汞诱导蕨类植物和印度芥菜氧化胁迫反应及其污染土壤的植物修复作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞污染对农业生态环境和人类健康的危害日趋严重,应用植物修复技术对包括汞在内的重金属污染进行治理是目前的研究热点。本文通过研究特定植物对水体、土壤和空气中汞的吸收与积累,以及相应条件下植物的生理生化变化,对汞污染的植物修复技术进行了初探。
     凤尾蕨和波士顿蕨分别是已知的砷超积累品种和砷敏感品种,鉴于超积累植物在抵抗重金属胁迫方面的某些共同特征,我们用Hg2+溶液处理两种蕨类植物的根部,研究植物对溶液中Hg2+的吸收和积累,以及由此诱导的地上部生理毒害和氧化胁迫反应。两种蕨类植物根系都能积累大量汞,但向地上部的转运效率较低。凤尾蕨地上部和根系对汞的吸收和积累量显著大于波士顿蕨。汞胁迫造成凤尾蕨地上部产生可视的萎焉、缺绿等胁迫症状,电子显微镜观察也显示出叶片维管束细胞的收缩和叶绿体的降解;而波士顿蕨则没有显示出上述明显的毒害症状。进一步的研究表明汞胁迫诱导凤尾蕨地上部H2O2和TBARS含量显著增加,而抗氧化酶SOD、CAT和GR的活性没有显著变化。波士顿蕨则不同,汞胁迫诱导了其地上部SOD、CAT和GR的活性显著增加,从而维持了H2O2和TBARS的水平保持不变。ASA-DHA的分析表明,相较于凤尾蕨,汞胁迫通过诱导波士顿蕨地上部ASA/(ASA+DHA)比值的显著上升,调节细胞内的氧化还原状态,更加有效的抵御环境胁迫。与波士顿蕨相比,凤尾蕨在汞胁迫下表现出较重的植物毒害和氧化胁迫反应,这可能与凤尾蕨体内积累更多汞有关。
     印度芥菜是用于研究重金属植物修复的良好材料,其生长量大,能够积累多种重金属元素,但目前还没有发现其在汞方面的研究。我们用Hg2+溶液处理印度芥菜两个品种(阔叶青和斯坦丁芥)的根部。发现两个品种根部都能积累大量汞,并且能将部分汞转移到地上部,转移效率高于蕨类。在高浓度汞处理下,阔叶青地上部和根系汞的积累量高于斯坦丁芥。两个印度芥菜品种地上部在高浓度汞胁迫下都表现出萎焉、缺绿、生长受抑制等胁迫症状。阔叶青和斯坦丁芥在汞胁迫下地上部的氧化胁迫反应无显著差异。汞胁迫诱导两者地上部TBARS的增加和H2O2的减少。抗氧化酶CAT和POD的活性显著上升。线性分析表明,CAT和POD活性与H2O2含量呈显著负相关。说明汞胁迫下,印度芥菜可能通过调节CAT和POD活性来避免过量H2O2造成的毒害。
     结合以上研究结果,我们选用三种植物材料(印度芥菜、凤尾蕨、旱叶草)进行了汞污染土壤和空气的植物修复研究。通过栽培基质加HgCl2溶液处理、新鲜汞污染土壤处理和多年汞污染土壤处理三个循序渐进的实验。凤尾蕨在没有出现明显胁迫症状的情况下,其根系对不同类型汞污染土壤(HgCl2、Hg(NO3)2、HgS)中的汞都具有较强的吸收能力(根中最高汞积累达1774 mg/kg),而且能够将部分汞转移到地上部(地上部最高汞积累量达290 mg/kg),说明凤尾蕨在汞污染土壤的植物提取和植物固定方面有一定潜力。针对汞具有挥发性,能够污染大气的特点。我们还设计了气室实验,发现凤尾蕨和印度芥菜地上部对空气中的汞有一定的吸收能力,而且向根系的转运量很少,在治理汞污染空气方面具有一定潜力。
     将遥感技术应用于监测植物的生理状态是目前研究环境污染检测的热点。我们在应用凤尾蕨进行土壤汞污染的植物修复过程中,发现汞胁迫引起了植物内部结构和生理状态的改变,而植物在可见光和近红外区域的反射光谱对于这些改变反应非常敏感。本研究通过分析凤尾蕨地上部在汞胁迫下的反射光谱变化,确立了部分反射光谱指标与汞胁迫下植物生理状态之间的相关性。NDVⅠ、R1110/R810、WⅠ的变化分别能够反映汞胁迫引起的凤尾蕨地上部生物量下降、叶片内部细胞结构的改变、相对含水量下降。R550的增加则反应出汞胁迫导致的叶绿素含量下降。这些结果为遥感技术应用于汞污染植物修复的长期监测提供了理论和应用基础。
Mercury (Hg) contamination has evocked great concerns worldwide because of its harmful effect on agricultural ecosystem and environment. Phytoremediation is a nearly perfect strategy for controlling soil heavy metal contamination. However, no Hg hyperaccumulator has been found thus far. Despite of this, great efforts have been made to explore physicological response of selected plant speices to Hg stress as well as their ability to accumulate Hg from Hg-contaminated soils, air and waters.
