煤矸石山生态重建中的植被演替及其与土壤因子的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,煤炭开采已经导致一系列的生态环境问题,如矿区土壤和植被遭到毁坏、生物多样性减少或丧失、土地生产力下降、整个生态系统的功能退化等。严重恶化的生态环境已成为制约矿区经济社会可持续发展的根本性问题。煤矿区的生态恢复和重建,对于改善矿区土壤状况,提高植被覆盖率,实现矿区生态环境的根本好转具有至关重要的意义。
     古交煤矿是山西省煤矸石山区生态重建的示范区。本研究地古交煤矿煤矸石山的生态重建主要包括3种模式:人工种植外来种火炬树、人工种植乡土种侧柏和自然恢复模式。分别对不同植被重建模式的群落结构、群落动态、物种多样性和土壤状况的变化规律进行分析讨论,并运用TWINSPAN、CCA等数量生态学方法分析植被梯度变化规律及其与土壤等环境因子之间的关系,阐述了影响矿区植被恢复的限制性因素。为了评价这3种模式的恢复效果,选取相邻土山的天然地带性原生群落进行了对比分析。在此基础上提出植被恢复与重建的合理模式,旨在为重建煤矸石山区结构合理、功能完善的人工生态系统提供思路和参考。
     在人工火炬树群落12年的恢复演替过程中,群落的层片结构、盖度及林下优势种随恢复时间均发生了明显变化。初始群落优势种以耐干旱贫瘠的先锋植物如猪毛蒿、狗尾草为主,而5年后群落向中生性植物占绝对优势的方向发展,并且形成乔、灌、草的3层结构。此后随着火炬树的萌蘖繁殖,群落郁闭度明显增加,林下光照减弱,林下植物迅速减少以至大量消失。本研究表明,火炬树具有极强的根孽繁殖扩散能力,可以迅速在群落中取得优势地位,并抑制和排斥其它物种。在演替12年后,火炬树形成几乎独占的立地,群落物种多样性急剧减少。
     本研究表明,光照也是影响火炬树群落演替的重要因子。火炬树是阳性先锋树种,群落内的光照不仅影响草本植物的定居存活,也影响火炬树克隆子株的萌发和分布。随着火炬树群落郁闭度增加,林下光照减少使火炬树幼苗难以萌发。所以在演替后期,火炬树的克隆子株数量大幅减少,从而影响林分演替,无法实现群落的自我更新。可见处于成熟阶段的火炬树单优种群落,是不稳定的。本研究表明,火炬树能扩散进入附近的侧柏林和达乌里胡枝子一白羊草群落,并在这些群落里迅速扩大种群和占据优势,未来很可能成为这些群落的优势种,在一定程度上抑制侧柏和灌木的生长,说明火炬树具有一定的入侵性。
     总体来说,本研究的人工侧柏林生长缓慢,群落的高度盖度呈现逐渐增加的趋势。TWINSPAN分类及植被演替分析表明,侧柏林群落经过14年的恢复,群落从一年生先锋植物占优势的初始阶段过渡到以白羊草和硬质早熟禾为建群种的后期演替阶段,并出现了多年生灌木。随着恢复时间的延长,侧柏群落的物种多样性呈现缓慢增加的趋势。覆土厚度是影响侧柏生长演替的重要因素。3种覆土条件下,侧柏的树高、地径、冠幅、叶片长势和林相等指标均有显著差异。当覆土厚度小于30 cm时,侧柏出现叶子干枯甚至脱落现象,枯死率高。
     本研究表明,煤矸石山的植被经过25年的自然恢复演替,群落从耐贫瘠的藜科和禾本科杂草逐渐向中生、中旱生植物占绝对优势的方向发展,群落生境趋于中生化。通过TWINSPAN分类及植被演替趋势分析,煤矸石山的植被在自然恢复状态下大致经历了猪毛菜、猪毛蒿、铁杆蒿、硬质早熟禾、白羊草和达乌里胡枝子6个发展阶段,优势种群的数量和种类发生了很大变化,物种多样性呈现逐渐增加的趋势。说明矿区退化生态系统可以通过自然恢复增加植被盖度和物种多样性,但这个过程比较漫长,且群落结构并不完善。
     总的来说,3种植被恢复模式都可以增加土壤有机质、全N、有效P和速效K的含量,减小土壤容重和pH值,对煤矸石山的土壤有一定的改良作用,尤其是侧柏的改良效果更明显。但即使在演替后期,3种恢复模式的土壤养分含量仍处于较低水平,这说明植被对土壤的改良作用十分有限。相关分析及CCA排序分析表明,土壤因子是影响群落物种多样性变化的主要环境因子,也是煤矸石山植被恢复演替的主要限制性因素。因此在煤矸石山区开展植被恢复与重建时,增加土壤养分含量,改善土壤理化性质至关重要。
     与相邻土山上的天然次生植物群落相比,矸石山3种植被恢复模式下群落的结构、物种组成、高度和盖度都存在显著差异。4种群落类型中,Margalef指数和Shannon-Wiener指数表现为:原生群落>自然恢复群落>侧柏群落>火炬树群落。这是由于原生群落已经处于比较高级的稳定发展阶段,所以多样性指数最高。Pielou均匀度指数表现为:自然恢复群落>原生群落>侧柏群落>火炬树群落。3种恢复模式下群落的土壤养分含量和土壤有机碳储量均显著低于原生群落,而土壤容重和pH值则显著高于原生群落。整体来讲,恢复后的植被与天然次生植被存在较大差异,改善土壤理化性质是促进植被恢复演替的有效途径。
     本研究表明,自然恢复的植物群落物种多样性较高,因此从理论上讲自然恢复是该区植被恢复的理想途径之一。但自然恢复速度缓慢,在短期内难以形成乔灌草的复合生态系统,不能从根本上改善生态环境。因此,人工引入乔灌树种,丰富群落层次结构,优化群落生态功能,加快退化生态系统的演替进程,无疑是十分必要的。
     从短期来看,矿区矸石山栽植的火炬树,生长速度快,能很快达到增加植被覆盖度的目的,5年左右群落盖度即可达到80%。但从长期来看,随火炬树林的成熟郁闭,火炬树会严重抑制其它物种的生存,林下的物种多样性呈现急剧减少和火炬树自身幼苗难以萌生的现象,在一定程度上增加了因生态胁迫而使群落退化或死亡的潜在风险。可见,演替后期的火炬树单优种群落不能发展成为一个稳定的顶级群落。所以应该把群落的盖度、物种多样性和群落演替趋势结合起来,作为植被恢复成功与否的主要指标。
     由此可知,在煤矸石山的植被恢复重建中,应该谨慎营造火炬树林。侧柏在覆土达一定厚度时,生长良好。所以,在煤矸石山区生态重建的实践中,应以人工种植侧柏等本土植物为主、自然恢复为辅的模式开展植被恢复。在植被恢复重建中,不仅要增加植被盖度,合理搭配乔灌草物种,恢复生物多样性,而且更要注重土壤生态功能的恢复。应该使重建生态系统的各个组分之间相互促进,构成一个有机整体,才能恢复和增强生态系统的自我调节和自我维持能力。
     总之,煤矸石山区的植被恢复重建是一个艰难而漫长的过程。应在尊重退化生态系统自然恢复能力的基础上,人工引入适宜的乔灌树种。根据植被演替及其与土壤等环境因子的相互作用规律,采取适当的人工措施改善土壤理化性质,促进植被的进展演替,完善生态系统的结构和功能,这是煤矸石山区退化生态系统恢复与重建的根本途径。
The exploitation of coal mine has caused severe damages to the ecological environment, such as destroying farmlands and vegetation, decreasing species diversity and land productivity, and eventually destroying the structure and function of local ecosystems. The degenerated environment has put forward great challenges for sustainable economic development. Consequently, ecological reconstruction, aim at increase plant coverage and soil nutrients in coal mine area, is of great significance for improvement of local environments.
     Gujiao coal mine is a example of ecological reconstruction in Shanxi province, where has rich mineral resources.There were three methods used in ecological reconstruction in Gujiao coal-gangue area, including artificial restoration by planting staghorn sumac (Rhus typhina) and oriental arborvitae (Platycladus orientalis), and natural restoration. Based on the survey of vegetation and soil properties, the changes of community structure and species diversity throughtout the succession process were analyzed. Also, the interactions between vegetation succession and soil conditions were discussed using TWINSPAN classification and CCA ordination methods. In order to evaluate the results of ecological restoration, three restoration methods were compared with the regional vegetation. Further, some suggestions are put forward, which can provide a scientific basis for ecological reconstruction in the mining area.
