钒电池用杂萘联苯聚芳醚酮阴离子交换膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全钒氧化还原液流电池(VRB,简称钒电池)是一种新型储能电池,它的电池功率与容量独立,具有可深度放电、长寿命、维护简便等优点,是太阳能、风能等可再生能源发电及智能电网削峰填谷的理想储能装置。离子交换膜为钒电池的关键部件。全氟磺酸型的Nafion膜因其优良的电化学性能和稳定性而广泛地被用作钒电池隔膜,但是Nafion膜阻钒性能欠佳,价格昂贵,限制了钒电池的推广应用。因此有必要开发替代膜,开展相关的膜材料研究。杂萘联苯聚醚酮(PPEK)和杂萘联笨聚醚酮酮(PPEKK)是高性能高分子材料,具有机械强度高、化学稳定性好等特点。与全氟磺酸膜材料相比,杂萘联苯聚芳醚酮类膜材料具有显著的低成本优势。
     分别用浓硫酸、硝基苯为溶剂对PPEKK进行氯甲基化改性制备氯甲基化杂萘联苯聚醚酮酮(CMPPEKK)。系统研究了PPEKK的氯甲基化改性工艺,考察了反应因素对产物氯甲基化程度的影响。对产物进行了红外光谱、核磁氢谱表征,结果表明氯甲基被成功地引入到聚合物中。CMPPEKK的氯甲基含量介于0.9~1.9mmol/g之间。CMPPEKK基膜经三甲胺胺化制备季铵化杂萘联苯聚醚酮酮(QAPPEKK)阴离子交换膜,详细考察了胺化条件对QAPPEKK膜性能的影响,制备出离子交换容量(IEC)介于0.99~1.56mmol/g之间的QAPPEKK膜。对膜进行了红外光谱、热性能分析;测试了膜的基本性能及其应用于钒电池的单电池性能。单电池性能测试结果表明,在相同电流密度下(20~80mA/cm2),QAPPEKK膜(IEC=1.56mmol/g)的单电池电流效率高于Nafionl17膜,而两者的能量效率相当。考察了QAPPEKK (?)膜在五价钒溶液中的稳定性和在钒电池中连续运行的稳定性,结果表明QAPPEKK膜具有较好的稳定性。
     以吡啶为胺化试剂对CMPPEKK基膜进行胺化,制备吡啶型杂茶联苯聚醚酮酮阴离子交换膜(PyPPEKK)。通过考察吡啶的稀释剂对膜性能的影响,优选出吡啶水溶液为胺化溶液。研究了胺化工艺对膜性能的影响,并对工艺条件进行优化。制备出IEC介于0.96~1.55mmol/g之间的PyPPEKK膜。对膜进行了红外光谱分析,结果表明吡啶基团被成功引入到膜中。测试了膜的基本性能及其应用于钒电池时的单电池性能。在电流密度为80mA/cm2时,单电池的电流效率可达99.2%,能量效率可达83.6%,高于相同测试条件下采用Nafionl17膜的单电池(电流效率和能量效率分别为96.8%和80.7%)。测试了PyPPEKK膜在五价钒溶液中的稳定性,考察了膜在钒电池中的连续运行稳定性,结果表明PyPPEKK膜具有较好的稳定性。
     从分子结构设计出发,将甲基引入到聚合物中,利用溶液缩聚法制备二甲基杂荼联苯聚醚酮(DMPPEK)。对DMPPEK进行了红外光谱、核磁氢谱分析,结果表明制备出一系列不同甲基含量的DMPPEK。对DMPPEK进行溴化改性制备溴化二甲基杂萘联苯聚醚酮(BPPEK)。考察了溴化工艺对产物溴化结果的影响,并对工艺进行了优化。对溴化产物进行了红外光谱、核磁共振谱分析,结果表明通过溴化将甲基部分转化为单溴甲基,BPPEK的单溴甲基转化率达到50%左右,满足制备阴离子交换膜的要求。BPPEK经溶液铸膜法制备出基膜,分别采用三甲胺、毗啶对基膜进行胺化制备季铵化杂萘联苯聚醚酮(QBPPEK)、吡啶型杂萘联苯聚醚酮(PyBPPEK)阴离子交换膜。对‘膜进行了红外光谱、热性能分析。测试了膜的基本性能及其应用于钒电池的单电池性能。单电池性能测试结果表明,相同电流密度下(20~80mA/cm2), QBPPEK(IEC-1.53mmol/g)、PyBPPEK(IEC=1.50mmol/g)膜的单电池电流效率、能量效率均高于Nafionl17膜。
     用溶液缩聚方法制备二甲基杂萘联苯聚醚酮酮(DMPPEKK),对DMPPEKK进行了红外光谱、核磁氢谱分析,结果表明制备出一系列具有不同甲基含量的DMPPEKK。对DMPPEKK进行溴化改性制备溴化二甲基杂萘联苯聚醚酮酮(BPPEKK)。对溴化产物进行了红外光谱、核磁共振谱分析,结果表明通过溴化制备出满足制备阴离子交换膜要求的BPPEKK。分别用三甲胺、吡啶对BPPEKK基膜胺化制备季铵化杂萘联苯聚醚酮酮(QBPPEKK)和吡啶型杂萘联苯聚醚酮酮(PyBPPEKK)阴离子交换膜。对膜进行了红外光谱分析。测试了膜的基本性能及其应用于钒电池的单电池性能。单电池性能测试结果表明,QBPPEKK(1.51mmol/g)、PyBPPEKK(1.45mmol/g)(?)膜在相同电流密度下,(20~80mA/cm2)单电池的电流效率高于Nafionl17(?)膜,而能量效率与Nafionl17膜相当。