     Pteris vittata, a fern, is a well-known arsinic-hyperaccumulating plant, while its counterpart Nephrolepis exaltata is arsinic-sensitive. We made comparative investigation on the Hg accumulation and its phytotoxicity in the test plants. The roots of both ferns accumulated a large amount of Hg, but exhibited limited Hg translocation to shoots. Pteris vittata accumulated more Hg in shoots and roots than Nephrolepis exaltata. Exposure to high level of Hg induced visible toxic symptoms in the shoots of Pteris vittata, e.g. withering and chlorosis. Electronic microscopy analysis revealed the shrinkage of vascular cells and breakdown of chloroplasts in Pteris vittata leaves under Hg exposure. In contrast, no visible toxicity and foliar structural changes were observed in Nephrolepis exaltata under Hg stress. Hg exposure induced substaintial accumulation of H2O2 and TBARS in the shoots of Pteris vittata. But the activities of anti-oxidative enzymes such as SOD, CAT, and GR remained relatively unchanged. For Nephrolepis exaltata, Hg exposure significantly incresed the activities of these anti-oxidative enzymes, which play critical roles in removing excess H2O2 and consequently suppressed TBARS production under Hg stress. Additionally, Nephrolepis exaltata had a higher level of ASA/(ASA+DHA) ratio than Pteris vittata. Overall, the results indicated that Nephrolepis exaltata appeared to be more tolerant to Hg than Pteris vittata with regard to their response to Hg-induced oxidative stress.
     Indian mustard is believed to be a potential candidate plant for phtoremediation of heavy metal-contaminated soils. Two major commercial cultivars of Indian mustard (Brassica juncea), Broad leaf and Long-stading, were used in the study. Mature plants accumulated more Hg than seedlings. The roots of the two cultivars accumulated high level of Hg from root-bathing solutions. Shoots accumulated higher amounts of Hg than other plants as previously reported, indicating the significant translocation of Hg from roots to shoots. Content of Hg in Broad leaf was higher than that of Long-standing at the external concentrations of Hg within 12.2-16.7 mg/L. However, at such levels, both cultivars showed chlorosis and stunted growth of roots. In gerenal, Hg exposure significantly increased the activities of CAT, POD, and SOD, but decreased the concentratios of H2O2 in the shoots of Indian mustard. Liner analysis showed negative correlations between H2O2 concentrations and the activities of CAT and POD, which implyed that CAT and POD probably played important roles in protecting the plants from H2O2 toxicity under Hg stress.
     We screened and investigated the potential of three plants (Pteris vittata, Brassica juncea, and Polypogon monspeliensis) in phytoextraction of Hg-contaminated soil. Three independent experiments were performed in turn. (1) Pot study with potting mix and HgCl2 solution. (2) Pot study with freshly HgCl2-spiked soil. (3) Experiment using aged soil contaminated with different Hg sources. Both shoots and roots of Pteris vittata could accumulate large amount of Hg from many kinds of Hg-contaminated soils (such as HgCl2, Hg(NO3)2, or HgS) without any visible stress symptoms. Therefore, Pteris vittata was a possible candidate for Hg phytoextraction and phytostabilization. Elemental Hg can evaporate into air because of its special physical properties. So we designed a chamber experiment to study the foliar Hg uptake by plants. Shoots of both Pteris vittata and Brassica juncea accumulated Hg at the concentratios of 63-105 mg/kg from Hg-contaminated air. So both Pteris vittata and Brassica juncea probably have potential in remediating Hg-contaminated air.
     The application of remote sensing in monitoring plant physiological status has been growing concerns. We found that relative spectral reflectances in visible region (390-780 nm) and near infrared region (NIR,800-1300 nm) were sensitive to leaf structure and physiological status in Pteris vittata during the phytoremediation of Hg-contaminated soil. We selected several high spectral resolution reflectance vegetation indices to evaluate the change of spectral reflectance in Pteris vittata. We also estabilished the correlations between NDVI and biomass, R1110/R810 and leaf structure, WI and relative water content, respectively, in the shoots of Pteris vittata grown in Hg-contaminated soil. Hg stress induced significant increase in relative reflectance around 680 nm corresponding to the breakdown of chloroplast observed in TEM photographs in Pteris vittata. These results provided some theoretical evidences for the application of remote sensing in monitoring plant physiological status during the phytoremediation of Hg-contaminated soil.
引文
1.戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防止对策.地质地球化学,2002,30:75-79
    2.党民团,刘娟.中国汞污染的现状及防治对策.应用化工,2005,34:394-397
    3.段桂兰,王利红,陈玉等.植物超富集砷机制研究的最新进展.环境科学学报,2007,27:714-720
    4.李大辉,施国新.Cd2+或Hg2+水污染对菱体细胞的细胞核及叶绿体超微结构的影响.植物资源与环境,1999,8:43-48
    5.刘平,仇广乐,商立海.汞污染土壤植物修复技术研究进展.生态学杂志,2007,26:933-937
    6.鲁洪娟,倪吾钟,叶正钱等.土壤中汞的存在形态及过量汞对生物的不良影响.土壤通报,2007,38:597-600
    7.母波,韩善华,张英慧等.汞对植物生理生化的影响.中国微生物态学杂,2007,19:582-583
    8.王激清,茹淑华,苏德纯.印度芥菜和油菜互作对各自吸收土壤中难溶态镉的影响.环境科学学报,2004,24:890-894
    9.王起超,一条看不见的毒链http://www.amitemp.con/amitemp/amitemp_page_005.htm.,2004
    10.魏树和,周启星,王新等.杂草中具重金属超积累特征植物的筛选.自然科学进展,2003,13:1259-1262
    11.徐冬梅,刘广深,王黎明等.重金属汞对土壤酸性磷酸酶的影响及其机理.环境科学学报,2004,27:865-870
    12.徐柳,宋琴,茆灿泉.金属结合蛋白(肽)与环境重金属生物修复.中国生物工程杂志,2004,24:39-43
    13.张磊,王起超,李志博等.中国城市汞污染及防治对策.生态环境,2004,13:410-413
    14.郑刘根,刘桂建,齐翠翠等.中国煤样品中汞的环境地球化学研究.中国科学技术大学学报,2007,37:953-956
    15. Adams J L, Philpot W D, Norvell W A. Yellowness index:an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International journal of remote sensing,1999,20:3663-3675
    16. Ahmed A, Tajmir-Riahi H A. Interaction of toxic metal ions Cd2+, Hg2+, and Pb2+ with light harvesting proteins of chloroplast thylakoid membranes:An FTIR spectroscopic study. Journal of inorganic biochemistry,1993,50:235-243