     The results showed that great changes occurred in community structure, species composition and diversity, coverage after 12 years of succession of staghorn sumac. Pioneer species such as Salsola collina and Setaria viridis played dominant roles at the early stage of succession, and they were replaced by dominant species Poa sphondylodes after 5 years. Because of the fast growth rate, canopy coverage of staghorn sumac community increased quickly. In the meantime, light radiation on the forest floor evidently decreased, leading to the decrease of species number and diversity in the herb layer. Due to its vigorous sprouting reproduction, staghorn sumac could colonize the new habitat and expanded the population within a short time. After 12 years, staghorn sumac became an exclusive edificator in the community and other species were greatly depressed and disappeared.
     Our study showed that light intensity was an important factor affecting species diversity and succession of staghorn sumac community. At the mature stage, weak light under the community canopy restricted the sprouting and dispersion of clonal ramet of staghorn sumac, as well as the growth of herb species. Thus, as a heliophytes species, the succession process and self-renewal of staghorn sumac was impeded to a great extent. Also, staghorn sumac was able to disperse into adjacent oriental arborvitae and shrub community and quickly expanded its population. The average height of clonal ramet of staghorn sumac was higher than that of oriental arborvitae and shrub. So, it was likely that the growth of oriental arborvitae and shrub would be depressed by staghorn sumac invasion in the future.
     It was showed that oriental arborvitae displayed a slower growth rate, with the height and coverage increasing gradually. Based on the results of TWINSPAN, annual pioneer species such as Salsola collina and Setaria viridis firstly occurred at the beginning stage of succession, then other dominant species such as Artemisia giraldii, Artemisia vestita and Poa sphondylodes appeared in turn through the oriental arborvitae succession. After 14 years, kinds of shrub appeared in the community. Species diversity in oriental arborvitae community was also increased during the whole succession. The thickness of soil added on the coal waste piles was a main factor affecting the growth of oriental arborvitae. There were significant differences in tree height, basal diameter and canopy coverage of oriental arborvitae among three soil types. When the thickness of soil was lower than 30 cm, some leaves growed sere and falled off, leading to higher mortality in oriental arborvitae community.
     Based on the results of TWINSPAN, species composition and diversity in the naturally restored communities experienced great changes during the succession period, with the dominant species changing from annual to perennial and from low-class to high-class. The dominant species such as Salsola collina, Salsola collina, Artemisia sacrorum, Poa sphondyl odes, Bothriochloa ischaemun and Lespedeza bicolor occurred in turn, and made up a complete succession series. After 25 years, shrub like Lespedeza bicolor played a dominant role in the naturally restored communities. It took a longer time for the naturally restored vegetation to develop to an advanced and steady state, and the restoration rate was much slower.