     比较研究了基于氯甲基化聚芳醚酮的阴离子交换膜与基于溴化聚芳醚酮的刚离r交换膜的结构与性能关系。结果表明,季铵化杂荼联苯聚芳醚酮阴离子交换膜与吡啶型杂萘联苯聚芳醚酮阴离子交换膜的含水率和溶胀率均随着离子交换容量的增加而增加,主链结构和甲基对膜的含水率和溶胀率影响较小。季铵化杂荼联苯聚芳醚酮阴离子交换膜比吡啶型杂萘联苯聚芳醚酮阴离子交换膜有较高的含水率和较大的溶胀率。杂茶联苯聚芳醚酮阴离子交换膜应用于单电池时的电压效率、能量效率主要受离子交换容量的影响。
Vanadium redox flow battery (VRB) is a new battery for energy storage. The power and capacity of VRB are divided. It has the advantage of deep discharge capacity, long cycle life, and maintenance convenient. The VRB is an ideal large energy storage device for renewable energy sources such as solar energy, wind energy and smart grid for load shifting. Ion exchange membrane is key component for VRB. Nafion has been used as separator for its good chemical stability and high conductivity; however, it suffers from high cost and the crossover of vanadium ions. Therefore, study on alternative membranes and related membrane materials are necessary. Poly(phthalazinone ether ketone)(PPEK) and poly(phthalazinone ether ketone ketone)(PPEKK) are high performance polymers. They have high mechanical strength and good chemical stability. The poly(phthalazinone ether ketone)s membrane materials have lower cost than that of perfluorinated sulfonic acid materials.
     Chloromethyl poly(phthalazinone ether ketone ketone)(CMPPEKK) were prepared from PPEKK with sulfuric acid and nitrobenzene as solvents, respectively. The effects of reaction conditions on chloromethyl degree were studied. The resulting polymer were analysed by using FTIR and NMR. The resluts confirmed that chloromethyl groups were intrduced into polymer. The chloromethyl degree of CMPPEKK was in a range of0.9-1.9mmol/g. CMPPEKK membranes were aminated to prepare quaternized poly(phthalazinone ether ketone ketone)(QAPPEKK) anion exchange membranes. The ion exchange capacity (IEC) of QAPPEKK membranes was in a range of0.99-1.56mmol/g. Under the same current density (20-80mA/cm2), the current efficiency of VRB cell with QAPPEKK (IEC=1.56mmol/g) was higher than that of Nafion117, and the energy efficiency of both cells was comparable. QAPPEKK membranes showed good stability in VO2+solution and VRB.