    17. Ali M B, Vajpayee P, Tripathi R D, et al. Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulltin of Environmental Contamination Toxicology,2000,65:573-582
    18. Allen M B. Dissection of oxidative stress tolerance using transgenic plants. Plant physiology, 1995,107
    19. Alloway B J, Jackson A P. The behavior of heavy metals in sewagesludge amended soils. Science of the total environment,1991,100:151-176
    20. Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of experimental botany,2002,53:1331-1341
    21. Angela M, Farida M, Richard B, et al. Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochemistry reviews,2004, 3:173-193
    22. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual review of plant biology,2004,55:373-399
    23. Asada K. The water-water cycle in chloroplasts:scavenging of active oxygen and dissipation of excess photons. Annual review of plant physiology and plant molecular biology,1999,50:601-639
    24. Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. In:Kyle D J, Osmond C B, Arntzen C J (Eds.), Photoinhibition. Elsevier,1987:227-287
    25. Banuelos G S. Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant and soil,2000,224:251-258
    26. Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metalic elements. A review of their distribution, ecology and phytochemistry. Biorecovery,1989,1:81-126
    27. Baker A J M, Reeves R D. Metal-accumulating plants. In:Raskin I, Ensley B D (Eds.), Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment. John Wiley & Sons, Inc., New York,2000:193-229
    28. Baker A J M, Walker P L. In:Shaw A J (Ed.), Heavy Metal Tolerance in Plants:Evolutionary Aspects. Boca Raton:CRC Press,1990:155-177
    29. Barnett M O, Harris L A, Turner R R, et al. Formation of mercuric sulfide in soil. Environmental science & technology,1997,31:3037-3043
    30. Barnett M O, Turner R R, Singer P C. Oxidative dissolution of metacinnabar (b-HgS) by dissolved oxygen. Applied geochemistry,2001,16:1499-1512
    31. Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Analytical biochemistry,1971,44:276-287
    32. Beauford W, Barber J, Barringer A R. Uptake and distribution of mercury within higher plants. Physiologia plantarum,1977,39:261-265
    33. Boening D W. Ecological effects, transport, and fate of mercury:a general review. Chemosphere,2000,40:1335-1351
    34. Bowler C, MV M, Inze D. Superoxide dismutases and stress tolerance. Annul review of plant physiology and plant molecular biology,1992,43:83-116
    35. Boyd V. Pint-sized plants pack a punch in fight against heavy metals. Environmental Protection, 1996, (May):38-39
    36. Boyer M, Miller J, Belanger M, et al. Senescence and spectral reflectance in leaves of Northern Pin Oak (Quercus palustris Muenchh). Remote sensing of environment,1988,25:71-87
    37. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,1976,72:248-254
    38. Braune B M. Comparison of total mercury levels in relation to diet and molt for nine species of marine birds. Archives of environmental contamination and toxicology,1987,16:217-224
    39. Brooks R R. Plants that Hyperaccumulate Heavy Metals. Wallingford, UK:CAB International, 1998.
    40. Brooks R R, Yang X H. Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe, and their significance as controlling factors for this flora. Taxon,1984, 33:392-399
    41. Brown S L. Phytoremediation potential of Thlaspi caerulescens and Bladder Campion for zinc-and cadmium-contaminated soil. Journal of environmental quality,1994,23:1151-1157
    42. Cordoba-Pedregosa M d C, Cordoba F, Villalba J M, et al. Differential distribution of ascorbic acid, peroxidase activity, and hydrogen peroxide along the root axis in Allium cepa L. and its possible relationship with cell growth and differentiation. Protoplasma,2003,221:57-65
    43. Cao X, Ma L Q, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental pollution,2004,128:317-325
    44. Cargnelutti D, Tabaldi L A, Spanevello R M, et al. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere,2006,65:999-1006
    45. Chaoui A, Mazhoudi S, Ghorbal M H, et al. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant science,1997, 127:139-147
    46. Chapin F S. Intergrated responses of plants to stress. BioScience,1991,41:29-36
    47. Chaudhry T M, Hayes W J, Khan A G, et al. Phytoremediation-focusing on accumulator plants that remediate metalcontaminated soils. Austraaslian journal of ecotoxicology,1998,4:37-51
    48. Chen J J, Zhou J M, Goldsbrough P B. Characterization of phytochelatin synthase from tomato. Physiologia plantarum,1997,101:165-172
    49. Cherian S, Oliveira M M. Transgenic plants in phytoremediation:recent advances and new possibilities. Environmental science & technology,2005,39:9377-9390
    50. Cho U-H, Park J-O. Mercury-induced oxidative stress in tomato seedlings. Plant science,2000, 156:1-9
    51. Clarkson D T, Hanson J B. Proton fluxes and the activity of a stelar proton pump in onion roots. Journal of experimental botany,1986,37:1136-1150
    52. Clemens S, Kim E J, Neumann D, et al. Tolerance to toxic metals by a gene family of phytochelatin systhases from plants and yeast. EMBO Journal,1999,18:3325-3333
    53. CNEMS, Background Elemental Concentrations of Chinese Soils. China Environmental Science Press. China National Environmental Monitoring Station,1990:
    54. Crump K S, Kjellstrom T, Shipp A M, et al. Influence of prenatal mercury exposure upon scholastic and psychological test performance:benchmark analysis of a New Zealand cohort. Risk Anal,1998,18:701-713
    55. Curran P J, Dungan J L, Macler B A, et al. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote sensing of environment,1992,39:153-166
    56. Daniels M J, Chaumont F, Mirkov T E, et al. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant cell,1996,8
    57. Daniels M J, Mirkov T E, Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant physiology,1994,106:1325-1333