     Soil organic matter, total N content, available P content were all improved under three restoration modes, while soil bulk density and pH value were decreased. Therefore, soil conditions could be improved by three restoration methods. However, the improvement was very limited because soil fertility at the end of the succession were at a lower level according to the soil fertility classification standards of the second national soil survey in 1980s. The analysis of correlation and CCA ordination suggested that soil conditions were main factors influencing the change of species diversity and vegetation succession. Therefore, it is necessary to improve soil condition in ecological reconstruction in Gujiao coal-gangue area.
     There were significant differences in community structure, species composition and diversity, coverage among regional vegetation type and restored vegetation types in the coal-gangue piles area. Margalef and Shannon-Wiener indexes of four vegetation types decreased in the order: regional vegetation> naturally restored vegetation> oriental arborvitae plantations> staghorn sumac plantations. The highest Margalef and Shannon-Wiener indexes occurred in the regional vegetation type, which could be attributed to that regional vegetation was at the advanced stage after longer succession. Pielou index decreased in the order:naturally restored vegetation> regional vegetation> oriental arborvitae plantations> staghorn sumac plantations. This was because that environmental factors distributed evenly in naturally restored vegetation due to a lack of tree stratum. Soil nutrient and soil carbon stock of three restored vegetation was significantly lower than that of regional vegetation, while soil bulk density and pH value were significantly higher than that of regional vegetation. So improving soil properties will be helpful for vegetation restoration in coal-gangue area.
     Among three restoration modes, species diversity index was highest in naturally restored vegetation, which can imply that natural restoration is likely an ideal way in coal mining area. However, it was difficult for natural restored communities to develop to an advanced stage within a short time. So the natural restoration method is inefficient to improve environment quality. Therefore, it is necessary to introduce tree species in ecological reconstruction in coal coal-gangue area to improve community structure and function, and eventually to accelerate the vegetation succession.
     In the short term, the planting of staghorn sumac could increase vegetation coverage quickly, and community could reach to a coverage of 80% after 5 years. However, in the long term, staghorn sumac depressed not only other species but also its sprouts at the mature stage, which could bring great risks of degradation to the plant community when there existed a ecological stress. Staghorn sumac community could not develop to the climax stage. So the community coverage, species diversity, soil conditions and succession tendency should be regarded as main indexes in reconstruction evaluations.
     Therefore, caution should be taken when planting staghorn sumac to a large extention in ecological reconstruction in coal-gangue area. Whereas, planting indigenous species such as oriental arborvitae, combined with natural restoration, would be a better choice for vegetation restoration in coal-gangue piles. In the restoration processes, enriching the community structure, increasing species diversity and vegetation coverage are all needed. Furthermore, the improvement of soil condition is also important to accelerate the vegetation succession. Because soil conditions are main limiting factors for vegetation restoration, and the interactions between these main ecologlcal components ensure the self-maintenance of the ecosystems.
     In sum, there is a long way to achieve the purposes of ecological reconstruction in coal-gangue area. Based on the self-restoration of ecosystem, introducing suitable tree species and improving soil condition properly are absolute needed for ecological reconstruction in coal-gangue area. According to the principle of the interactions between vegetation succession and soil properties, accelerating progressive succession of vegetation and improving the structure and function of the ecosystem are the main approaches of ecological restoration and reconstruction in coal-gangue areas.
引文
[1]胡振琪.采煤沉陷地的土地资源管理与复垦[M].北京:煤炭工业出版社,1996.
    [2]“十一五”经济社会发展成就系列报告”(六)[EB/OL].[2011-3-28]. http://www.chinanews.com/cj/2011/03-04/2883805. shtml
    [3]李广信.山西煤炭工业生态补偿实践[M].太原:山西科技出版社,2010.
    [4]余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州,广东科技出版社,1996.
    [5]FORMAN R T T. Land Mosaics[M].Cambridge:Cambridge University Press, 1995.
    [6]赵晓英,孙成权.恢复生态学及其发展[J].地球科学进展,1998,(5):474-479.
    [7]李俊清,崔国发.西北地区天然林保护与退化生态系统恢复理论思考[J].北京林业大学学报,2000,22(4):1-6.
    [8]彭少麟,陆宏芳.恢复生态学焦点问题[J].生态学报,2003,23(7):1249-1257.
    [9]杜晓军,高贤明,马克平.生态系统退还程度诊断:生态恢复的基础与前提[J]植物生态学报,2003,27(5):700-708.
    [10]夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11);1471-1477.
    [11]包志毅,陈波.工业废弃地生态恢复中的植被重建技术[J].水土保持学报,2004,18(3):160-164.
    [12]彭少麟,任海,张倩媚.退化湿地生态系统恢复的一些理论问题[J].应用生态学报,2003,14(11):2026-2030.
    [13]彭少麟.恢复生态学与热带雨林的恢复[J].世界科技研究与发展.1997,19(3):216-219.
    [14]任海,杜卫兵,王俊,等.鹤山退化草坡生态系统的自然恢复[J].生态学报,2007,27(9):3593-3600.
    [15]SKOUSEN J G, CALL C A, KNIGHT R W. Natural revegetation of an unreclaimed lignite surafce mine in east-central Texas(USA) [J]. Southwestern Naturalist,1990,35:434-440.
    [16]ASH H J, GEMME J R, Bradshaw A D. The Introduction of native Plant species on industrial waste heaps:a test of immigration and factors affecting on Primary succession [J]. Journal of Applied Ecology,1994,31:74-84.
    [17]胡振琪.半干旱地区煤矸石山绿化技术研究[J].煤炭学报,1995,20(3):322-327.
    [18]隋凤良.德国矿山复垦[J].森林与人类,1999:43-47.
    [19]梁留科,常江,吴次芳,等.德国煤矿区景观生态重建/土地复垦及对中国的启示[J].经济地理,2002,22(6):711-715.
