基于分形理论及图像纹理分析的水稻产量预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
估产是精确农业领域的一个重要研究内容,目前,国内外相关方面的研究报导很多,有的估产方法已达到实际应用阶段。但在目前的众多估产方法中,有的方法存在人力、物力投入过大的不足,有的方法存在基础数据收集复杂的不足,使估产方法难于在农村基层组织推广使用。所以研究简单、实用、投入相对较少的产量精确预测方法意义重大。
     本文在分析现有估产方法的基础上,提出了基于纹理分析、分形理论建立水稻产量精确预测数学模型的研究思路及实验方案。目前产量测量方法主要分为:传统的田间实地抽样调查法,遥感估产和作物环境模型。传统的田间实地抽样方法费时、费力,效率低下;作物环境模型中的气象预报模型和农学预报模型需要大量的气象资料和农学特征参数,存在模型资料获取难度较大的问题。分形理论和纹理分析方法对于解决具有微观上杂乱无序,但宏观上有序的物体具有明显优势。因此本研究基于分形理论和图像纹理分析方法,以成熟期水稻作为主要研究对象,结合图像处理技术,用数学统计理论建立水稻穗头、田间平方米产量的数学模型,为实现田间精确预测产量解决了关键技术。主要研究内容和取得的结论归纳如下:
     1、提出了一个全新的产量预测思路与实现方法。在总结了目前产量预测方法的优点与不足后,提出了以成熟期水稻图像为主要研究对象,通过对图像进行分析、处理,来预测产量。这一思路,在目前产量预测方法的研究方面是个全新的思路。这种产量预测方法实现了方法简单、实用、投入较少的目的,为今后进一步研究田间产量精确预测系统奠定理论基础;
     2、提取水稻穗头、田间群体图像的分形特征参数。水稻穗头与水稻群体在局部区域内呈现明显的不规则性,在传统的欧氏几何范畴来研究解决其本身特性参数的提取难度比较大,分形理论的应用则为提取水稻穗头、水稻群体图像特征参数的提取提供了一种极为有效的途径。本文根据分形的几何特征研究水稻穗头、田间水稻群体图像是否具有分形特征;根据分形维数的定义和现有分形维数的计算原理,研究分形维的提取算法,基于VC++平台开发编写分形维提取程序,有效提取经过图像预处理过的水稻穗头、田间水稻群体图像的分形维。研究结果:水稻穗头、田间群体图像具有分形特性;编制了适于提取二值图的计盒维数(Box Counting)的程序、适于提取灰度图的差分计盒维数(Differential Box Counting)和多重分形维计算程序;利用自编程序提取了水稻穗头图片的计盒维数(BC)和差分计盒维数(DBC);还提取了田间水稻平方米群体图像的差分计盒维数(DBC)和多重分形维指数图(q-D(q)图);
     3、提取水稻穗头、田间群体图像的纹理特征参数值。水稻穗头和水稻群体图像在局部区域内呈现不规则性,在整体上表现出某种规律性,这是典型的纹理特性。本文根据纹理特征的常用描述、统计方法,编制了基于灰度图像直方图纹理统计原理的一次统计量纹理特征提取程序;提取了基于直方图特征(一次统计量)的纹理统计量:灰度均值、方差、平滑度、三阶矩、一致性、熵;提取了基于灰度共生矩阵(二次统计量)的纹理统计量:角二阶矩、相关度、对比度、熵、逆差矩、和方差;还提取了基于灰度梯度共生矩阵(二次统计量)的纹理统计量:能量、灰度不均匀度、梯度不均匀度、相关度、混合熵、惯性、逆差矩;
     4、研究提取的水稻穗头、田间水稻群体图像分维、纹理特征参数值与水稻穗头质量、田间平方米产量的相关关系。结果表明:与穗头质量存在线性相关关系的穗头图像特征参数为:计盒维数、差分计盒维数、直方图统计的纹理特征值(均值、标准差、平滑度、三阶距、一致性、熵)、灰度共生矩阵的相关度和对比度、灰度梯度共生矩阵的灰度不均匀度和梯度不均匀度;与水稻平方米产量存在线性相关关系的水稻群体图像特征参数为:差分计盒维数、多重分形维D(5)(5是多重分形分析时的指数值)、直方图统计的熵、灰度共生矩阵的对比度、灰度梯度共生矩阵的灰度不均匀度、梯度不均匀度;
     5、对提取的特征参数进行主成分分析,将与产量具有相关关系的多个参数化为少数几个综合指标。为了能全面、系统地找出表征产量的特征参数,考虑了众多影响水稻穗头,水稻单位面积产量的因素。这些因素从个体来说,都与产量有相关关系,但可能存在信息冗余,重复表述的问题,并且变量太多增加分析问题的难度与复杂性,所以采用主成分分析方法对所有变量进行筛选,从中选取若干对产量具有最佳解释能力的新综合变量。结果表明:对与水稻穗头质量相关性比较显著的特征参数作主成分分析后,确定贡献率高达99.02%的第一主成分代替原先的14个特征参数作为新的综合变量;对水稻群体平方米产量的特征参数作主成分分析后,确定了累计贡献率达99.95%的第一、第二主成分代替原来的7个特征参数作为新的综合变量;
     6、用多元线性回归方法建立水稻穗头质量、水稻平方米产量的数学模型。建立的穗头质量模型为:Y=5.7174-0.3668z1,式中Y为穗头质量,Z1为表征穗头质量的主成分;建立水稻平方米产量模型为:Y=0.7889+0.0598z1+0.0295z2+0.0541z3,式中Y为每平方米产量,单位kg/m2,Z1、Z2、Z3是水稻平方米产量的主成分。
     7、用后验差检验法对模型精度进行验证。后验差检验验证残差分布的统计特性,验证结果为:穗头质量模型精度为一级——优,田间平方米产量的模型精度为三级——勉强合格。
     本研究为分形理论、纹理分析在农业工程方面的应用提供一种新的思路和启发。水稻穗头质量模型的建立将为水稻品种的培育研究提供参考依据;平方米水稻产量模型的建立将为水稻产量测量提供一种新的方法,为联合收割机的测产装置提供一种新的选择。