    58. Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses. Cellular and molecular life sciences 2000,57:779-795
    59. Dat J F, Foyer C H, Scott I M. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant physiology,1998,118:1455-1461
    60. David C, Tyler A N. Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote sensing of environment,2003,85:30-38
    61. de Souza M P, Huang C P A, Chee N, et al. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetlands plants. Planta,1999,209:259-263
    62. Delucia E H, Delson K P, Vogelmann T C, et al. Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant, cell and environment,1996,19:159-170
    63. Delucia E H, Nelson K P. Contribution of internal reflectance to light absorption and photosynthesis of shade leaves. Bulletin of the ecological society of america,1993,74:211-212
    64. DeMagalhaes M E A, Tubino M. A possible path for mercury in biological systems-the oxidation of metallic mercury by molecular oxygen in aqueous-solutions. Science of the total environment,1995,170:229-239
    65. Desikin R, Mackerness A H, Hancock J T, et al. Regulation of the Arabidopsis transcriptosome by oxidative stress. Plant physiology,2001:159-172
    66. Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of experimental botany,2001,52:1101-1109
    67. Du X, Zhu Y G, Liu W J, et al. Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environmental and experimental botany,2005,54:1-7
    68. Dushenkov S, ww, cc, et al. Removal of uranium from water suing terrestrial plants. Environmental science & technology,1997,31:3468-3474
    69. Elstner E F, Wagner G A, Schultz W. Activated oxygen in green plants in relation to stress situations. Current topics in plant biochemistry and physiology,1988,7:159-187
    70. Ericksen J A, Gustin M S. Foliar exchange of mercury as a function of soil and air mercury concentrations. Science of the total environment,2004,324:271-279
    71. Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress. Plant science,1996,121:151-159
    72. Gamon J A, Field C B, Goulden M L, et al. Relationships between NDVI, canopy structure, and photosynthesis in threee Californian vegetation types. Ecological applications,1995,5:28-41
    73. Gamon J A, Serrano L, Surfus J. The photochemical reflectance index:an optical indicator of photosynthetic radiation-use efficiency across species, funtional types, and nutrient levels. Oecologia,1998,112:492-501
    74. Ganeshan R, Manoharan. Effect of cadmium and mercury on germination, growth, and dry matter production of Abelmoschus esculentus. Geobios,1983:9-12
    75. Gates D M, Keegan H J, Schleter J C, et al. Spectral properties of plants. Applied optics,1965,4: 11-20
    76. Gausmann H W. Reflectance of leaf components. Remote sensing of environment,1977,6:1-9
    77. Gausmann H W, Allen W A, Cardenas R. Reflectance of cotton leaves and their strucutre. Remote sensing of environment,1969,1:19-22
    78. Gebhard A, Chetverikov A G, Gerasimenko V V, et al. Effect of mercury ions on duckweed plants (Spirodela polyrhiza). Soviet plant physiology,1990,37:262-267
    79. Geebelen W, Vangronsveld J, Adriano D C, et al. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiologia plantarum,2002,115: 377-384
    80. Ghosh M, Singh S P. A review on phytoremediation of heavy metals and utilization of its byproducts. Applied ecology and environmental research,2005,3:1-18
    81. Glass D J. Prospects for use and regulatin of transgenic plants in phytoremediation. In:Alleman B C, Leeson A (Eds.), In situ and On-Site Bioremediation. Battele Press, Columbus, OH,1997: 51-56
    82. Godbold D L, Huttermann A. The uptake and toxicity of mercury and lead to spruce seedlings. Water, air, and soil pollution,1986,31:509515
    83. Gossett D T, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop science,1994,34:706-714
    84. Grandjean P, White R F, Weihe P, et al. Neurotoxic risk caused by stable and variable exposure to methylmercury from seafood. Ambulatory pediatrics,2003,3:18-23
    85. Greger M, Wang Y, Neuschutz C. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental pollution,2005,134:201-208
    86. Grill E, Loffer S, Winnacker E-L, et al. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specifc y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America,1989,86:6838-6842
    87. Guo T, Zhou G, Wu M, et al. Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different A1 resistance. Plant and soil, 2004,258:241-248
    88. Gupta M, Cuypers A, Vangronsveld J, et al. Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiologia plantarum,1999,106:262-267
    89. Gupta M, Tripathi R D, Rai U N, et al. Role of glutathione and phytochelatin in Hydrilla verticillata (I.f.) royle and Valusneria spiraus L. under mercury stress. Chemosphere,1998,37: 785-800
    90. Gustin M S, Stamenkovic J. Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry,2005,76:215-232
    91. Ha S B, Smith A P, Howden R, et al. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant cell,1999,11:1153-1163
    92. Haag-Kerwer A, Schafer H J, Heiss S, et al. Cadmium exposure in Brassica juncea cause a decline in transpiratin rate and leaf expansion without effect on photosyntesis. Journal of experimental botany,1999,50:1827-1835
    93. Hammond-Kosack K E, Jones J D G. Resistance gene-dependent plant defense responses. Plant cell,1996,8:1773-1791
    94. Han F X, Banin A, Su Y, et al. Industrial age anthropogenic inputs of heavy metals into the pedosphere. Die Naturwissenschaften,2002,89:1432-1904
    95. Han F X, Shiyab S, Chen J, et al. Extractability and Bioavailability of Mercury from a Mercury Sulfide Contaminated Soil in Oak Ridge, Tennessee, USA. Water, air, and soil pollution,2008,
    96. Han F X, Sridhar B B M, Monts D L, et al. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea L. Czern. The New phytologist,2004,162:489-499
    97. Han F X, Su Y, Monts D L, et al. Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Science of the total environment,2006,368:753-768