    [20]SPENCER R H, JOHNSTON R P. Technology Best Practice. NewYork:Wiley, 2002:312.
    [21]周启星,张倩茹.东北老工业基地煤炭矿区环境问题与生态对策[J].生态学杂志,2005,24(3):287-290.
    [22]邵霞珍.澳大利亚矿区环境管理及对我国的借鉴[J].中国矿业,2005,14(7):48-50.
    [23]林鹰,王涛.岭北露天煤矿排土场复垦造林及其对局部生态环境改变作用的研究[J].露天采煤技术,1996(增刊):40-42.
    [24]陈建平,刘志斌,王志宏.阜新地区矸石山表层植被技术研究[J].露天采矿技术,2005,6:46-48.
    [25]孙庆业,杨德清.植物在煤矸石堆上的定居[J].安微师范大学学报(自然科学版),1999,22(3):236-239.
    [26]郭逍宇,张金屯,宫辉力,等.安太堡矿区复垦地植被恢复过程多样性变化[J].生态学报,2005,25(4):765-770.
    [27]郝蓉,陕永杰,白中科,等.露天煤矿复垦土地的植物群落多样性和稳定性[J].煤矿环境保护,2001,16(6):14-16.
    [28]胡振琪,张光灿,魏忠义,等.煤矸石山的植物种群生长及其对土壤理化性质的影响[J].中国矿业大学学报,2003,32(5):491-499.
    [29]白中科,王文英,李晋川,等.黄土区大型露天煤矿剧烈扰动土地生态重建研究[J].应用生态学报,1998,9(6):621-626.
    [30]白中科,李晋川,王文英.中国山西平朔安太堡大型露天煤矿退化土地生态重建研究[J].中国土地科学,2000,14(4):1-4.
    [31]王伯荪.植物生态学[M].北京:高等教育出版社,1987:44-45.
    [32]汪永华,陈北光,苏志尧.物种多样性研究的进展[J].生态科学,2000,19(3):50-54.
    [33]MARGALEF R P. An index of diversity and the relation of certain contents to diversity[J]. Ecology,1967,48(2):392-404.
    [34]高贤明,陈灵芝.北京山区辽东栎(.Quercus liaotungensis)群落物种多样性的研究[J].植物生态学报,1998,22(1):23-32.
    [35]朱源,康慕谊,江源,等.贺兰山木本植物群落物种多样性的海拔格局[J].植物生态学报,2008,32(3):574-581.
    [36]唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1):20-28.
    [37]ODUM E P. The strategy of ecosystem development[J]. Science,1969,164: 262-270.
    [38]PLOTKIN J B. Predicting species diversity in tropical forests [J]. Proceedings Acad. Sci. U.S.A,2000,97:10850-10854.
    [39]HAMILTON A C, PERROTT R A. A study of altitudinal zonation in the montane forest belt of Mt. Elgon, Kenya/Uganda[J]. Vegetation,1981,45:107-125.
    [40]GLENN-Lewin D C. Species diversity in North American temperate forest [J]. Vegetation,1977,33:153-162.
    [41]VAZQUEZ G J A, GIVNISH T J. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan[J]. Journal of Ecology,1998,86:999-1020.
    [42]BAN F, HANS D K, FRANK B. Soil nutrient heterogeneity alters competition between two perennial grass species[J]. Ecology,2001,82:2534-2546.
    [43]AGUSTIN R, ADRIAN E. Small-scale spatial soil-plant relationship in semi-arid gypsum environments[J]. Plant and Soil,2000,220:139-150.
    [44]BARBARA L B, MARK R W, ALLISON A. Patterns in nutrient availability and plant diversity of temperate North American wetlands[J]. Ecology,1999,7:21-51.
    [45]GARTLAN J S, NEWBERY D M, THOMAS K W, et al. The influence of topography and soilphosphorous of the vegetation of Korup Forest Reserve, Cameroun[J]. Vegetation,1986,65:131-148.
    [46]BREEN P E. A mass balance method for assessing the potential of artificial wet1ands for waste water treatment[J]. Wet. Res.,1990,24(6):689-697.
    [47]McGRADY-Steed J, MORIN P J. Biodiversity, density compensation, and the dynamics of population and functional groups[J]. Ecology,2000,81(2):361-373.
    [48]VINTON M A, BURKE I C. Interactions between individual plant species and soil nutrient status in sho-grass steppe[J]. Ecology,1995,76:1116-1133.
    [49]SHIYOML M. Spatial pattern changes in aboveground plant biomass in a grazing pasture[J]. Ecol. Res.,1998,13:313-322.
    [50]PEREIRA J A A, OLIVEIRA-Filho A T, LEMOS-Filho J P. Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil [J]. Biodiversity & Conservation,2007,16(6):1761-1784.
    [51]方精云.探索中国山地植物多样性的分布规律[J].生物多样性,2004,12(1):1-4.
    [52]彭少麟,周厚诚,陈天杏,等.广东森林群落组成结构的数量特征[J].植物生态学与地植物学学报,1989,13(1):10-17.
    [53]马克平,陈灵芝,于顺利,等.北京东灵山地区植物群落多样性研究[J].生态学报,1997,17(6):573-583.
    [54]上官铁梁,贾智力,许念等.汾河河漫滩草地植物群落的分类极其多样性[J].中国草地,2000,(4):9-15.
    [55]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17(1):91-99.
    [56]陈廷贵,张金屯.山西关帝山神尾沟植物群落物种多样性与环境关系的研究-丰富度、均匀度和物种多样性指数[J].应用与环境生物学报,1999,6(5):406-411.
    [57]HILL M O. TWINSPAN-A FORTRAN Progranm for arranging multivariate data in an order two-way table by classication of the individuals and attibutes. New York:Cornell University, Ithaca,1979.
    [58]张金屯.数量生态学方法[M].北京:科学出版社,2004.