Pre-estimating the yield of grain crops is one of the significant content of the precision agriculture. Currently, many relevant researches have been reported over the world, and so(?)ne pre-estimating approaches have been applied to the practical production. However, most of these methods have the disadvantages of needing many manpower as well as material recourses, and some of them were very unconvinent in collecting basic data, thus it is too difficult to popularize these methods in rural area. Simple, practical and less-investment methods for pre-estimating the yield have been required.
     In this paper, author proposed a novel method for estimating the paddy yield on the basis of the fractal theory and the image texture analysis. Presently, traditional on-the-spot sampling and survey methods, remote sensing yield estimating and predicting yield based on the crop-environment model are three main methods. Traditional on-the-spot sampling and survey methods are time and labor consuming and low efficiency. Remote sensing yield estimating needs an enormous input of finacial and material recourses. For the methods based on the crop-environment model, it is very hard to collect the vast amount of meteorological data and agricultural feature parameters. The image texture analysis and the fractal theory have the superiority in describing objects which present abnormities in a microscopic scales but show regularities in a macroscopic scales. In this paper, based on image texture analysis and the fractal theory, feature parameters of mass were extracted from images of individual paddy spikes and paddy plots, the correlativities between these feature parameters and the yields were studied, mathematical models were established to measure the mass of individual paddy spikes and the per-square-meter yields of paddy plots. Finally,the PCA technology was used for precision pre-estimating the yield of grain crops. Main contents and conclusions were summed up as follows:
     1. A novel thought and approach was brought foreward for pre-estimating the yield of paddy crops. In this paper, based on the images of individual paddy spikes and paddy plots in their maturation phase, using digital image processing technology, and combining with the fractal theory and the texture analysis, a new method was designed and studied to estimate the yield of paddy grain. This method achieved the aim of simple, practical and less-investment, and provided a theoretical basis for further researches about accurate yield pre-estimating system.