    98. Hartley-Whitaker J, Ainsworth G, Meharg A A. Copper- and arsenate-induced oxidative stress in Holcus Ianatus L. clones with differential sensitivity. Plant, cell and environment,2001,24: 713-722
    99. Hattori H, Kuniyasu K, Chiba K, et al. Effect of chloride application and low soil pH on cadmium uptake from soil by plants. Soil science & plant nutrition,2005,52:89-94
    100. Heaton A C P, Rugh C L, Wang N-J, et al. Physiological Responses of Transgenic merA-TOBACCO (Nicotiana tabacum) to Foliar and Root Mercury Exposure. Water, air, and soil pollution,2005,161:137-155
    101. Heiss S, Schafer H J, Haag-Kerwer A, et al. Cloning sulfur assimilation genes of Brassica juncea L.:cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant molecular biology,1999, 39:847-857
    102. Henry J R, An overview of the phytoremediation of lead and mercury. National Network of Environmental Management Studies (NNEMS), Washington, D.C.,2000:
    103. Hoagland D R, Arnon D I. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular,1938,3:346-347
    104. Horvat M, Nolde N, Fajon V, et al. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the total environment,2003,304: 231-256
    105. Howden R, Goldsbrough P B, Andersen C R, et al. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant physiology,1995,107:1059-1066
    106. Hsu F H. Studies on seed germination of Miscanthus species. Taichung district agricultural iImprovement station special publication,1993,30:205-217
    107. Hsu F H, Chou C H. Inhibitory effects of heavy metals on seed germination and seedling growth of Miscanthus species. Botanical bulletin of academia sinica,1992,33:335-342
    108. Huang S S, Liao Q L, Hua M, et al. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere,2004,67:2148-2155
    109. Hylander L D, Meili M.500 years of mercury production:global annual inventory by region until 2000 and associated emissions. Science of the total environment,2003,304:13-27
    110. Israr M, Sahi S, Datta R, et al. Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere,2006,65:591-598
    111. Jain M, Puranik R M. Protective effect of reduced glutathione on inhibition of chlorophyll biosynthesis by mercury in excised greening maize leaf segments. Indian journal of experimental biology,1993,31:708-710
    112. Jana S, Choudhuri M A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic botany,1982,12:345-354
    113. Kala R, Gupta V K, Gupta S P. Effect of heavy metal application to Ustipsamment on growth of some pulse crops. Annals of arid zone,1992,31:233-234
    114. Klapheck S, Fliegner W, Zimmer I. Hydroxymethylphytochelatins [(γ-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant physiology,1994,104:1325-1332
    115. Klapheck S, Schlunz S, Bergmann L. Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant physiology,1995,107
    116. Knight H, Knight M R. Abiotic stress signalling pathways:specificity and cross-talk. Trends in plant science,2001,6:262-267
    117. Kolker A, Senior C L, Quick J C. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Applied geochemistry,2006,21:1821-1836
    118. Komarek M, Tlustos P, Szakova J, et al. The role of chloride salts in chemically enhanced phytoextraction of heavy metals from a contaminated agricultural soil. Bulletin of environmental contamination and toxicology,2007,78:176-180
    119. Kozaki A, Takeba G. Photoresipration protects C3 plants from photooxidation. Nature,1996, 384:557-560
    120. Kozuchowski J, Johnson D L. Gaseous emission of mercury from an aquatic vascular plant. Nature,1978,274:468-469
    121. Kramer U. Free histidine as metal chlator in plants that accumulate nickel. Nature,1996,379: 635-638
    122. Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus: Direct and indirect effects on light and dark reactions. Acta physiologiae plantarum,1995,17: 177-190
    123. Lacerda L D. Updating global Hg emissions from small-scale gold mining and assessing its environmental impacts. Environmental geology,2003,43:308-314
    124. Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annual review of plant physiology and plant molecular biology,1997,48:251-275
    125. Lasat M M. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant physiology,1996,112: 1715-1722
    126. Law M Y, Charles S A, Hallliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The Biochemical journal,1983,210:899-903
    127. Lenka M, Das B L, Panda K K, et al. Mercury-tolerance of Chloris barbata Sw. and Cyperus rotundus L. isolated from contaminated sites. Biologia plantarum,1993,35:443-446
    128. Lenti K, Fodr F, Boddi B. Mercury inhibits the activity of the NADPH:protochlorophyllide oxidoreductase (POR). Photosynthetica,2002,40:145-151
    129. Liang-Zhu Y, Pilon-Smits E A H, Jouanin L, et al. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant physiology,1999,119: 73-80
    130. Linberg S E. Mercury vapor in the atmosphere:three case Studies on emission, deposition, and plant uptake. In:Nriagu J O, Davidson C I (Eds.), Toxic metals in the atmosphere. John Wiley & Sons, New York,1986:
    131. Linberg S E, Jackson D R, Huckabee J W, et al. Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. Journal of environmental quality,1979,8:572-578
    132. Lindberg S, Bullock R, Ebinghaus R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio,2007,36:19-32
    133. Longstreth D J, Bolanos J A, Goddard R H. Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light levels. American Journal of botany,1985,72:14-19
    134. Lozano-Rodriguez E, Hernandez E, Bonay L E, et al. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances. Journal of experimental botany, 1997,48:123-128
    135. Muller A, Kristine, Westergaard K, Christensen S, et al. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiology ecology,2001,36:11-19
    136. Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic. Nature,2001,409:579