    [59]HILL M O, GAUCH H G Detrended correspondence analysis, an improved ordination technique[J]. Vegetation,1980,42:47-58.
    [60]张金屯.典范主分量分析及其在山西高原植被与气候关系分析中的应用[J].地理学报,1998,56(3):256-263.
    [61]米湘成,张金屯,张峰,等.典范趋势面分析及其在山西省沙棘灌丛水平格局分析中的应用[J].生态学报,1999,19(6):798-802.
    [62]曹同,郭水良,高谦.应用排序研究苔藓植物分布与气候因素问的关系[J],应用生态学报,2000,11(5):680-685.
    [63]张金屯.群落排表分类的两种数学方法[J].植物研究,1994,14(2):129-155.
    [64]高琼,郑慧莹.模糊IsoDArA在草地植物群落分类上的应用[J].植物生态学与地植物学学报,1991,15(4):312-317.
    [65]张金屯.排序轴分类法及其应用[J].生态学杂志,1994,13(3):73-75.
    [66]邱扬,张金屯.关帝山八水沟天然植物群落时空梯度的数量分析[J].应用环境生物学报,1999,5(2):113-120.
    [67]张峰,上官铁梁.逐步聚类法及其应用[J].植物生态学报,1996,20(6):561-567.
    [68]张峰,上官铁梁.有序样方聚类在植被垂直带划分中的应用[J].植物生态学报,1997,1(3):267-273.
    [69]茹文明,张峰.中条山东段植被垂直带的数量分类研究[J].应用与环境生物学报,2000,6(3):201-205.
    [70]李素清,张金屯,上官铁梁.芦芽山亚高山草甸的数量分类与排序研究[J].西北植物学报,2005,25(10):206-220.
    [71]张先平,王孟本,佘波,等.庞泉沟国家自然保护区森林群落的数量分类和排序[J].生态学报,2006,26(3):754-761.
    [72]吴琼,程转桃,张贵平,等.山西泽州自然保护区植物群落的数量分析[J].生态环境,2008,17(4):1566-157I.
    [73]邹年根,罗伟祥.黄土高原造林学[M].北京:中国林业出版社,1997.
    [74]曹振岭,佟亚辉,孙蕾,等.火炬树[J].特种经济动植物,2003,(6):34-35.
    [75]杨泱,冷平生,张博,等.3种边坡绿化植物抗旱性研究[J].中国农学通报,2010,13:272-278.
    [76]吴轶杰,李如鸿.一种值得推广的防火树种-火炬树[J].森林防火,1997,(3):30.
    [77]卫正平,刘京建.黄河沿岸干旱阳坡防护林最佳树种-火炬树[J].防护林科技,2001,3:81.
    [78]马松涛,刘广全,李文华,等.火炬树主要栽培技术及开发利用[J].陕西林业科技,2003,(2):35-37.
    [79]庞福生,刘晓智,李晓伟,等.侧柏火炬树混交林蓄水效益的研究[J].水土保持研究,2001,(3):14-16.
    [80]蒋高明.绿色奥运要警惕外来物种入侵[J].生命世界,2004,(4):6.
    [81]陈佐忠,董保华,杨宗贵.北京地区火炬树的调查[J].林业资源管理,2006,(1):54-58.
    [82]张川红,郑勇奇,李继磊,等.北京地区火炬树的萌蘖繁殖扩散[J].生态学报,2005,25(5):978-985.
    [83]王海峰.外来种火炬树生物入侵可能性研究[D].北京:北京林业大学,2007.
    [84]刘永丽,赵国华,王广海,等.火炬树扩散风险性分析[J].河北林业科技,2010,(2):43-46.
    [85]刘全儒,刘真.生物入侵一绿色奥运不能忽视的问题[J].生命世界,2008,(4):44-46.
    [86]火炬树未对北京地区的自然生态系统构成威胁---《新世纪北京生态论坛》第二届学术研讨会纪要绿色奥运要警惕外来物种入侵.植物生态学报,2006,30(1):190.
    [87]喻晓丽,邸雪颖,宋丽萍.水分胁迫对火炬树幼苗生长和生理特性的影响[J].林业科学,2007,43(11):57-61.
    [88]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报,2005,27(3):53-56.
    [89]马增旺,毕君,孟祥书,等.人工侧柏林单株生物量研究[J].河北林业科技,2006,(3):1-3.
    [90]孟祥书,马增旺,毕君,等.人工侧柏林群落持水量的研究[J].河北林业科技,2006,(4):6-7。
    [91]马维伟,王辉,连树清.兰州北山侧柏人工林地土壤水分研究[J].土壤,2009,41(1):102-106.
    [92]陈灵芝,陈清郎,鲍显诚,等.北京山区的侧柏林及其生物量研究[J].植物生态学与地植物学学报,1986,10(1):17-25.
    [93]岳明.陕北黄土区森林地带侧柏种群结构及动态初探[J].武汉植物学研究,1995,13(3):231-239.
    [94]汪平,贾黎明,李效文.北京西山地区侧柏游憩林群落结构及植物多样性[J].江林学院学报,2010,27(4):565-571.
    [95]毕君,马增旺,许云龙.人工侧柏林的灌草结构及生长动态[J].河北林业科技,1999,(3):3-5.
    [96]李春义.抚育间伐对北京山区侧柏、油松人工林林下植物的影响[D].北京: 北京林业大学,2007.
    [97]段劼,马履一,贾黎明.北京地区侧柏人工林密度效应[J].生态学报,2010,30(12):3206-3214.
    [98]邓红兵,周永斌,王庆礼.三峡库区次生柏木林中物种分布格局的分形特征[J].应用生态学报,1999,10(5):518-520.