     Poly(phthalazinone ether ketone ketone) anion exchange membranes with pyridinium groups (PyPPEKK) were prepared from CMPPEKK and pyridine. The amimation conditions were studied and optimized. The IEC of PyPPEKK was in a range of0.96-1.55mmol/g. FTIR confirmed that pyridinium groups were introduced into membranes. At80mA/cm2, the cell with PyPPEKK (IEC=1.55mmol/g) membrane showed a current efficiency of99.2%and energy efficiency of83.6%higher than that of cell with Nafionl17(current efficiency and energy efficiency were96.8%and80.7%, respectively). The stability test in VO2+solution (?)nd cell cycling test showed that PyPPEKK membranes had good stability.
     By designing the molecular structure of the polymer, the methyl groups were introduced into polymer to obtain poly(phthalazinone ether ketone) with methyl groups (DMPPEK). FTIR and NMR were used to characterize the structure of DMPPEK, the results indicated that DMPPEK were obtained. DMPPEK were brominated to prepare poly(phthalazinone ether ketone) with bromomethylated groups (BPPEK). The conversation ratio of bromomethyl groups was about50%. BPPEK was adequate to meet the requirement of preparation of anion exchange membrane. Quaternized poly(phthalazinone ether ketone)(QBPPEK) anion exchange membranes and poly(phthalazinone ether ketone) anion exchange membranes with pyridinium groups (PyBPPEK) were prepared from BPPEK with trimethylamine and pyridine, respectively. The IEC was in a range of0.82-1.53mmol/g for QBPPEK and0.85-1.50mmol/g for PyPPEK membranes, respectively. At the same current density (20-80mA/cm2), the current efficiency and energy efficiency of cells with QBPPEK (IEC=1.53mmol/g) and PyBPPEK (IEC=1.50mmol/g) were higher than those of cell with Nafionl17.
     Poly(phthalazinonc ether ketone ketone) with dimethyl groups (DMPPEKK) were prepared from polycondcnsation method. Poly(phthalazinone ether ketone ketone) with bromomethylated groups (BPPEKK) was prepared from bromination of DMPPEKK. Quaternized poly(phthalazinone ketone ketone)(QBPPEKK) anion exchange membranes and poly(phthalazinone ketone ketone) with pyridinium groups (PyBPPEKK) anion exchange membranes were prepared from BPPEKK with trimethylamine and pyridine as the amination reagents, respectively. At the same current density (20-80mA/cm2), the current efficiency of cells with QBPPEK (1.51mmol/g) and PyBPPEK (1.45mmol/g) was higher than that of cell with Nafionl17, and the energy efficiencies of cells were comparable.
     The relationships of structure-property of anion exchange membranes made from chloromethyl poly(phthalazinone ether ketone) and brominated poly(phthalazinone ether ketone) with dimethyl groups were investigated. The water content and swelling ratio of quaternizated poly(phthalazinone ether ketone) membranes and poly(phthalazinone ether ketone) anion exchange membranes with pyridinium groups were increased with the increasing IEC of membranes. The water content and swelling ratio of membranes with quaternary ammonium groups were higher than those of membranes with pyridinium groups. The voltage efficiency and energy efficiency of cells with poly(phthalazinone ether ketone)s membranes were mainly affected by the ion exchange capacity of membranes.
引文
[1]Dell R M. Rand D A J. Energy storage-a key technology for global energy sustainability [J]. Journal of Power Sources.2001.100(1-2):2-17.