    137. Macalady J L, Mack E E, Nelson D C, et al. Sediment microbial community structure and mercury methylation in mercury-polluted clear lake, California. Applied and environmental microbiology,2000,66:1479-1488
    138. Maggio A, Joly R J. Effect of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant physiology,1995,109:331-335
    139. Maitani T, Kubota H, Sato K, et al. The composition of metals bound to class Ⅲ metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant physiology,1996,110:1145-1150
    140. Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et cosmochimica acta,1994,58:191-198
    141. McGrath S P. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and soil,1997,188: 153-159
    142. McMurtry M J, Wales D L, Scheider W A, et al. Relationship of mercury concentrations in lake trout and smallmouth bass to the physical and chemical characteristics of Ontario lakes. Canadian journal of fisheries and quatic sciences,1989,46:426-434
    143. Meagher R B. Phytoremediation:an Affordable, friendly technology to restore marginal lands in the twenty-first century. Available [Online]:http://www.1.sc.psu.edu/nas/Panelists/Meagher%20comment.html,1998
    144. Mehra R K, Miclat J, Kodati V R, et al. Optial spectroscopic and reverse-phase HPLC analyses of Hg(Ⅱ) binding to phytochelatins. The Biochemical journal,1996,314:73-84
    145. Mehra R K, Winge D R. Cu(Ⅰ) binding to the Schizosaccharomyces pombe g-glutamyl-transferase peptides varying in chain lengths. Archives of biochemistry and biophysics,1988, 265:381-389
    146. Meuwly P, Thibault P, Rauser W E. y-Glutamylcysteinylglutamic acid-a new homolog of glutathione in maize seedlings exposed to cadmium. FEBS Letters,1993,336:472-476
    147. Mhatre G N, Chaphekar S B. The effect of mercury on some aquatic plants. Environmental pollution,1985,39:207-216
    148. Mitsuhara I, Malik K A, Miura M, et al. Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants. Current biology,1999,9:775-778
    149. Moreno F N, Christopher A W N, Stewart R B, et al. Phytofiltraiton of mercurry-contaminated water:volatilisation and plant-accumulation aspects. Environmental and experimental botany, 2008,62:78-85
    150. Mueller B, Rock S, Gowswami D, et al., Phytoremediation Decision Tree. Interstate Technology and Regulatory Cooperation Work Group,1999:1-36
    151. Munthe J, McElroy W J. Some aqueous reactions of potential importance in the atmospheric chemistry of mercury. Atmospheric environment,1992,26:553-557
    152. Musgrove S, Proceedings of the International Conference on Land Reclamation, University of Wales. Elsevier Science Publication, Essex, U. K.,1991:
    153. Mylona P V, Polidoros A N, Scandalios J G. Modulation of antioxidant responses by arsenic in maize. Free radical biology & medicine,1998,25:567-585
    154. Neidorf R. Phytoremediation:Phytotech's hungry plants take up toxic metals. El Digest,1996, (April):7-11
    155. Nriagu J O. The biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomed Press, New York, USA,1991:
    156. Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature,1988,333:134-139
    157. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry,1979,95:351-358
    158. Oliveira L J, Hylander L D, Castro S E. Mercury behavior in a tropical environment:thecase of small-scale gold mining in Pocone, Brazil. Environmental practice,2004,6:121-134
    159. Orozco-Cardenas M, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America,1999,96:6553-6557
    160. Ortiz D F, Kreppel L, Speiser D M, et al. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vaculor membrane transporters. EMBO journal,1992,11:3491-3499
    161. Pacyna E, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000. Atmospheric environment,2000,40:4048-4063
    162. Panda S K. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of plant physiology,2007,11:1419-1428
    163. Patra M, Bhowmik N, Bandopadhyay B, et al. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and experimental botany,2004,52:199-223
    164. Patra M, Sharma A. Mercury toxicity in plants. The Botanical review,2000,66:379-422
    165. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in plant science,1998,3:151-155
    166. Penuelas J, Filella I, Baret F. Semiempirical indices to acess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica,1995a,31:221-230
    167. Penuelas J, Filella I, Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. The New phytologist,1995b,131:291-296
    168. Penuelas J, Filella I, Sanchez-Gimeno B. Avaluacio de la fitotoxicitat de l'ozo a Catalunya amb plantes de tabac. Butlleti de L'Institucio Catalana d'Historia Natural,1995c,63:133-140
    169. Penuelas J, Isla R, Filella I, et al. Visible and near-infrared reflectance assessment of salinity effects on barly. Crop science,1997a,37:198-202
    170. Penuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). International journal of remote sensing,1997b,18:2869-2875
    171. Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian mustard. Plant physiology,2000,122:1171-1177
    172. Pilon-Smits E, Pilon M. Breeding mercury-breathing plants for environmental cleanup. Trends in plant science,2000,5:235-236
    173. Piqueras A, Olmos E, Martinez-Solano J R, et al. Cd-induced oxidative burst in tobacco BY2 cells:Time course, subcellular location and antioxidant response Free radical research,1999,31: 33-38
    174. Pleijel K, Munthe J. Modelling the atmospheric mercury cycle-13687. Chemistry in fog droplets. Atmospheric environment,1995,29
    175. Pu R, Ge S, Kelly N M, et al. Spectral absorption features as Indicators of water status in coast live Oak (Quercus Agrifolia) leaves. International journal of remote Sensing,2003,24:1799-1810
    176. Rao K V M, Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant science,2000,157:113-128
    177. Rasico N. Metal Accumulation by Some Plants Growing on Zinc-Mine Deposits. Oikos,1977, 29:250-253
    178. Raskin I, Ensley B D. Pytoremediation of Toxic Metals:Using Plants to Clean Up the Environment. John Wiley & Sons, Inc.,2000. New York.