     2. Fractal feature parameters of the images of paddy spikes and paddy plots were extracted. The shap of individual paddy spikes and paddy plots present an distinct abnormity in partial areas. Obviously, it is very hard to derive characteristic parameters in a traditional domain of Euclidean geometry. The fractal theory provides us a effective way to extract feature parameters of the images of paddy spikes and paddy plots. In this paper, whether those images bear fractal features were studied, the algorithms of extracting the fractal demention (FD) were worked over based on the definition and the existing calculating principles of the FD, and eventually the FDs were extracted from preprocessed images of paddy spikes and paddy plots using a calculation programme exploited on a VC++ platform. The result shows that the images of paddy spikes and paddy plots bear fractal features. In our researches, calculation programmes were disigned to extract the Box Counting Dimensions (BC) from binorized images, the Differential Box Counting Dimensions (DBC) and the multi-fractal dimensions (D(5)), and relevent feature parameters were extracted.
     3. Texture feature parameters of the images of paddy spikes and paddy plots were extracted. The texture of individual paddy spikes and paddy plots present an abnormity in partial areas, but as a whole, it shows a certain regularity. This is the characteristic of the texture. In this paper, based on the description and the statistical methods of texture feature, calculation programmes were designed to extract textural feature parameters. From histogram features, the mean, the variance, the smoothness, the consistency, the third order moment and the entrop of the gray level were extracted. From the gray-level co-occurrence matrix, the diagonal second order moment, the correlation degree, the contrast grade, the entrop, the inverse difference moment and the variance of sum were extracted. And from the gray level-gradient co-occurrence matrix, the energy, the gray average, the gradient average, the correlation degree, the entropy of mixing, the inertia and the inverse difference moment were extracted.
     4. The correlativity between the different Box-Counting Dimensions and the textual feature parameters of the images of paddy spikes and paddy plots and the masses of paddy spikes and the per-square-meter yield of paddy plots studied. The result shows that feature parameters which have linear correlativity with the masses of paddy spiked are BC, DBC, texture feature parameters extracted from histogram features (the mean, the variance, the smoothness, the third order moment, the consistency and the entrop of the gray level), the correlation degree and the contrast grade extracted from the gray-level co-occurrence matrix, and thegray average, the gradient average of the gray level-gradient co-occurrence matrix, and those have linear correlativity with the per-square-meter yield of paddy plots are DBC, D(5), the entropy of histogram features, the contrast grade of the gray-level co-occurrence matrix, the gray average and the gradient average of the gray level-gradient co-occurrence matrix.
     5. In our research, Principal Component Analysis (PCA, a vector space transform often used to reduce multidimensional data sets to lower dimensions for analysis) were used to extract some aggregate variables which bear best explanatory ability to the yield. Instead of the original variables, fewer new aggregate variables were used in establishing regression models. These models were used to forecast the mass of individual paddy spike and the per-square-meter yields. The result shows that, instead of primary 7 feature parameters, the contribute rate of the first principal component is as high as 92.83%. instead of primary 6 feature parameters, the contribute rate of the first and the second principal components is as high as 97.37%.
     6. The multiple linear regression equation method were used in establishing mathematical models for measuring the masses of individual paddy spikes and the per-square-meter yields of paddy plots. The model for measuring the masses of individual paddy spikes could described as:Y=5.7174-0.3668z,, where Y equals the mass of a paddy spike, Z1 equals the principal components. The model for measuring the per-square-meter yields could described as:Y=0.7889+0.0598z1+0.0295z2+0.0541z3, where Y equals the per-square-meter yield, Z1, Z2, Z2 equals the first and the second principal components.
     7. The posterior-variance-test was used in model precision grade testing. Results show that the precision grade of the model for measuring the masses of individual paddy spikes isⅠ(excellent). The precision grade of the model for measuring the per-square-meter yields isⅢ(reluctantly qualified).
     This research provided a novel idea and inspiration for the application of the fractal theoty and the image texture analysis in agricultural engineering. The model, which was used to measure the mass of individual paddy spike, would give references to the researches of cultivating new paddy varieties. The models of the per-square-meter yield provide a novel approach to measuring the yields of paddy rice, and could give a new choice in designing an estimating device which could be fixed on a combine harvester.
