基于生态设计理念的镍基单晶高温合金中迹量掺杂元素的危害作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基单晶高温合金是先进航空发动机热端部件的关键材料,为了控制合金制备成本、减少稀贵金属的用量、提升合金回收利用率、实现产品的生态设计,必须对合金制备与成型过程中引入的迹量杂质元素的作用效果与危害行为进行分析,为此,本文采用第一原理计算方法,针对镍基单晶高温合金中的几种常见掺杂(N、S、P),基于生态设计的原则,对其危害作用及其作用机理进行了研究。
     鉴于镍基单晶高温合金的高温蠕变性能很大程度上取决于γ相与γ′相之间的相互作用,特别是γ-Ni/γ′-Ni_3Al相界的结构性质,本文首先采用赝势平面波方法与CASTEP总能计算程序,分析了非金属迹量杂质元素S、P与N在γ-Ni/γ′-Ni_3Al相界中的存在许可及其择优占位趋势,进而考察了其对γ-Ni/γ′-Ni_3Al相界断裂强度与韧性的有害作用。结果表明:从能量角度上看,S、P无论是置换γ-Ni/γ′-Ni_3Al相界中的某个基体Ni或Al原子还是占据其中的八面体间隙位都是许可的;以气态形式存在的N不易掺杂到γ-Ni/γ′-Ni_3Al相界区域中,而以固态形式存在的N则较易掺杂至相界中。与占据γ/γ′相界中的某个八面体间隙位相比,S、P均具有较大的趋势优先置换相界中的基体原子,而N则将优先偏聚到γ/γ′相界中的八面体间隙位。与掺杂前清洁界面相比,S掺杂使得相界的稳定性下降;P的置换掺杂能在相界中稳定存在,在相界区域八面体间隙中心的掺杂则并不稳定,而N在相界中的置换型掺杂与间隙位掺杂则都能稳定存在。可见,S与P在相界中的占位具有一定的相似性。S、P、N对γ-Ni/γ′-Ni_3Al相界的掺杂,使得相界区域原子位置发生了一定的变化,引起晶格畸变,使相界区域厚度增加,增加了相界区域原子层间距,从而削弱了层间电子作用强度,同时也导致了相界区域局部弹性应变能的增加。置换相界区域中基体Ni或Al原子的杂质N,虽然没有引起明显的晶格畸变,但其不能在晶胞格点处稳定存在,会向邻近的γ-Ni相或γ′-Ni_3Al内部的八面体间隙发生非常明显的迁移,从而在初始格点处形成Frenkel点缺陷,造成大量成键电子的缺失,削弱相界层间结合强度。
     N、S、P对γ-Ni/γ′-Ni_3Al相界的掺杂在不同程度上削弱了相界的断裂强度,并有可能改变相界的断裂位置。其中,置换型掺杂γ-Ni/γ′-Ni_3Al相界的断裂强度相对于间隙位掺杂时较好。掺杂原子对γ-Ni/γ′-Ni_3Al相界中具有显著不利影响的晶格点阵位置与八面体间隙位置具有较强的占位趋势与结构稳定性,从而表现出显著的有害作用。本文进一步计算、分析了掺杂γ-Ni/γ′-Ni_3Al相界的电子能态结构,以考察非金属杂质元素在相界的行为作用机理,掺杂在相界中的S、P以失去电子为主,N得到电子的趋势非常强。杂质原子与其周围近邻原子形成了较强的电子相互作用,使得部分价电子由高能级向低能级附近聚集,在一定程度上削弱了相界区域中的金属键与共价键作用,层间成键电子减少,导致了相界结合强度的降低。置换相界区域中基体原子的杂质N,会向γ相或γ′相内部间隙扩散,在初始位置处形成Frenkel空位缺陷,导致相界价电子的缺失,降低结合强度。可见,N、S、P等杂质元素掺杂引起相界发生晶格畸变以及相界区域局部电子作用发生改变,这最终导致了其对相界的脆化作用效果。