    179. Raun W R, Johnson G V, Sembiring H, et al. Indirect measures of plant nutrients. Communications in soil science and plant analysis,1998,29:1571-1581
    180. Ravichandran M. Interactions between mercury and dissolved organic mater—A review. Chemosphere,2004,55:319-331
    181. Ravichandran M, Aiken G R, Redd M M, et al. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environmental science & technology,1998,32:3305-3311
    182. Rea A W, Linberg S E, Scherbatskoy T, et al. Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water, air, and soil pollution,2002,133:49-67
    183. Reeves R D, Baker A J M. Metal-accumulating plants. In:Baskin I, Ensley B D (Eds.), Phytoremediation of toxic metals:using plants to clean up the environment. John Wiley & Sons, New York,2000:193-229
    184. Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, et al. Stress Responses of Zea mays to Cadmium and Mercury. Plant and soil,2006,279:41-50
    185. Roberts S K, Tester M. Permeration of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. Journal of experimental botany,1997,48:839-846
    186. Robinson B H, Brooks R R, Howes A W, et al. The potential of the high-boomass nickel hyperaccumulator Berkheya coddi for phytoremediation and phytomining. J Geochem Exp, 1997,60:115-126
    187. Ron M. Oxidative stress, antioxidants and stress tolerance. Trends in plant science,2002,7: 405-410
    188. Rouse J W, Haas R H, Schelle J A, et al., Monitoring the venal advancement and retrogradation (green wave effect) of natural vegetation. Type Ⅲ final report. NASA Goddard Space Flight Center, Green belt, Maryland, USA,1974:
    189. Savenstrand H, Strid A. Six genes strongly regulated by mercury in Pisum sativum roots. Plant physiology and biochemistry,2004,42:135-142
    190. Sahi S V, Bryant N L, Sharma N C, et al. Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environmental science & technology,2002,36:4676-4680
    191. Salt D E, Blaylock M, Nanda Kumar P B A, et al. Phytoremediation:A novel strategy for the remocal of toxic metals from the environment using plants. Nature biotechnology,1995,13: 468-474
    192. Salt D E, Pickering I J, Prince R C, et al. Metal accumulation by aquacultured seedlings of Indian mustard. Environmental science & technology,1997,31:1636-1644
    193. Salt D E, Rauser T. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant physiology,1995,107:1293-1301
    194. Sandalio L M, Dalurzo H C, Gomez M, et al. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of experimental botany,2001,52:2115-2126
    195. Sass J E. Botanical Microtechniques. Iowa St. University Press, Ames, Iowa, USA,1958.
    196. Sawidis T, Reiss H D. Effects of heavy metals on pollen tube growth and ultrastructure. Protoplasmatologia,1995,185:113-122
    197. Scandalios J G. Oxygen stress and superoxide dismutases. Plant physiology,1993,101:7-12
    198. Schiitzendubel A, Nikolova P, Rudolf C, et al. Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant physiology and biochemistry,2002,40:577-584
    199. Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of experimental botany,2002,53:1351-1365
    200. Schat H, Llugany M, Bernhard R. Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulatin and nonhyperaccumulating metallophytes. In:Terry N, Banuelos G (Eds.), Phytoremediation of contaminated soil and water. CRC Press LLC,2000: 171-188
    201. Schroeder W H, Munthe J. Atmospheric mercury—An overview. Atmospheric environment, 1998,32:809-822
    202. Sersen F, Kralova K, Bumbalova A. Action of mercury on the photosynthetic apparatus of spinach chloroplasts. Photosynthetica,1998,35:551-559
    203. Setia R C, Rajna B, Bala R. Anatomical changes in root and stem of wheat (Triticum aestivum L.) in response to different heavy metals. Phytomorphology,1994,44:95-104
    204. Severne B C, Brooks R R. A nickel-accumulating plant from Western Australia. Planta,1972, 103:91-94
    205. Sgherri C L M, Loggini B, Puliga S, et al. Antioxidant system in Sporobolus stapfianus: Changes in response to desiccation and rehydration. Phytochemistry,1994,35
    206. Sims D A, Gamon J A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance:a comparison of indices based on liquid water and chlorophyll absorption features. Remote sensing of environment,2003,84:526-537
    207. Sinclair T R, Goudriaan J, Dewit C, T. Mesophyll resistance and CO2 compensation concentration in leaf photosynthesis models. Photosynthetica,1977,11:56-65
    208. Singh N, Ma L Q, Srivastava M, et al. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant science,2006,170:274-282
    209. Sinha S, Gupta M, Chandra P. Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L). Environmental toxicology and water quality,1996,11:105-112
    210. Skoraynska-Polit E, Baszynski T. Differences in senstitvity of the photosythetic apparartus in Cd-stressed runner bean plants in relation to their age. Plant science,1997,128:11-21
    211. Slaton M R, Hunt E R, Smith W K. Estimating near-infrared leaf reflectance from leaf structural characteristics. American journal of botany,2001,88:278-284
    212. Smeets K, Cuypers A, Lambrechts A, et al. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant physiology and biochemistry, 2005,43:437-444
    213. Smith I K. Stimulation of Glutathione Synthesis in Photorespiring Plants by Catalase Inhibitors. Plant physiology,1985,79:1044-1047
    214. Somerville C, Browse J, Jaworski J G, et al. Lipids. In:Buchanan B B, Gruissem W, Jones R L (Eds.), Biochemistry and molecular biology of plants. Rockbille:American Society of Plant Phsiologists,2000:456-527
    215. Sridhar B B M, Monitoring plant spectral reflectance and internal structure changes during phytoremediation processes for selected heavy metals. PhD. Mississippi State University, Starkville, Mississippi, USA,2004:
    216. Sridhar B B M, Diehl S V, Han F X, et al. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environmental and experimental botany, 2005,54:131-141
    217. Sridhar B B M, Han F X, Diehl S V, et al. Monitoring the effects of arsenic and chromium accumulation in Chinese brake fern (Pteris vittata). International journal of remote sensing, 2007a,28:1055-1067
    218. Sridhar B B M, Han F X, Diehl S V, et al. Spectral reflectance and leaf internal structure changes of barley plants due to phytoextraction of zinc and cadmium. International journal of remote sensing,2007b,28:1041-1054
    219. Sridhar B B M, Han F X, Monts D L, et al. Effects of Zn and Cd accumulation on structural and physiological characteristics of barley plants. Brazilian journal of plant physiology,2007c,19: 15-22
    220. Srivastava M, Ma L Q, Singh N, et al. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. Journal of experimental botany,2005,56:1335-1342
    221. Su Y, Han F X, Sridhar B B M, et al. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environmental toxicology and chemistry,2005,24:2019-2026
    222. Suszcynsky E M, Shann J R. Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environmental toxicology and chemistry,1995,14:61-67
    223. Teisseire H, Guy V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant science,2000,153:65-72
    224. Tester M, Leigh R A. Partitioning of nutrient transport processes in roots. Journal of experimental botany,2001,52:445-457
    225. Thumann J, Grill E, Winnacker E-L, et al. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Letters,1991,284:66-69
    226. Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana. Gene,2002,288:129-138
    227. Urban P, Mignotte C, Kazmaier M, et al. Cloning, yeast expression and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. Journal of biological chemistry,1997,272:19176-19186
    228. Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant cell environment,1990,13:195-206
    229. Van Assche F, Put C, Clijsters H. Heavy metals induce specific isozyme patterns of peroxidase in Phaseolus vulgaris L.. Archives of physiological and biochemistry,1986,94:60
    230. Vatamaniuk O K, Mari S, Lu Y-P, et al. AtPSC1, a phytochelatin synthase from Arabidopsis: isolation and in Vitro reconstitution. Proceedings of the National Academy of Sciences of the United States of America,1999,96:7110-7115
    231. Vazquez de Aldana B R, Garcia Crisdo B, Garcia Ciudad A, et al. Estimation of mineral content in natural grasslands by near infrared reflectance spectroscopy. Communications in soil science and plant analysis,1995,26:1383-1396
    232. Vazquez M D, Poschenrieder C, Barcelo J. Chromium Ⅵ induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Annals of botany,1987,59:427-438
    233. Veiga M M. Mercury pollution:revealing sources and suggesting solutions. Environmental practice,2004,6:97-98
    234. Veiga M M, Hinton J J. Abandoned artisanal gold mines in the Brazilian Amazon:a legacy of mercury pollution. Natural resources forum,2002,26:15-26
    235. Vogelmann T C, Martin G. The functional significance of palisade tissue:penetration of directional versus diffuse light. Plant, cell and environment,1993,16
    236. Wang Y, Greger M. Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of environmental quality,2004,33:1779-1785
    237. Wang Y D, Phytoremediation of mercury by terrestrial plants. Department of Botany, PhD. Stockholm University, Stockholm, Sweden,2004
    238. Weckx J E J, Clijster H M M. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia plantarum,1996,96:506-512
    239. Wegner L H, Raschke K. Ion channels in the xylemm parenchyma of barley roots. Plant physiology,1994,105:799-813
    240. Whiting S N, Changes in phytoavailability of zinc to plants sharing a rhizosphere with the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. In:Iskandar I K (Ed.), Proceedings of Extended Abstracts from the Fourth International Conference on the Biogeochemistry of Trace Elements, Berkeley, CA, USA,1997:469-470
    241. WHO, Mercury-environmental aspects. World Health Organization, Geneva, Switzerland,1989:
    242. Woolley J T. Reflectance and transmittance of light by leaves. Plant physiology,1971,148: 515-522
    243. Xiang C, Wener B L, CHristensen E M, et al. The ciological funtions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant physiology,2001,126:564-574
    244. Xu W, Shi W, Liu F, et al. Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively overexpressing a barley gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botony,2008,86:567-575
    245. Yamamoto Y, Hachia A, Matsumoto H. Oxidative damage to membranes by a combination of aluminium and iron in suspension-cultured tobacco cells. Plant and cell physiology,1997,38: 1333-1339
    246. Zhang W, Tyerman S D. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant physiology,1999,120:849-857
    247. Zhao F J, Wang J R, Barker J H A, et al. The Role of Phytochelatins in Arsenic Tolerance in the Hyperaccumulator Pteris vittata. The New phytologist,2003,159:403-410
    248. Zhou Z S, Huang S Q, Guo K, et al. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. Journal of inorganic biochemistry,2007,101:1-9
    249. Zhou Z S, Wang S J, Yang Z M. Biological detection and analysis of mercury toxicity to alfalfa (Mdeicago sativa) plants. Chemosphere,2008,70:1500-1509
    250. Zhu Y, Wang C, Ma Y, et al. Effect of arsenic stress on the growth and metabolism of the wheat root system. Acta Ecol Sinica,2000,20:707-710
    251. Zhu Y L, Pilon-Smits E A H, Tarun A S, et al. Cadium tolerance and accumulation inIndian mustard is enhanced by overexpressing gamma-glutamylcystine synthetase. Plant physiology, 1999,121:1169-1177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700