引文
1. 郭伏,钱省三.人因工程学[M].北京:机械工业出版社,2006:
    2. 聂振邦.加强粮食宏观调控,确保国家粮食安全[J].求是杂志,2008,10:26-28
    3. 侯志研、郑家明、冯良山等.应用遥感方法估算作物产量的研究进展[J].杂粮作物,2007,27(3):220-222
    4. 人物访谈.要夯实国家粮食安全基础—访农业部副部长张宝文[J].华夏星火,2007,2:15-16
    5. Keller J, Crownover R. on the calculation of fractal features from images[J]. IEEE Trans,1993, 15(10):1087-1090
    6. 陈锡康.全国粮食产量预测研究[J].中国科学院院刊,1992,4:330-333
    7. 白丽,王进,蒋桂英.高光谱分辨率遥感技术在农作物估产中的研究现状与发展趋势[J].现代化农业,2006(1):30-33
    8. Dawe, D. The contribution of rice research to poverty alleviation[J]. Studies in Plant Science, 2000(7)
    9. Cassman, K.g. Ecological intensification of cereal production systems:yield potential,soil quality,and precision agriculture[M]:Proc.Natl.Acad.Sci,1999:5952-5959
    10. 中国粮食经济学会、中国粮食行业协会、中国粮食行业协会大米分会课题组.稻米是国家粮食安全的重中之重[J].粮食问题研究,2008(2):4-19
    11. 刁操铨.作物栽培学各论[M].北京:中国农业出版社,1994:40
    12. 晏明,刘志明,晏晓英.用气象卫星资料估算吉林省主要农作物产量[J].气象科技,2005,33(4):350-354
    13. David B.Lobell, G.P.A. Comparison of Earth Observing-1 ALI and Landsat ETM+ for Crop Identification and Yield Prediction in Mexico[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND ERMOTE SENSING,2003,41(6):1277-1282
    14. Tittonell P., Leffelaar P.A., Giller K.E. Estimating yields of tropical maize genotypes from non-destructive,on-farm plant morphological measurements[J]. Agriculture,Ecosystems and Environment 2005,105:213-220
    15. Reyniers M, Baerdemaeker J.De. Optical Measurement of Crop Cover for Yield Prediction of Wheat[J]. Biosystems Engineering,2004,89(4):383-394
    16. 冯奇,吴胜军.我国农作物遥感估产研究进展[J].世界科技研究与发展,2006,28(3):32-36
    17. 薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,2005,9(1):100-105
    18. 程乾.基于MOD 13产品水稻遥感估产模型研究[J].农业工程学报,2006,22(3):79-83
    19. 刘良云,王纪华,黄文江等.利用新型光谱指数改善冬小麦估产精度[J].农业工程学报,2004,20(1):172-175
    20. 唐延林,王纪华,黄敬峰等.利用水稻成熟期冠层高光谱数据进行估产研究[J].作物学报,2004,30(8):780-785
    21. 闫利文,陈红,陶卫江.基于SPOT高分辨率遥感数据的农作物估产方法研究[J].安徽农业科学,2007,35(23):7054-7056
    22. 杨文.基于NOAA卫星的昆明夏粮监测及估产[J].云南农业科技,2007,3:14-18
    23. 张霞,张兵,卫征等MODIS光谱指数监测小麦长势变化研究[J].中国图像图形学报,2005,10(4):420-425
    24. 邢旗,刘爱军,刘永志等.应用MODIS-NDVI对草原植被变化监测研究-以锡林郭勒盟为例[J].草地学报,2005,13:15-19
    25. 吕建海,陈曦,王小平等.大面积棉花长势的MODIS监测分析方法与实践[J].干旱区地理,2004,27(1):118-123
    26. 程乾,王人潮.数字高程模型和多时相MODIS数据复合的水稻种植面积遥感估算方法研究[J].农业工程学报,2005,21(5):89-92
    27. 闫岩,柳钦火,刘强等.基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究[J].遥感学报,2006,10(5):804-811
    28. Liang, S.L. Quant itat ive remo te sensing of land surface[M]. New Yo rk:JohnW iley & Sons, Inc, 2004:423-427
    29. 杨鹏,吴文斌,周清波等.基于作物模型与叶面积指数遥感影像同化的区域单产估测研究[J].农业工程学报,2007,23(9):130-136
    30. 李卫国,王纪华,赵春江等.基于定量遥感反演与生长模型耦合的水稻产量估测研究[J].农业工程学报,2008,24(7):128-131