     进一步本文考察了非金属杂质元素P对Re合金化γ-Ni/γ′-Ni_3Al相界的影响效果。在Re合金化相界超胞模型的基础上,将P掺杂到相界中的晶格点阵位置或八面体间隙位,从而建立了一系列P、Re复合掺杂合金化的γ-Ni/γ′-Ni_3Al相界超胞模型,考察了P、Re交互作用对γ-Ni/γ′-Ni_3Al相界断裂性质的影响。P在相界区域中的占位趋势几乎不受到Re合金化的影响,并能够与Re在相界区域共存,因此P与Re间的交互作用及其对相界性质的作用效果不可忽视。P-Re交互作用对相界断裂强度产生了显著影响,当P与Re相隔较近时,相界的断裂强度相对较差,而当P与Re之间具有一定间隔时,相界的断裂强度相对较好,甚至比Re单独合金化时更好。关联能计算结果表明P-Re之间普遍存在着排斥作用,当P-Re原子间距小于2.75时,排斥作用明显,且随着原子间距的减小而迅速攀升。随着P-Re相互关联作用强度的增加,γ/γ′相界的断裂功先增大后迅速减小,即适当的P-Re交互作用强度对于相界的强化是有利的。
     最后,本文考察了共存于γ-Ni/γ′-Ni_3Al相界中的两种非金属杂质元素S与P的复合掺杂对相界断裂性能的有害作用。S与P的复合掺杂在很大程度上削弱了γ/γ′相界的断裂强度,S与P复合掺杂的Ni/Ni_3Al相界的断裂强度比S或P单独掺杂时的断裂强度更低,可见,相界中共存的多种杂质元素对相界断裂强度的改善是非常不利的。S与P之间的关联作用效果与S、P杂质原子的原子间距有关:当S与P相隔较近时,S与P之间主要是排斥作用,而当S与P相隔较远时,其间存在相互吸引作用,相互作用强度随着S、P原子间距的增大而减小。S与P之间的排斥作用会加剧相界的脆化,而S与P之间的相互吸引作用则能在一定程度上缓解其对相界强度的有害影响。复合掺杂导致相界的几何结构发生改变,相间原子层间距增大,层间电子相互作用减弱,局域弹性应变能增加,这都将导致相界断裂强度的削弱,引起相界的脆化。
     由此可见:非金属元素的单独掺杂,在很大程度上不利于相界断裂强度与区域韧性的提高。非金属杂质的危害作用与其在相界区域的占位有关,某些占位下,其对相界的危害较小,对相界强化元素的影响也不是单纯的妨害与削弱作用。迹量掺杂元素与合金化元素间的交互作用在某些特殊的占位与分布条件下,甚至比强化元素单独合金化时的强韧化效果还好。无疑地,该结果对于基于生态设计与成本核算的镍基单晶高温合金中迹量掺杂元素的优化与控制具有一定的科学价值与现实意义。
Ni-based single crystal (NSC) superalloy is a key material of hot end componentsin advanced aeroengines. In order to cotrol costs of the superalloy preparation, reducethe usage of the rare and noble metals, enhance recovery rate of superalloys and carryout the ecological design of the NSC superalloy, the doping effects and deleteriousinfluences of trace dopants doped during the preparation and molding production ofthe superalloy must be examined. Thus, based on the principle of ecological design,some typical dopants (N, S, P) and their deleterious influence as well as mechanism isstudied by using the first principle calculation in this paper.
