dewey, R.E., C.S. Levings,3rd, and D.H. Timothy, Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell,1986.44:439-449.
    38. Dewey, R.E., D.H. Timothy, and C.S. Levings, A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci, USA,1987.84:5374-5378.
    39. Dewey, R.E., D.H. Timothy, and C.S. Levings, Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet,1991.20:475-482.
    40. Dewey, R.E., J.N. Siedow, D.H. Timothy, and C.S. Levings,3rd, A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science,1988.239:293-295.
    41. Dickson, G1117A, G1102A, G1106A, Cytosterile broccoli inbreds. Hortscience, 1975.10.
    42. Dieterich, J.H., H.P. Braun, and U.K. Schmitz, Alloplasmic male sterility in Brassica napus (CMS'Tournefortii-Stiewe') is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics,2003.269:723-731.
    43. Duroc, Y., C. Gaillard, S. Hiard, C. Tinchant, R. Berthom, G. Pelletier, and F. Budar, Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Science,2006.170:755-767.
    44. Duroc, Y., C. Gaillard, S. Hiard, M.C. Defrance, G. Pelletier, and F. Budar, Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie,2005.87: 1089-1100.
    45. Duroc, Y., S. Hiard, N. Vrielynck, S. Ragu, and F. Budar, The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria Plant Mol Biol, 2009.70:123-137.
    46. Farbos, I., A. Mouras, A. Bereterbide, and K. Glimelius, Defective cell proliferation in the floral meristem of alloplasmic plants of Nicotiana tabacum leads to abnormal floral organ development and male sterility. Plant J,2001.26:131-142.
    47. Feng Liu, Xiangqin Cui, Harry T. Horner, Henry Weiner, and P.S. Schnable, Mitochondrial aldehyde dehydrogenase activity Is required for male fertility in maize Plant Cell,2001.13:1063-1078.
    48. Feng, X., A.P. Kaur, S.A. Mackenzie, and I.M. Dweikat, Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet, 2009.118:1361-1370.
    49. Ferreira Junior, J.R., A.S. Ramos, F.S. Chambergo, B.U. Stambuk, L.K. Muschellack, R. Schumacher, and H. El-Dorry, Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae, Biochem Biophys Res Commun,2006.339:30-36.
    50. Fey, J., K. Tomita, M. Bergdoll, and L. Marechal-Drouard, Evolutionary and functional aspects of C-to-U editing at position 28 of tRNA(Cys)(GCA) in plant mitochondria. RNA,2000.6:470-474.
    51. Forde, B.G. and C.J. Leaver, Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc Natl Acad Sci U S A, 1980.77:418-422.
    52. Forner, J., B. Weber, S. Thuss, S. Wildum, and S. Binder, Mapping of mitochondrial mRNA termini in Arabidopsis thaliana:t-elements contribute to 5'and 3'end formation. Nucleic Acids Research,2007.35:3676-3692.
    53. Fujii, S. and K. Toriyama, DCW11, down-regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2c is related to cytoplasmic male sterility. Plant Cell Physiol,2008.49:633-640.
    54. Fujii, S. and K. Toriyama, Molecular mapping of the fertility restorer gene for ms-CW-type cytoplasmic male sterility of rice. Theor Appl Genet,2005. 111: 696-701.
    55. Fujii, S. and K. Toriyama, Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA,2009.106:9513-9518.
    56. Fujii, S., C.S. Bond, and I.D. Small, Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci U S A,2011.108:1723-1728.
    57. Fujii, S., M. Yamada, M. Fujita, E. Itabashi, K. Hamada, K. Yano, N. Kurata, and K. Toriyama, Cytoplasmic-nuclear genomic barriers in rice pollen development revealed by comparison of global gene expression profiles among five independent cytoplasmic male sterile lines. Plant Cell Physiol,2010.51:610-620.
    58. Fujii, S., S. Komatsu, and K. Toriyama, Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Mol Biol,2007.63:405-417.