    31. 周国祥,周俊,刘成良.基于GSM无线技术的产量远程监测系统研究[J].自动化仪表,2005,26(11):8-11
    32. Monte R, B., Daniel,Jane. Neural Network Prediction of Maize Yield using Alternative Data Coding Algorithms[J]. Biosystems Engineering,2002,83:31-45
    33. 朱杰,聂振邦.二十一世纪中国粮食问题[[M].北京:中国技术出版社,1999:1
    34. 周清波.国内外农情遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14
    35. 曾澜,张勇,张雪,等.基于遥感估产和农业统计的粮食供需平衡模型研究[J].遥感学报,2004,8(6):645-654
    36. Monte R. O'Neal, B.A., Engel R.Ess. Neural Network Prediction of Maize Yield using Alternative Data Coding Algorithms[J]. Biosystems Engineering,2002,83(1):31-45
    37. Lobell D.B., G.P.A., Ortiz-Monasterio J.I. Remote sensing of regional crop production in the yaqui Valley, Mexico:Estimates and uncertainties[J]. Agricu. Ecosyst.Environ,2003,94:205-220
    38. Moreno-Sotomayor A., A.W. Improvement in the simulation of kernel number and grain yield in CERES-Wheat[J]. Field Crops Research,2004,88:157-169
    39. Sinclair, T.R., Bennett, J.M., Muchow, R.C. Relative sensitivity of grain yield and biomass accumulation to drought in field-groun maize[J]. Crop Science,1990,30:690-693
    40. Bindraban, P.S., Sayre, K.D.,Solis-Moya. Identifying factors that determine kernel number in wheat[J]. Field Crops Research,1998,58:223-234
    41. Fischer, S. Increased kernel number in Norin 10-derived dwarf wheat:evaluation of the cause[J]. Agric. Sci.,1986,105:447-461
    42. Toshiyuki Takai, S.M., Takahiro Nishio,Akihiro Ohsumi. Rice yield potential is closely related to crop growth rate during late reproductive period[J]. Field Crops Research,2006,96:328-335
    43. Stanley Omar PB.Samonte, L.T.W., Rodante E.Tabien. Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice[J]. Field Crops Research, 2006,96:313-319
    44. 王人潮,王深法,陈铭臻等.水稻遥感估产系统研究[J].浙江农业大学学报,1993,19:1-6
    45. 朱德峰,谢芙贤,蔡体常等.用水稻叶片含氮量及叶面积指数建立估产模式的探讨[J].浙江农业大学学报,1993,19:78-82
    46. 季彪俊.影响水稻产量因子的研究[J].西南农业大学学报(自然科学版),2005,27(5):579-583
    47. 郑桂萍,李红宇,刘丽华,等.土壤水势对寒地水稻穗部性状及产量的影响[J].中国水稻科学,2006,20(4):417-423
    48. 潘学彪,韩月澎,陈宗祥等.水稻植株形态遗传改良的研究进展[J].垦殖与稻作,2004,25(1):36-40
    49. M, M. Chronological change of yield ability and its related traits in rice varieties of Hokkaido[J]. SABRAO Journal of breed and Genetics,2003,35(1):11-20
    50. 吕艳东,郭晓红,郑桂萍等.水稻理想株型的研究进展[J].垦殖与稻作,2006(2):3-7
    51. Yoshida Hiroe, H.T., Shiraiwa Tatsuhiko. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia[J]. Field Crops Research,2005,97(2-3):337-343
    52. 徐正进,陈温福,张龙步等.水稻理想穗型设计的原理与参数[J].科学通报,2005,50(18):2037-2039
    53. 王延颐.植被指数与水稻长势产量结构要素关系的研究[J].国土资源遥感,1996,1(27):56-59
    54. 张建华.作物估产的遥感-数值模拟方法[J].干旱区资源与环境,2000,14(2):82-87