    [2]Walsh F C. Electrochemistry in fuel cell development [J]. The chemical Engineer,2001,10:29-31.
    [3]Walsh F C. Electrochemical technology for environmental treatment [J]. Pure Applied Chemistry 200' 73:1819-1837.
    [4]Price A, Bartley S, Male S, et al, A novel approach to utility scale energy storage [J]. Power Engineering Jouranl,1999,13(3):122-129.
    [5]Shibata A. Sato K. Development of vanadium redox flow battery for electricity storage [J]. Power Engineering Journal,1999,13(3):130-135.
    [6]Schaber C. Mazza P. Hammcrschlag R, Utility-Scale storage of renewable energy [J]. The Electricity Jouranl.2004.17(6):21-29.
    [7]Jeerissent L, Garche J, F abjian C., et al. Possible use of vanadium redox flow batteries for energy storage in small grids and stand-alone photovoltaic systems [J]. Journal of power sources, 2004.127(1-2):98-104.
    [8]赵平,张华民,周汉涛.衣宝廉.我国液流储能电池研究概况[J].电池工业,2005,10(2):96-99.
    [9]Ponce de Leon C, Frias-Fcrrer A, Gonzalez-Garcia J. Szanto D A, Walsh F C, Redox flow cells for energy conversion [J]. Journal of Power Sources,2006,160:716-732.
    [101 Kear G, Shah A A, Walsh F C, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects [J]. International journal of energy research, 2011.DOI:10.1002/er.1863.
    [11].Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H, Recent advances with UNSW vanadium-based redox flow batteries [J]. International journal of energy research,2010,34:182-189.
    [121 Thaller L.H., Electrically rechargeable redox flow cell. US 3996064 [P].1976.
    [13]Sum E., Kazacos M.S., A study of the V(Ⅱ)/V(Ⅲ) redox couple for redox flow cell applications [J]. Journal of Power Sources.1985,15:179-190.
    [14]天计大学无机化学教研室,无机化学[M].北京:高等教育出版社,2000.
    [15]Sum E., Rychcik M., Skyllas-kazacos M., Investigation of V(Ⅴ)/V(Ⅳ) system for use in positive half-cell of a redox battery [J]. Journal of Power Sources,1985,16:85-95.
    [16]Skyllas-kazacos M.. Rychcik M., Robins R.G. et.al, New all-vanadium redox cell [J]. Journal of Electrochemistry Society,1986,133:1057-1058.
    [17]Skyllas-kazacos M.. Rychcik M.. Evaluation of electrode materials for all-vanadium redox flow cell [J] Journal of Power Sources.1987,19:45-54.
    [18]Rychcik M., Skyllas-kazacos M., Characteristics of new all-vanadium redox flow battery [J]. Journal of Power Sources,1988.22:59-67.
    [19]Skyllas-kazacos M.. Kasherman D., Hong R. etal.. Characteristics and performance of 1kw vanadium redox battery[J]. Journal of Power Sources,1991,35:399-404.
    [20]彭卢谦,许国镇,杨华栓,董栋.用从石煤中提取的V205制备钒电池用VOS4的研究[J].无机盐工业,1997(1):3-6.
    [21]彭声谦,蔡世明,许国镇,杨华栓.钒电池充电过程中钒价态及其变化的现场分析[J].理化检验-化学分册,1998,34(7):291-294.
    [22]彭声谦,许国镇,杨华栓,董栋.用从石煤中提取的V205研制全钒氧化还原流体电池[J].矿产综合利用,1998,2:42-46.
    [23]孟凡明,崔艳华,李茂林,盛勇宏,刘建青.全钒离子液流电池初步研究[J].电源技术,1998,22(1):24-26.
    [24]彭声谦,许国镇.全钒氧化还原流体电池的电化学行为[J].西南工学院学报,1999,14(1):40-44.
    [25]崔艳华,孟凡明.全钒离子液流电池的应用研究[J].电源技术,2000,24(6):356-358.