    [99]王希群,马履,贾忠奎,等.北京地区油松、侧柏林分布格局变化的初步研究[J].西南林学院学报,2005,25(4):23-26.
    [100]汤茜,尤海梅,王梦君.徐州市人工侧柏林的群落结构及物种多样性分析[J].淮阴师范学院学报(自然科学版),2006,5(2):168-172.
    [101]王婷,叶永忠,滕开琼.嵩山侧柏人工林恢复过程中物种多样性变化研究[J].河南科学,2006,24(5):663-667.
    [102]王玉,郭建斌.黄土高原半干旱区侧柏人工林群落物种多样性研究[J].林业调查规划,2007,32(4):22-26.
    [103]庞福生,刘孝智,李晓伟.侧柏火炬树混交林蓄水保水效益的研究[J].水土保持研究,2001,8(3):14-15.
    [104]谢复旦.江苏侧柏资源开发利用探讨[J].林业科技开发,1995,(3):11-12.
    [105]杜文军,谢双喜,李勇军.侧柏人工林培育技术研究进展[J].湖北林业科技,2009(2):39-42.
    [106]齐鑫山,季明川,杨明华.山东鲁山侧柏、油松混交林混交效益的初步研究[J].生态学报,1992,12(3):257-265.
    [107]胡振琪,李鹏波,张光灿.煤矸石山复垦[M].北京:煤炭工业出版社,2006.
    [108]董鸣.资源异质性生境中的植物克隆生长:觅食行为[J].植物学报,1996,38(10):828-835.
    [109]宋明华,董鸣.群落中克隆植物的重要性[J].生态学报,2002,22(11):1960-1967.
    [110]潘志刚,游应天.中国主要外来树种引种栽培[M].北京:北京科学技术出版社,1 994:525-528.
    [111]王海峰,翟明普,马长明.外来种火炬树研究综述[J].山西林业科技,2006,4:11-19.
    [112]RICHARD S I, NANCY J H, TILMAN D, et al. Old-field succession on a Minnesota sand plain[J]. Ecology,1987,68(1):12-26.
    [113]De KROON H, Van GROENENDAEL J M. Ecology and evolution of clonal plants. Leiden, The Netherlands:Backbuys Published,1997:331-357.
    [114]阳小成,陈章和,周先叶.黑石顶山区植被恢复过程中物种多样性的变化[J].成都理工大学学报(自然科学版),2008,35(2):220-224.
    [115]LUKEN J O. Interaction between seed production and vegetative growth in staghorn sumac (Rhus typhina L.). Bulletin of the Torrey Botanical Club.1987, 114(3):247-251.
    [116]张明如,俞益武,翟明普,等.火炬树克隆分株与荆条克隆分株的光合日进程差异[J].浙江林学院学报,2007,24(1):1-6.
    [117]ARTIGAS F J, BOERNER R E J. Advance regeneration and seed banking of woody plants in Ohio pine plantations:implications for landscape change[J]. Landscape Ecology,1989,2(3):139-150.
    [118]BERTIN R I, SHOLES O D V. Weather, pollination and the phenology of Geranium maculatum. American Midland Naturalist,1993,129:52-66.
    [119]樊巍,高喜荣,赵东,等.太行山退化山地火炬树群落物种多样性与土壤特性变化的研究[J].河南农业大学学报,2008,42(3):299-302.
    [120]LOVETT D J, LOVETT D L. Modules of production and reproduction in a dioecious clonal shrub, Rhus typhina [J]. Ecology,1988,69(3):741-750.
    [121]张川红,郑勇奇,李继磊,等.北京地区火炬树的萌蘖繁殖扩散[J].生态学报,2005,25(5):978-985.
    [122]李传文,逄宗润.火炬树---一个值得警惕的危险外来树种[J].中国水土保持,2004,(2):31-32.
    [123]张明如,温国胜,颜文洪,等.太行山低山丘陵区火炬树克隆分株的生长策略[J].浙江林学院学报,2008,25(3):282-28.
    [124]方炜.生物入侵与全球变化∥方精云主编.全球生态学[M].北京:高等教育出版社,2000.
    [125]张明如,翟明普,贾黎明,等.火炬树克隆植株生长和生物量特征的研究[J].林业科学,2004,40(3):39-45.
    [126]彭少麟,向言词.植物外来种人侵及其对生态系统的影响[J].生态学报,1999,19(4):560-568.
    [127]曹振岭,佟亚辉,孙蕾,等.火炬树[J].特种经济动植物,2003,6:34-35.
    [128]BARUCH Z, GOLDSTEIN G Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii [J]. Oecologia, 1999,121:183-192.
    [129]DURAND L Z, GOLDSTEIN G. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii [J]. Oecologia,2001, 126(3):345-354.
    [130]张敦论,乔勇进,郗金标,等.水分胁迫下8个树种几项生理指标的分析[J].山东林业科技,2000,(3):5-8.
    [131]PERRINGS D, LATCH L, ZUNIGA R, et.al. Environmental and economic costs of non-indigenous species in the United State[J]. Bio. Sci.,2000,50:53-65.
    [132]王晓春,蔡体久,谷金锋.鸡西煤矿矸石山植被自然恢复规律及其环境解释[J].生态学报,2007,27(9):3744-3751.
    [133]王伟,张洪江,张成梁,等.煤矸石山植被恢复影响因子初探[J].水土保持通报,2008,28(2):147-152.
    [134]毕银丽,全文智,柳博会.煤矸石堆放的环境问题及其生物综合治理对策[J].金属矿山,2005,354:61-64.
    [135]Bradshaw A. Restoration of mined lands---using natural processes [J]. Ecological Engineering,1997,8:255-269.
    [136]马克平,黄建辉,等.北京东灵山地区植物群落多样性研究---丰富度、均匀度和物种多样性指数[J].生态学报,1995,15(3):268-277.