    55. 王秀珍,黄敬峰,王人潮等.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报,2004,8(1):8 1-89
    56. 毛文华,王一鸣,张小超等.基于机器视觉的田间杂草识别技术研究进展[J].农业工程学报,2004,20(5):43-46
    57. Zhang Gong, D.S.J., Jiang Deyun,Zhang Zhaokun. Grain Classification With Combined Texture Model[J]. Transactions of the CSAE,2001,17(1):149-153
    58. Shearer S A, H.R.G. Plant identification using color co-occurrence matrixes[J]. Transactions of the CSAE,1990,33(6):2037-2044
    59. Meyer G E, M.T., Kocher M F. Textural imaging and discriminable analysis for distinguishing weeds for spol spraying[J]. Transactions of the CSAE,1998,41 (4):1189-1197
    60. Burks T F, S.S.A., Gales R S. Backpropagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of the CSAE,2000,43(4):1029-1037
    61. 毛罕平,徐贵力,李萍萍.基于计算机视觉的番茄营养元素亏缺的识别[J].农业机械学报,2003,34(2):73-75
    62. 张伟,毛罕平,李萍萍等.缺素叶片图像颜色和纹理特征参数提取的研究[J].农机化研究,2003(2):60-63
    63. 李建平,臧少锋.分形理论在农业工程中的应用[J].农机化研究,2003(1):129-131
    64. 李会芳.多重分形理论及其在图像处理中应用的研究[D].西安:西北工业大学,2004
    65. 徐梦洁,彭补拙.江苏省粮食产量吸引子维数研究[J].人文地理,2001,16(3):53-56
    66. Valdez-Cepeda R.D., Olivares-Saenz E.. Fractal analysis of Mexico's annual mean yields of maize, bean, wheat and rice[J]. Field Crops Research,1998,59:53-62
    67. 金燕,郑永冰,陈文章.粮食产量预测的分形方法[J].辽宁农业科学,2005(1):45-46
    68. Chtioui, Y., Bertrand, D.,Dattee,Y.,Devaux,M.F. Identification of seeds by color imaging:comparison of discriminant analysis and artificial neural networks[J]. Food Agriculture,1996,71:433-441
    69. Chtioui, Y., Bertrand, D.,Barba,D. Feature selection by a genetic algorithm,Application to seed discrimination by artificial vision[J]. Food Agriculture,1998,76:77-86
    70. Pablo M.Granitto, P.F.V., H.Alejandro Ceccatto. Large-scale investigation of weed seed identification by machine vision[J]. Computers and Electronics in Agriculture,2005,47:15-24
    71. Granitto. P.M., N.H.D., Verdes.P.F.,Ceccatto.H.A. Weed seeds identification by machine vision[J]. Computers and Electronics in Agriculture,2002,33(91-103)
    72. 任宪忠,汪春,雷博等.小麦籽粒形状参数分形特性研究及应用[J].农业机械学报,2005,36(10):85-87
    73. 刘桃菊,唐建军,戚昌瀚.水稻形态的分形特征及其可视化模拟研究[J].江西农业大学学报(自然科学版),2002,24(5):583-586
    74. 龚国淑,张世熔.植物病害病斑形状的分形研究[J].植物保护,2002,28(6):9-13
    75. M, S.R. Physical meaning and interpretation of fractal dimensions of fine particles measured by different methods[J]. Journal of Food Engineering,1998,32(4):447-456
    76. 冯斌,汪懋华.基于颜色分形的水果计算机视觉分级技术[J].农业工程学报,2002,18(2):141-144
    77. YaoXiang, H. Study on rice super high yield breeding[J]. Crops,1990,24(4):1-2
    78. Peng S, K.G.S., K G Cassman. Evaluation of the new plant ideotype for increased yield potential[M]. Breaking the yield Barrier. Philippines:IRRI,1994:5-20