    [26]许茜,赖春艳,尹远洪,隋智通.提高钒电池电解液的稳定性[J].电源技术,2002,26(1):29-31.
    [27]伍秋美,黄可龙,桑商斌,刘素琴,李晓刚.全钒液流电池用聚丙烯腈石墨毡电极研究[J].电源技术,2005,29(7):456-458.
    [28]张华民,赵平,周汉涛,衣宝廉.钒氧化还原液流储能电池[J].能源技术,2005,26(1):23-26.
    [29]王文红,王新东.全钒液流电池荷电状态的分析与检测[J].浙江工业大学学报,2006,34(2)129-122.
    [30]文越华,张华民,钱鹏,衣宝廉.离子交换膜全钒液流电池的研究[J1.电池,2005,35(6):414-416.
    [31]袁俊,余晴春,刘逸枫,马亮亮,吴益华.全钒液流电池电池性能极其电极材料的研究[J].电化学,2006,12(3):271-274.
    [32]吕正中,胡嵩麟,罗绚丽,武增华,陈立泉,邱新平.质子交换膜对钒氧化还原液流电池性能的影响[J].高等学校化学学报,2007,28(1):145-148.
    [33]Jian X G, Yan C, Zhang H M, Zhang S H, Liu C, Zhao Ping. Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion-exchange membrane [J]. Chinese Chemical Letters,2007,18:1269-1272.
    [34]朱顺泉,陈金庆,王保国.电解液流动方式对全钒液流电池性能的影响[J].电池,2007,37(3)217-219.
    [35]陈茂斌,孟凡明,李晓兵,张胜涛,刘联,刘效疆.全钒电池组的充放电性能[J].电源技术,2008,32(4):225-227.
    [36]夏利平,林昌武,罗冬梅,张爱民.氟橡胶复合材料作为钒电池集流板的研究[J].电源技术,2010,34(7):672-675.
    [37]李小山,谢晓峰,吕亚非.全钒液流电池阴极电解液稳定[J].化工学报,2011,62(S2)140-143.
    [38]殷聪,王晶,汤浩.全钒氧还原液流电池的流场工程设计与优化[J].东方电气评论,2011,25(100):7-12.
    [39]刘纳,郭兴篷.添加剂改善钒电池阳极电解液稳定性研究[J].电源技术,2011,35(9):1058-1060.
    [40]凯铸,鲁惠,陈金伟,等.全钒液流电池用SPEEK/PES共混膜的制备[J].广州化工,2011,39(11):38-52.
    [41]Kazacos M., Cheng M., Skyllas-kazacos M., Electrolyte optimization of vanadium redox cell [J]. Journal of Applied Electrochemistry,1990, (20)463-467.
    [42]李基森,计景文,徐元耀,金小立,离子交换膜及其应用[M].1977.
    [43]Cheng S C, Skyllas Kazacos M, Preparation and evaluation of composite membrane for vanadium redox battery applications [J]. Journal of Power Sources,1992,39:11-13.
    [44]Mohammadi T, Skyllas Kazacos M, Use of polyelectrolyte for incorporation of ion exchange groups in composite membranes for vanadium redox flow battery applications [J]. Journal of Power Sources, 1995,56:91-96.
    [45]Mohammadi T, Skyllas Kazacos M, Preparation of sulfonated composite membrane for vanadium redox flow battery applications [J]. Journal of Membranc Science,1995,107:35-45.
    [46]Mohammadi T, Skyllas Kazacos M, Evaluation of the chemical stability of some membranes in vanadium solution[J]. Journal of Applied Electrochemistry,1997,27 (2):153-160.
    [47]Tian B, Yan C W. Wang F H. Modification and evaluation of membranes for vanadium redox flow battery applications[J]. Journal of Applied Electrochemistry,2004,34:1205-1210.
    [48]Hwang G J, Ohya H, Preparation of catio exchange membrane as a separator for the all vanadium rcdox flow battery [J]. Journal of Membrane Science,1996,120:55-67.