    [137]於方,周吴,许申来.生态恢复的环境效应评价研究进展[J].生态环境学报,2009,1 8(1):374-379.
    [138]Banerjee S K, Mishra T K, Singh A H. Restoration and reconstruction of coal mine soils---an assessment of time prediction for total ecosystem development [J]. Advances in Forestry Research in India,2000,23:12.
    [139]许丽,樊金栓,周心澄,等..阜新市海州露天煤矿排土场植被自然恢复过程中物种多样性研究[J]..干早区资源与环境,.2005,.19(6):.152-157.
    [140]Tilman D, Doeing J A. Biodiversity and stability in grasslands [J]. Nature,1994, 367:363-365.
    [141]Baskin Y. Ecosystem function of biodiversity[J]. Biological Science,1995,4(10): 657-660.
    [142]郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报,2003,23(8):1471-1476.
    [143]Vance N C, Entry J A. Soil properties important to the restoration of a Shasta red firbarrens in the Siskiyou Mountains[J]. Forest Ecology and Management, 2000,138:427-434.
    [144]Gartlan J S, Newbery D M, Thomas K W, et al. The influence of topography and soilphosphorous of the vegetation of Korup Forest Reserve, Cameroun [J]. Vegetation,1986,65:131-148.
    [145]Gentry A H. Changes in plant community diversity and floristic composition on environmental and geographical gradients [J]. Ann. Missauri Bot. Gard.,1988, 75:1-34.
    [146]高俊峰,马克明,祁建,等.北京东灵山地区农耕干扰和环境梯度对植物多样性的影响[J].西北植物学报,2008,28(12):2506-2513.
    [147]Miles J. Vegetation succession:past and present perceptions. In:A J Gray, M J Crawley, P J Edwards, (Editors) Colonization, succession and stability. Blackwell:Oxford.1987:1-29.
    [148]Myster R W, Pickett S T A. A comparison of the rate of succession over 18 yr in 10 contrasting old fields[J]. Ecology,1994,75:387-392.
    [149]杜峰,梁宗锁,徐学选,等.陕北黄土丘陵区撂荒演替中期群落比较异质性研究[J].草业学报,2007,16(5):40-47.
    [150]段永红,白中科,赵景逵.阳泉煤矸石山浅层矸石风化物水分特性初探[J].煤炭学报,1999,24(5):533-537.
    [151]段永红,庞亨辉,王景华.阳泉煤矸石山矸石风化物剖面水分变化特征初探[J].山西农业大学学报,2001,21(2):125-127.
    [152]张新时.关于生态重建和生态恢复的思辨及其科学涵义与发展途径[J].植物生态学报,2010,34(1):112-118.
    [153]彭少麟.恢复生态学[M].北京:气象出版社,2007,5-7.
    [154]Society of Ecological Restoration International (2002).Prime. http://www.ser.org.
    [155]白中科,赵景逵,李晋川,等.大型露天煤矿生态系统受损研究—以平朔露天煤矿为例[J].生态学报,1999,19(6):870-875.
    [156]Pywell R F, Bullock J M, Roy D B, et al.Plant traits as predictors of performance in ecological restoration[J]. Journal of Applied Ecology,2003,40:65-77.
    [157]Smith R S, Shiel R S, Bardgett R D, et al. Soil microbial community, fertility,vegetation and diversity as targets in the restoration management of a meadow grassland[J]. Journal of Applied Ecology,2003,40:51-64.
    [158]Crdinale B J, Palmer M A, Collins S L. Species diversity enhances ecosystem functioning through interspecific facilitation [J]. Nature,2002,415:426-429.
    [159]Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning:A consensus of current knowledge [J]. Ecological Monographs, 2005,75(1):3-35.
    [160]陈敬贤.延庆山区公路边坡植物群落物种多样性特征[J].中国水土保持,2010,2:3-5.
    [161]刘中奇,朱清科,秦伟,等.半干旱黄土区自然恢复与人工造林恢复植被群落对比研究[J].生态环境,201 0,19(4):857-863.
    [162]李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,2004,24(2):252-260.
    [163]Lovich J E, Bainbrdge D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration[J]. Environmental Management,1999,24:309-326.
    [164]杨林章,徐琪.土壤生态系统[M].北京:科学出版社,2005.
    [165]王志宏,李爱国.矿山废弃地生态恢复基质改良研究[J].中国矿业,2005,14(3):22-24.
    [166]李海波,夏铭,吴平,等.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,43(11):1154-1160.
    [167]张建杰,李富忠,胡克林,等.太原市农业土壤全氮和有机质的空间分布特征及其影响因素[J].生态学报,2009,29(6):3163-3172.
    [168]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,5:50-55.
    [169]招礼军,李吉跃,于界芬,等.干旱胁迫对苗木蒸腾耗水日变化的影响[J].北京林业大学学报,2003,3:42-47.
    [170]向言词,彭少麟,饶兴权.植物外来种对土壤理化特性的影响[J].广西植物,2003,23(3):253-258.
    [171]Vinton M A, Burke I C. Interactions between individual plant species and soil nutrient status in sho-grass steppes [J]. Ecology,1995,76:1116-1133.
    [172]朱伟兴.恢复及演替过程中的土壤生态学考虑[J].植物生态学报,2005,29(3):479-486.
    [173]Packer A, Clay K. Soil pathogens and spatial patterns of seedling mortality in temperate tree[J]. Nature,2000,404:278-281.
    [174]Klironomos J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature,2002,417:67-70.
    [175]Bloomfield H E, Bradshaw A D. Nutrient deficiencies and the aftercare of reclaimed derelict land[J]. Journal Applied Ecology,1982,19:151-159.
    [176]Dancer W S. Nitrogen accumulation in Kaolin mining wastes in cornwall.2. Forage legumes [J]. Plant and Soil,1977,48:303-314.