    59. Gabay-Laughnan, S., E.V. Kuzmin, J. Monroe, L. Roark, and K.J. Newton, Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize. Genetics,2009.182:91-103.
    60. Geddy, R., L. Mahe, and G.G. Brown, Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. Plant J,2005.41:333-345.
    61. Gonzalez-Melendi, P., M. Uyttewaal, C.N. Morcillo, J.R. Hernandez Mora, S. Fajardo, F. Budar, and M.M. Lucas, A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed(Brassica napus). J Exp Bot,2008.59:827-838.
    62. Grelon, M., F. Budar, S. Bonhomme, and G. Pelletier, Ogura cytoplasmic male-sterility (CMS)-associated orfl38 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet,1994.243:540-547.
    63. Gu, J., S. Dempsey, and K.J. Newton, Rescue of a maize mitochondrial cytochrome oxidase mutant by tissue culture. Plant J,1994.6:787-794.
    64. H.K. Laver, S.J. Reynolds, F. Moneger, and C.J. Leaver, Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J,1991.1:185-193.
    65. Handa, H., The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.):comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana Nucleic Acids Research,2003.31:5907-5916.
    66. Hanson, M.R., Plant mitochondrial mutations and male sterility. Annual Review of Genetics,1991.25:461-486.
    67. He, S., A.R. Abad, S.B. Gelvin, and S.A. Mackenzie, A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci, USA,1996.93:11763-11768.
    68. Hill, T.A., C.D. Day, S.C. Zondlo, A.G. Thackeray, and V.F. Irish, Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development,1998.125:1711-1721.
    69. Horn, R., R.H. Kohler, and K. Zetsche, A mitochondrial 16 kDa protein is associated with cytoplasmic male sterility in sunflower. Plant Mol Biol,1991.19:29-36.
    70. Hu, J., K. Wang, W. Huang, G. Liu, Y. Gao, J. Wang, Q. Huang, Y. Ji, X. Qin, L Wan, R. Zhu, S. Li, D. Yang, and Y. Zhu, The Rice Pentatricopeptide Repeat Protein RF5 Restores Fertility in Hong-Lian Cytoplasmic Male-Sterile Lines via a Complex with the Glycine-Rich Protein GRP162. Plant Cell,2012.24:109-122.
    71. Itabashi, E., N. Iwata, S. Fujii, T. Kazama, and K. Toriyama, The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein Plant J,2011.65:359-367.
    72. Iwabuchi, M., J. Kyozuka, and K. Shimamoto, Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J,1993.12:1437-1446.
    73. Iwabuchi, M., N. Koizuka, H. Fujimoto, T. Sakai, and J. Imamura, Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orfl38. Plant Mol Biol,1999.39:6.
    74. Jenik, P.D. and V.F. Irish, The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development. Development,2001.128:13-23.
    75. Johns, C., M. Lu, A. Lyznik, and S. Mackenzie, A Mitochondrial DNA Sequence Is Associated with Abnormal Pollen Development in Cytoplasmic Male Sterile Bean Plants. Plant Cell,1992.4:435-449.
    76. Kadowaki, K., T. Suzuki, and S. Kazama, A chimeric gene containing the 5'portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol Gen Genet,1990. 224:10-16.
    77. Kazama, T., T. Nakamura, M. Watanabe, M. Sugita, and K. Toriyama, Suppression mechanism of mitochondrial ORF79 accumulation by Rfl protein in BT-type cytoplasmic male sterile rice. Plant J,2008.55:619-628.
    78. Kennell, J.C. and D.R. Pring, Initiation and processing of atp6, T-urfl3 and ORF221 transcripts from mitochondria of T cytoplasm maize. Molecular and General Genetics,1989.216:16-24.
    79. Kim, D.H., J.G. Kang, and B.D. Kim, Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper(Capsicum annuum L.). Plant Mol Biol,2007.63:519-532.
    80. Kim, S., E.T. Lee, D.Y. Cho, T. Han, H. Bang, B.S. Patil, Y.K. Ahn, and M.K. Yoon, Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing among three cytoplasm types in onion (Allium cepa L.). Theor Appl Genet,2009.118:433-441.