    [49]Hwang G J, Ohya H, Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all vanadium redox flow battery [J]. Journal of Membrane Science,1997,132:55-61.
    [50]Qiu J Yhou H H, Li J Q, Wei G S, Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery [J]. Journal of Membrane Science, 2007,297:174-180.
    [51]Qiu J Y, Li M Y. Ni J F, Zhai M L, Peng J, Xu L, Zhou H H, Preparation of ETFH-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox flow battery [J].Journal of Membrane Science,2007,297:174-180.
    [52]Qiu J Y. Zhao L, Zhai M L, Ni J F, Zhou H H, Peng J, Li J Q, Wei G S, Pre-irradiation grafting of styrene and malcic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries [J]. Journal of Power Sources.2008,177:617-623.
    [53]Qiu J Y, Zhai M L. Chen J H. Wang Y, Peng J, Xu L, Li J Q, Wei G S, Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method [J].Journal of Membrane Science,2009,342:215-220.
    [54]Luo X L. Lu Z Z. Xi J Y, Wu Z H, Zhu WT, Chen L Q, Qiu X P, Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries [J]. Journal of Physical Chemistry B.2005,109:20310-20314.
    [55]Hu G W, Wang Y. Ma J, Qiu J Y, Peng J, Li J Q, Zhai M L, A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting a-methylstyrene and N,N-dimethylaminoethyl methacrylate for vanadium redox flow battery application [J]. Journal of Membrane Science,2012, 407-408:184-192.
    [56]Kwak N S, Koo J S, Hwang T S, Synthesis and characterization of EFFE-g-(VBTAC-co-HEMA) anion exchange membranes prepared by a 60Co radiation-dinduced graft copolymerization for redox flow battery applications [J]. Macromolecular Research,2012,20(2):205-211.
    [57]Xi J Y, Wu Z H, Qiu X P, Chen L Q, Nafion/SiO2 hybrid membrane for vanadium redox flow battery [J]. Journal of Power Sources,2007,166:531-536.
    [58]Xi J Y, Wu Z H, Teng X G, Zhao Y T, Chen L Q, Qiu X P, Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries [J]. Journal of Materal Chemistry,2008,18:1232-1238.
    [59]Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q, Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery[J]. Journal of Power Sources,2009,189: 1240-1246.
    [60]Luo Q T, Zhang H M, Chen J, Qian P, Zhai Y F, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications [J]. Journal of Membrane Science 2008, 311:98-103.
    [61]Zeng J, Jiang C P, Wang Y H, Chen J W, Zhu S F, Zhao B J, Wang R L, Studies on poly pyrrole modified nafion membrane for vanadium redox flow battery[J]. Electrochemistry Communications, 2008,10:372-375.
    [62]Schulte D, Drillkens J, Schulte B, Sauer D U, Nafion hybrid membranes for use in vanadium redox flow batteries[J]. ECS Transactions,2010,25 (35):247-255.
    [63]Drillkens J, Schulte D, Sauer D U, Long-term stability of Nafion hybrid membranes for use in vanadium redox-flow batteries[J]. ECS Transactions,2010,28 (30):167-177.
    [64]Luo Q T, Zhang H M, Chen J, You D J, Sun C X, Zhang Y. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery[J]. Journal of Membrane Science,2008,325:553-558.
    [65]Mai Z S, Zhang H M, Li X F, Xiao S H, Zhang H Z, Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application [J]. Journal of Power Sources, 2011,196:5737-5741.
    [66]Mai Z S, Zhang H M, Li X F, Bi C, Dai H, Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application[J]. Journal of Power Sources,2011,196: 482-487.
    [67]Zhang H Z, Zhang H M, Li X F, Mai Z S, Wei W P, Li Y, Crosslinkable Sulfonated poly(diallyl-bisphenol ether ether ketone) membranes for vanadium redox flow battery application[J]. Journal of Power Sources,2012,217:309-315.