    [177]周庆,欧晓昆,张志明.地下生态系统对生态恢复的影响[J].生态学杂志,2007,26(9):1445-1453.
    [178]赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报,2003,14(11):2031-2036.
    [179]Oliver G R, Pearce S H, Kimberly M O, et al. Variation in soil carbon in pine plantations and implications for monitoring soil carbon stocks in relation to land-use change and forest site management in New Zealand[J]. Forest Ecology and Management,2004,203:283-295.
    [180]Johnson D W, Todd D E, Tolbertb VR, et al. Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years[J]. Soil Science Society of American Journal,2003,67:1594-1601.
    [181]Zhang J B, Shangguan T L, Meng Z Q. Changs in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological Research,2011,26:153-161.
    [182]Raich J W, Tufekcioglu A. Vegetation and soil respiration:Correlations and controls[J]. Biogeochemistry,2000,48:71-90.
    [183]Sartori F, Lal R, Ebinger MH. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA [J]. Agric. Ecosyst. Environ.,2007,122:325-339.
    [184]史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410-416.
    [185]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552.
    [186]张心昱,陈利顶,傅伯杰,等.不同农业土地利用方式和管理对土壤有机碳的影响-以北京市延庆盆地为例[J].生态学报,2006,26(10):3198-3204.
    [187]Maestre F T, Cortina J, Vallejo R. Are Ecosystem Composition, Structure, and Functional Status Related to Restoration Success? A Test from Semiarid Mediterranean Steppes [J]. Restoration Ecology,2006,14:258-266.
    [188]Franz N D. The role of species richness for recruitment in a seminatural grassland[J]. Oikos,2001,95:409-415.
    [189]张桂莲,张金屯,郭逍字.安太堡矿区人工植被在恢复过程中的生态关系[J].应用生态学报,2005,16(1):151-155.
    [190]Ruiz-Jaen M C, Aide T M. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success [J]. Forest Ecology and Management,2005,218:159-173.
    [191]Verma R K, Kapoor K S, Rawat R S, et al. Analysis of plant diversity in degraded and plantation forests in Kunihar Forest Division of Himachal Pradesh[J]. Indian Journal of Forestry,2005,28:11-16.
    [192]董世魁,崔保山,丁宗凯,等.大保高速公路老营段路域植被生态恢复[J].生态学报,2008,28(4):1483-1490.
    [193]Bradshaw A D. Underlying principles of restoration [J]. Canadian Journal of Fisheries and Aquatic Sciences,1996,53(Supplement):3-9.
    [194]Hobbs R J, Norton D A. Towards a conceptual framework for restoration ecology[J]. Restoration Ecology,1996,4:93-110.
    [195]赵方莹,孙保平.矿山生态植被恢复技术[M].北京:中国林业出版社,2009.
    [196]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源产业,2005,7(2):79-81.
    [197]Wu D M, Li S Q, Di XY, et al. Effects of nitrogenous fertilizer application on the establishment of vegetation system in weathered particles of coal gob in Shanxi mining areas, China[J]. Water, Air & Soil Pollution,2011,216(1):669-677.
    [198]Fu Y, Lin C C, Ma J J, et al. Effects of plant types on physico-chemical properties of reclaimed mining soil in Inner Mongolia, China[J]. Chinese Geographical Science,2010,20(4):309-317.
    [199]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001:107.
    [200]姜必亮,王伯荪.可持续发展的生态学透视[J].生态科学,2000,19(1):65-69.
    [201]Todd N J. A safe and Sustainable World:The Promise of Ecological Design. Island Press, Washington D C,2005.
    [202]戴金水,张玉昌,王坤堂.工程护坡与生物护坡[M].沈阳:东北大学出版社,2008.
    [203]李文银,王治国,蔡继清.工矿区水土保持[M].北京:科学出版社,1996.
    [204]盛连喜,许嘉巍,刘惠清.实用生态工程学[M].北京:高等教育出版社,2005.
    [205]赵水阳,孟志军,张才德.矿山自然生态环境保护与治理规划理论与实践[M]北京:地质出版社,2006.
    [206]Liu H H, Cao Y Q. Technologies of preventing coal mine water hazards for sustainable development in North China [J]. Geotechnical and Geological Engineering,2011,29(1):1-5.
    [207]Cairns J Jr. Ecosocietal restoration:reestablishing humanity's relationship with natural systems [J]. Environment,1995,37:4-33.
    [208]Palmer M, Bernhardt E, Chornesky E, et al. Ecology for a crowded planet[J]. Science,2004,28:1251-1252.
    [209]Bradshaw A D, Chadwick M J. The restoration of land:the ecology and reclamation of derelict and degraded land. Blackwell, London,1980.
    [210]Ristovic I. Environmental risks to air, water and soil due to the coal mining process[J]. NATO Science for Peace and Security Series,2011,2:251-264.
    [211]Yao D X, Meng J, Zhang Z G. Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area[J]. Journal of Coal Science and Engineering,2010,16(3):316-319.
    [212]耿殿明,姜福兴.我国煤炭矿区生态环境问题分析[J].中国煤炭,2002,28(7):21-24.
    [213]范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152.
    [214]王曰鑫,程刚,栗丽.山西采煤产生的土地破坏及防治对策[J].水土保持研究,2007,14(15):377-382.
    [215]孟猛,宗美娟.矿山生态恢复原理与技术[J].中国矿业,2010,19(9):60-62.
    [216]王志宏,李爱国.矿山废弃地生态恢复基质改良研究[J].中国矿业,2005,14(3):22-24.
    [217]杜峰,徐学选,张兴昌.陕北黄土丘陵区撂荒群落排序及演替[J].生态学报,2008,28(11):5418-5427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700