    81. Kohler, R.H., R. Horn, A. Lossl, and K. Zetsche, Cytoplasmic male sterility in sunflower is correlated with the cotranscript of a new open reading frame with the atpA gene. Mol Genet Genomics,1991.227:369-376.
    82. Kohler, R.H., W.R. Zipfel, W.W. Webb, and M.R. Hanson, The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J,1997.11: 613-621.
    83. Koizuka, N., R. Imai, H. Fujimoto, T. Hayakawa, Y. Kimura,.J. Kohno-Murase, T. Sakai, S. Kawasaki, and J. Imamura, Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish Plant J,2003.34:407-415.
    84. Koizuka, N., R. Imai, M. Iwabuchi, T. Sakai, and J. Imamura, Genetic analysis of fertility restoration and accumulation of ORF125 mitochondrial protein in the kosena radish (Raphanus sativus cv. Kosena) and a Brassica napus restorer line. Theor Appl Genet,2000.100:949-955.
    85. Kojimaa, H., Tomohiko Kazama, Sota Fujii, and K. Toriyama, Cytoplasmic male sterility-associated ORF79 is toxic to plant regeneration when expressed with mitochondrial targeting sequence of ATPase Y subunit. Plant Biotechnology Journal, 2010.27:111-114.
    86. Krishnasamy, S. and C.A. Makaroff, Characterization of the radish mitochondrial orfB locus:possible relationship with male sterility in Ogura radish. Curr Genet, 1993.24:156-163.
    87. Krogh, A., B. Larsson, G. von Heijne, and E.L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J Mol Biol,2001.305:567-580.
    88. Kuhn, J. and S. Binder, RT-PCR analysis of 5'to 3'-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria Nucleic Acids Research, 2002.30:439-446.
    89. Kumar, P., N. Vasupalli, R. Srinivasan, and S.R. Bhat, An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana. J Exp Bot,2012.
    90. Kumar, R. and C.S. Levings, RNA editing of a chimeric maize mitochondrial gene transcript is sequence specific. Curr Genet,1993.23:154-159.
    91. Lamb, R.S., T.A. Hill, Q.K. Tan, and V.F. Irish, Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development,2002.129: 2079-2086.
    92. Landgren, M., M. Zetterstrand, E. Sundberg, and K. Glimelius, Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3' of the atp6 gene and a 32 kDa protein Plant Mol Biol,1996.32:879-890.
    93. Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins, Clustal W and Clustal X version 2.0. Bioinformatics, 2007.23:2947-2948.
    94. Laser, K.D. and N.R. Lersten, Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. The Botanical Review,1972.38:425-454.
    95. Leino, M., R. Teixeira, M. Landgren, and K. Glimelius, Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor Appl Genet,2003.106:1156-1163.
    96. Leung, S.S. and D.J. Koslowsky, Interactions of mRNAs and gRNAs involved in trypanosome mitochondrial RNA editing:Structure probing of an mRNA bound to its cognate gRNA. RNA-A Publication of the RNA Society,2001.7:1803-1816.
    97. L'Homme, Y., R.J. Stahl, X.Q. Li, A. Hameed, and G.G. Brown, Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet,1997.31:325-335.
    98. Li, S., C. Wan, J. Kong, Z. Zhang, Y. Li, and Y. Zhu, Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria Functional Plant Biology,2004.4:369-376.
    99. Li, S., Y. Tan, K. Wang, C. Wan, and Y. Zhu, Gametophytically alloplasmic CMS line of rice (Oryza sativa L.) with variant orfHH79 haplotype corresponds to specific fertility restorer. Theor Appl Genet,2008.117:1389-1397.
    100. Linke, B. and T. Borner, Mitochondrial effects on flower and pollen development. Mitochondrion,2005.5:389-402.
    101. Liu, F., X. Cui, H.T. Horner, H. Weiner, and P.S. Schnable, Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell,2001.13: 1063-1078.