    [68]Wei W P, Zhang H M, Li X F, Mai Z S, Zhang H Z, Poly(tetrafluoroethylene) reinforced Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery application[J]. Journal of Power Sources,2012,208:421-425.
    [69]Chen D Y, Wang S J, Xiao M, Meng Y Z, Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application[J]. Journal of Power Sources, 2010,195:2089-2095.
    [70]Chen D Y, Wang S J, Xiao M, Meng Y Z, Synthesis and properties of novel Sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery[J]. Energy Conversion and Management,2010, 51:2816-2824.
    [71].Chen D Y. Wang S J, Xiao M, Meng Y Z, Synthesis and characterization of novel Sulfonated poly(arylene tlioether) ionoiners for vanadium redox flow battery applications[J].Energy & Enviromental Science.2010.3:622-628.
    [72]Chen D Y, Wang S J, Xiao M, Han D M, Meng Y Z, Sulfonated poly(fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery[J]. Journal of Power Sources,2010,195:7701-7708.
    [73]Chen D Y. Wang S J, Xiao M. Han D M, Meng Y Z, Synthesis of Sulfonated poly(fluorenyl ether thioether ketone)s with bulky-block structure and its application in vanadium redox flow battery [J]. Polymer,2011.52:5312-5319.
    [74]Yue M Z. Zhang Y P, Wang L, Sulfonated polyimide/chitosan composite membrane for vanadium redox flow battery:Influence of the infiltration time with chitosan solution [J]. Solid State Ionics 2012 217:6-12.
    [75]Yue M Z, Zhang Y P. Wang L, Sulfonated polyimide/Chitosan composite membrane for vanadium redox flow battery:membrane preparation, characterization, and single cell performance [J]. Journal of Applied Polymer Science,2012, DOI:10.1002/APP.38007.
    [76]Kashima G., Ibaraki K., Ep 0790658A2 [P].1997.
    [77]颜春,季铵化聚芳醚砜酮纳滤膜及阴离子交换膜的研究[D].大连:大连理工大学,2007.
    [78]尹春香,张守海,邢东博,张本贵,蹇锡高,胺化条件对季铵化PPEK (?)膜性能的影响[J].电源技术,2010.134(2):167-170.
    [79]Zhang S H, Yin C X, Xing D B, Yang D L, Jian X G, Preparation of chloromethylated/quaternized poly(phthalazinone ether ketone ketone) anion exchange membrane materials for vanadium redox flow battery applications[J]. Journal of. Membrane Science.2010,363:243-249.
    [80]Xing D B, Zhang S H. Yin C X, Yan C, Jian X G, Preparation and characterization of chloromcthylation/quaternized poly(phthalazinone ether sulfone) anion exchange membrane [J]. Materials Science and Engineering B,2009,157:1-5.
    |81] Xing D B, Zhang S H, Yin C X, Zhang B G, Jian X G, Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application [J]. Journal of Membrane Science,2010,354:68-73.
    [82]邢东博,钒电池用杂萘联苯聚芳醚砜阴离子交换膜研究[D].大连:大连理工大学,2010.
    [83]Sukkar T., Skyllas-kazacos M., Membrane stability studies for vanadium redox cell aplicatios [J]. Journal of Applied Electrochemisitry,2004,(34) 137-145.
    [84]Xu T W, Zha F F, Fundamental studies on a new series of anion exchange membranes:effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability [J]. Journal of Membrane Science,2002,199:203-210.
    [85]Liu J S, Zhan Y, Xu T W, Shao G Q, Preparation and characterizations of novel zwitterionic membranes [J]. Journal of Membrane Science,2008,325:495-502.
    [86]王振堃,离子交换膜制备性能及应用[M].北京:化学l业出版社,1986.
    [87]Xu T W, Yang W H, Fundamental studies of a new series of anion exchange membranes:membrane preparation and characterization [J]. Journal of Membrane Science,2001,190:159-166.