    79. 吴春赞,叶定池,林华等.栽插密度对水稻产量及品质的影响[J].中国农学通报,2005,21(9):190-205
    80. 吴春赞,林华,赖联赛等.水稻强化栽培适宜密度探讨[J].垦殖与稻作,2006(1):29-31
    81. 王成瑗,王伯伦,张文香等.栽培密度对水稻产量及品质的影响[J].沈阳农业大学学报,2004,35(4):318-322
    82. 都兴林,方秀芹,李万良.寒冷稻作区水稻高产栽培最适密度研究[J].吉林农业科学,1995(4):31-37
    83. M.Reyniers, V., J.De Baerdemaeker. Optical Measurement of Crop Cover for Yield Prediction of Wheat[J]. Biosystems Engineering,2004,89(4):383-394
    84. 李志林,欧宜贵.数学建模及典型案例分析[M].北京:化学工业出版社,2006:55
    85. 孙博文.分形算法与程序设计[M].北京:科学出版社,2004:
    86. Kenneth, F. Fraactal Geometry-Mathematical Foundations and Applications[M]北京:人民邮电出版社,2007:
    87. 张凯选,郭嗣琮,遥感图象分形维数的几种估计算法研究.2007,中国科技论文在线.p.http://www.paper.edu.cn/paper.php?serial number=200711-409
    88. Chaudhuri BB, S.N., Kundu P An improved fractal geometry based texture segmentation technique[J]. Proc. IEE Part E,1993,140(5):233-241
    89. 李厚强,刘政凯,詹曙.一种彩色纹理图像的分割方法[J].计算机学报,2001,24(9):965-971
    90. 张涛,杨志标,黄爱民.一种改进的遥感图像分形维数提取算法[J].军械工程学院学报,2006,18(5):61-65
    91. 张华国,黄韦艮,周长宝等.关于IKONOS卫星遥感图像的分形特征研究[J].测绘通报,2005,5:15-18
    92. 鲜明,庄钊文,肖顺平等.基于混沌、多重分形理论的雷达信号分析和目标识别[J].电子科学学刊,1998,20(4):433-439
    93. Nirupam Sarkar, B.B.C. Multifractal and generalized dimensions of gray-tone digital images[J]. Signal Processing,1993,42:181-190
    94. Falconer, K. Fractal Geometry-Mathmatical Foundations and Applications[M]图灵数学,ed.统计学丛书.北京:人民邮电出版社,2007:
    95. 鲜明,庄钊文,肖顺平,等.基于混沌、多重分形理论的雷达信号分析和目标识别[J].电子科学学刊,1998,20(4):433-439
    96. 于海鹏,刘一星,张斌等.应用空间灰度共生矩阵定量分析木材表面纹理特征[J].林业科学,2004,40(6):121-129
    97. 孙栋.基于纹理分析的目标图像识别技术研究[M].南京:南京理工大学,2005
    98. 张则飞,邢立新.纹理特征在Aster影像数据分类中的应用[J].吉林大学学报,2006,36(11):214-216
    99. 刘保利,田铮.基于灰度共生矩阵纹理特征的SAR图像分割[J].计算机工程与应用,2008,44(4):4-6
    100. Haralick, R.M. Statistical and Structural Approaches to Texture[J]. Proceeding of IEEE,1957, 67(5):786-804
    101. 王波,姚宏宇,李弼程.一种有效的基于灰度共生矩阵的图像检索方法[J].武汉大学学报(信息科学版),2006,31(9):761-764
    102. 洪继光.灰度一梯度共生矩阵纹理分析方法[J].自动化学报,1984,10(1):22-25
    103. 杨淑莹.VC++图像处理程序设计(第2版)[M].北京:清华大学出版社,北京交通大学出版社,2005:282-283
    104. 陈坤杰.基于分形理论及机器视觉的牛肉自动分级技术研究[D].南京:南京农业大学,2005
    105. 何仁斌MATLAB6工程计算及应用[M].重庆:重庆出版社,2001:226-229
    106. Keller J M, C.S. Texture description and segmentation through fractal geometry[J]. CVGIP,1989, 45:150-166
    107. Fioravanti S, M. Theory and application to images texture recognition[c]. in Proc A Joint JRC/EARSeL Expert Meeting.1994. Italy:Ispra.
    108. Chaudhuri BB, S.N. Texture segmentation using fractal dimension[J]. IEEE Trans Pattern Analysis and Machine Intelligence,1995,17(1):72-77
    109. 李厚强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1993:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700