    102. Logan, D.C., Plant mitochondria. Annual plant reviews v.31.2007, Oxford; Ames, Iowa:Blackwell Pub. xvi,342-348.
    103.Matera, J.T., J. Monroe, W. Smelser, S. Gabay-Laughnan, and K.J. Newton, Unique Changes in Mitochondrial Genomes Associated with Reversions of S-Type Cytoplasmic Male Sterility in Maizemar. PLoS One,2011.
    104. McGonigle, B., K. Bouhidel, and V.F. Irish, Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev,1996.10:1812-1821.
    105.Menassa, R., Y. L'Homme, and G.G. Brown, Post-transcriptional and developmental regulation of a CMS-associated mitochondrial gene region by a nuclear restorer gene. Plant J,1999.17:491-499.
    106.Moller, S., M.D. Croning, and R. Apweiler, Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics,2001.17:646-653.
    107.Moneger, F., C.J. Smart, and C.J. Leaver, Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. The EMBO Journal,1994.13:8-17.
    108.Nakai, S., N. D, K. M, and T. T, High-level expression of a mitochondrial orf522 gene from the male-sterile sunflower is lethal to E. coli. Breeding Science,1995.45:
    109. Nicholas, K. and H.B. Nicholas Jr, GeneDoc:a tool for editing and annotating multiple sequence alignments, distributed by the authers.1997.
    110.Nivison, H.T. and M.R. Hanson, Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia Plant Cell,1989.1:1121-1130.
    111.Nivison, H.T., C.A. Sutton, R.K. Wilson, and M.R. Hanson, Sequencing, processing, and localization of the petunia CMS-associated mitochondrial protein. Plant J,1994. 5:613-623.
    112.Nizampatnam, N.R., H. Doodhi, Y.K. Narasimhan, S. Mulpuri, and D.K. Viswanathaswamy, Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. Planta,2009.229:987-1001.
    113.Peng, X., K. Wang, C. Hu, Y. Zhu, T. Wang, J. Yang, J. Tong, and S. Li, The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biol,2010.10: 125.
    114. Pennazio, S., Plant mitochondria. Fifty years of plant biology. Riv Biol,2007.100: 305-325.
    115.Prakash, S., P.B. Kirti, S.R. Bhat, K. Gaikwad, V.D. Kumar, and V.L. Chopra, A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor Appl Genet,1998.97:488-492.
    116.Pring, D.R., C.S. Levings, W.W. Hu, and D.H. Timothy, Unique DNA associated with mitochondria in the "S"-type cytoplasm of male-sterile maize. Proc Natl Acad Sci USA,1977.74:2904-2908.
    117.Sakai, T. and J. Imamura, Alteration of mitochondrial genomes containing atpA genes in the sexual progeny of cybrids between Raphanus sativus cms line and Brassica napus cv. Westar. Theor Appl Genet,1992.84:923-929.
    118.Sandhu, A.P., R.V. Abdelnoor, and S.A. Mackenzie, Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci U S A,2007.104:1766-1770.
    119.Sarria, R., A. Lyznik, C.E. Vallejos, and S.A. Mackenzie, A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell,1998.10:1217-1228.
    120.Satoh, M., T. Kubo, S. Nishizawa, A. Estiati, N. Itchoda, and T. Mikami, The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol Genet Genomics,2004.272:247-256.
    121.Schardl, C.L., D.M. Lonsdale, D.R. Pring, and K.R. Rose, Linearization of maize mitochondrial chromosomes by recombination with linear episomes. nature,1984. 310:292-296.
    122. Shedge, V., M. Arrieta-Montiel, A.C. Christensen, and S.A. Mackenzie, Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell,2007.19:1251-1264.
    123. Singh, M. and G.G. Brown, Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS:developmental influences. Curr Genet,1993.24:316-322.
    124. Singh, M. and G.G. Brown, Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene regioa Plant Cell,1991.3: 1349-1362.
    125. Smart, C.J., F. Moneger, and C.J. Leaver, Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell,1994.6: 811-825.
    126.Sonnhammer, E.L., G. von Heijne, and A. Krogh, A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol,1998.6:175-182.