    [88]方度,杨维驿,全氟离子交换膜制法性能和应阳[M].北京:化学工业出版社,1993.
    [89]Vafiadis H, Skyllas-Kazacos M, Evaluation of membranes for the novel vanadium bromine redox flow cell [J]. Journal of Membrane Science,2006,279:394-402.
    [90]Teng X G, Zhao Y T, Xi J Y, Wu Z H, Qiu X P, Chen L Q,Nafion/organic modified TiO2 composite membrane for vanadium redox flow battery via insitu sol-gel reactions [J]. Journal of Membrane Science,2009,341:149-154.
    [9l]邢其毅,徐瑞秋,周政,裴伟伟.基础有机化学(第二版)[M].北京:高等教育出版社,1993.
    [92]Sata T, Nojima S, Katsusaki K, Anion exchange membranes prepared by amination of cross-linked membranes having chloromethyl groups with 4-vinylpyridine and trimethylamine[J]. Polymer,1999, 40:7243-7249.
    [93]Li Y, Xu T W, Gong M, Fundamental studies of a new series of anion exchange membranes: membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide)(BPPO) and pyridine[J]. Journal of Membrane Science,2006,279:200-208.
    [94]Lin M C, Takai N, Fundamental study of noncross-linking anion exchange membranes [J]. Journal of Membrane Science,1994,88:77-79.
    [95]许辉,胡喜章Friedel-Crafts酰基化法制备聚苯乙烯型阴离子交换树脂[J].功能高分子学报,1998,11:513-520.
    [96]Xu T W, Yang W H. Fundermental studies of a new series of anion exchange membranes:membrane preparation and characterization [J]. Journal of Membrane Scicence,2001,190:159-166.
    [97]Hibbs M R, Fujimoto C H, Cornelius C J. Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells [J]. Macromolecules,2009,42:8316-8321.
    [98]Yan J L, Hickner M A. Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s [J]. Macromolecules,2010,43:2349-2356.
    [99]Zhao Z, Wang J H, Li S H, Zhang S B. Synthesis of multi-block poly(arylene ether sulfone) copolymer membrane with pendant quaternary ammonium groups for alkine fuel cell [J]. Journal of Power Sources,2011,196:4445-4450.
    [100]Xu S, Zhang G, Zhang Y, Zhao C J, Zhang L Y, Li M Y, Wang J, Zhang N, Na H, Cross-linked hydroxide conductive membranes with side chains for direct methanol fuel cell applications [J]. Journal of Materials Chemistry,2012,22:13295-13302.
    [101]Gao Y, Robertson G P, Guiver M D, Jian X G. Synthesis and characterization of Sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2003,41:497-507.
    [102]尹春香,全钒液流电池用季铵化杂荼联苯聚芳醚酮阴离子交换膜的研究[D].大连:大连理工大学,2009.
    [103]《正交试验法》编写组.正交试验法[M].北京:国防工业出版社,1976.
    [104]张华,彭勤纪,李亚明,张蓉.现代有机波谱分析[M].北京:化学工业出版社,2006.
    [105]Sata T, Yamane Y, Matsuski K, Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups [J]. Journal of Polymer Science:Part A:Polymer Chemistry,1998,36:49-58.
    [106]Tugas I. Pourcelly Gerald, Claude Gavach, Electrotransport of protons and chloride ions in anion exchange membranes for the recovery of acids. Part I. Equilibrium properties [J]. Journal of Membrane Science,1993,85:183-194.
    [107]Robbins 13 J. Field R W. Kolaczkowski S T, Lockett A D, Rationalisation of the relationship between proton leakage and water flux through anion exchange membranes [J]. Journal of Membran(?) Science,1996,118:101-110.
    [108]Xu T W. Yang W H, Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes-static runs [J]. Journal of Membrane Science,2001.183:193-200.
    [109]邓会宁,含有杂荼联苯的聚芳醚电解质膜研究[D].天津:天津大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700