    127.Stahl, R., S. Sun, Y. L'Homme, T. Ketela, and G.G. Brown, RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica. Nucleic Acids Research,1994.22:2109-2113.
    128.Stiewe, G. and G. Robbelen, Establishing cytoplasmic male sterility in Brassica napus by mitochondrial recombination with B. tournefortii. Plant Breeding,1994. 113:294-304.
    129.Teixeira, R.T., C. Knorpp, and K. Glimelius, Modified sucrose, starch, and ATP levels in two alloplasmic male-sterile lines of B.napus. J Exp Bot,2005b.56: 1245-1253.
    130.Teixeira, R.T., I. Farbos, and K. Glimelius, Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J,2005a.42:731-742.
    131.Tzeng, T.Y., L.R. Kong, C.H. Chen, C.C. Shaw, and C.H. Yang, Overexpression of the lily p70(s6k) gene in Arabidopsis affects elongation of flower organs and indicates TOR-dependent regulation of AP3, PI and SUP translation. Plant Cell Physiol,2009.50:1695-1709.
    132.Uyttewaal, M., N. Arnal, M. Quadrado, A. Martin-Canadell, N. Vrielynck, S. Hiard, H. Gherbi, A. Bendahmane, F. Budar, and H. Mireau, Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell,2008.20:3331-3345.
    133. Wan, Z.J., B. Jing, J.X. Tu, C.Z. Ma, J.X. Shen, B. Yi, J. Wen, T. Huang, X.J. Wang, and T.D. Fu, Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theor Appl Genet,2008.116: 355-362.
    134. Wang, H.M., T. Ketela, W.A. Keller, S.C. Gleddie, and G.G. Brown, Genetic correlation of the orf224/atp6 gene region with Polima CMS in Brassica somatic hybrids. Plant Mol Biol,1995.27:801-807.
    135. Wang, Z.H., Y. Zou, X. Li, Q. Zhang, L. Chen, H. Wu, D. Su, Y. Chen, J. Guo, D. Luo, Y. Long, Y. Zhong, and Y.G. Liu, Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell,2006.18:676-687.
    136. Wen, L. and C.D. Chase, Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet,1999. 35:521-526.
    137. Yamagishi, H., M. Landgren, J. Forsberg, and K. Glimelius, Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system. Theor Appl Genet,2002.104:959-964.
    138.Yamamoto, M.P., H. Shinada, Y. Onodera, C. Komaki, T. Mikami, and T. Kubo, A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J,2008.54:1027-1036.
    139. Yamamoto, M.P., T. Kubo, and T. Mikami, The 5'-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility. Mol Genet Genomics,2005.273:342-349.
    140. Yang, J., X. Liu, X. Yang, and M. Zhang, Mitochondrial-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea BMC Plant Biol,2010.10:231.
    141.Yasumoto, K., T. Terachi, and H. Yamagishi, A novel Rf gene controlling fertility restoration of Ogura male sterility by RNA processing of orfl38 found in Japanese wild radish and its STS markers. Genome,2009.52:495-504.
    142. Yoo, S.D., Y.H. Cho, and J. Sheen, Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocols,2007.2: 1565-1572.
    143. Yui, R., S. Iketani, T. Mikami, and T. Kubo, Antisense inhibition of mitochondrial pyruvate dehydrogenase El alpha subunit in anther tapetum causes male sterility. Plant J,2003.34:57-66.
    144.Zabala, G., S. Gabay-Laughnan, and J.R. Laughnan, The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics,1997.147:847-860.
    145. Zhang, H., S. Li, P. Yi, C. Wan, Z. Chen, and Y. Zhu, A Honglian CMS line of rice displays aberrant F0 of F0F1-ATPase. Plant Cell Rep,2007.26:1065-1071.
    146.Zubko, M.K., Mitochondrial tuning fork in nuclear homeotic functions. Trends Plant Sci,2004.9:61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700