     As well known, the high-temperature mechanical properties of NSC superalloyslargely derive from the interactions of γ′precipitates with the γ-matrix, and morespecifically, from the γ/γ′interface. The structure and characteristics of the γ/γ′interface control the performance of the alloys to a large extent. Cambridge serial totalenergy package (CASTEP), a first principle plane-wave pseudopotential method basedon the density functional theory (DFT), is employed to investigate the site preferenceand deleterious effect of the representative non-metallic impurity elements i.e., S, Pand N on the rupture strength, toughness of the γ-Ni/γ′-Ni_3Al interface. The resultssuggest that, in energetics, S-and P-doping are found to be permissive either atsub-lattice sites or at octahedral interstitial centers, gaseous N2is difficult to be joinedinto the interfacial region, but solid N impurity can be easily doped into the Ni/Ni_3Alinterface. Comparing with the octahedral interstitial centers, S and P prefer tosubstitute for the host atoms, firstly. Whereas, N-doping has greater trend to occupythe octahedral interstitial sites. In comparison with the clean γ-Ni/γ′-Ni_3Al system, theinterface with S-doping is not stable, P-doping at the sub-lattice sites is stable but thatat the octahedral interstitial sites is not as stable as the clean interface, and theN-doped interface system can stably exist either for substitution for host atoms or foroccupation at octahedral interstices. P and S have some similarities in their sitepreference. N-, S-and P-doping at the γ/γ′interface lead to a change of host atoms’location and lattice distortion. Weakening of interlayer electronic interactioncombined with increases of elastic strain energy induced by the local lattice distortionshould be responsible for the harmful effect of the impurities. The N-dopingsubstituted for Ni and Al host atoms dose not change the geometric structure of the interface, obviously, though, it can not stay at the sub-lattice sites, stably, and wouldmove to the interstitial site in the nearby γ or γ′block, leaving a Frenkel point defectat the original sub-lattice site. The depletion of the valence charge at the Frenkelvacancy weaken the bonding strength at the Ni/Ni_3Al interface. The calculation ofGriffith rupture work deduces that, N-, S-and P-doping have deleterious effect on thefracture property of the γ/γ′interface and may vary the fracture site. The interface withsubstitution of impurities for host atoms has relatively better fracture strengthcomparing with the system with impurity atoms at the octahedral interstitial sites. N, Sand P generally prefer to occupy the sub-lattice site and octahedral interstitial site withobviously deleterious effect on the interface and are thought to be typical deleteriousimpurities in the NSC superalloy. In the doped γ/γ′system, S and P mainly releaseelectrons to form ionic bonding, while N only obtain electrons from other host atomsin the γ/γ′interfacial region. The strong bonding effect between impurity atoms andhost Ni or Al atoms makes partial valence charges transfer to the low energy levelregion, which result in the impairment of the metallic and covalent bonding in theinterfacial region, and the depletion of the electrons in the interlayer region. It finallylead to the reduce of the bonding strength in the γ/γ′interface. The Frenkel vacancy inthe N-doped γ/γ′interface, which results in the depletion of bonding electrons in theinterfacial region, is another reason of the N-induced deleterious effect on theinterfacial fracture performance. To sum up, the embrittlement induced by theimpurity elements can be attributed to the variation of electronic structure in theinterfacial region combined with the change of local elastic strain energy induced by alarge lattice distortion.
     The influence of impurity elements on the Re-alloyed γ-Ni/γ′-Ni_3Al interface isfurther examined in this paper. The typical impurity P is doped at the sub-lattice siteby substituting for Ni or Al host atom or the octahedral interstitial centers in theRe-alloyed γ-Ni/γ′-Ni_3Al interface. The synergetic effect of Re and P on Griffithrupture works of the γ-Ni/γ′-Ni_3Al is investigated. In the duplex doping system, Reand P can coexist in the γ/γ′interfacial region, and the site preference of P at the γ/γ′interface is almost not changed by Re-addition. The synergetic effect of P and Re onthe rupture strength of the γ/γ′interface has been found. As P being close to Re, therupture strength of the doped interface is lower than that in the case of P apart from Re.In some cases, the synergetic effect Re and P on the interface strengthening is evenbetter than that achieved by the individual Re-addition. The calculation for thecorrelative energy between P-Re shows a strong correlation and repulsive interaction between P-doping and Re-addition within the range ofd Re P≤2.75. In this region,the P-Re correlation increases rapidly as P and Re approach. The rupture strength ofthe γ/γ′interface with duplex doping of Re and P ascends sharply at first, and thenfalls down rapidly with increasing P-Re correlation energy, viz a suitable strength ofP-Re correlation is favorable to the strengthening of the γ/γ′interface.
     Lastly, the correlation between S and P and their synergetic effect on the fractureproperty of the γ/γ′interface are examined. The multiple S-and P-doping at theinterface weakens the fracture character, obviously, the fracture strength of theinterface with both S-and P-doping is weaker comparing with the the interface withindividual S-or P-doping. It is harmful to the strengthening of the Ni/Ni_3Al interface.The correlation between S and P is relate to the S-P atomic separation, there is arepulsive interaction between S and P, when they are close to each other, and aattractive interaction when S and P are widely separated. The strength of thecorrelation reduces with decrease of the S-P atomic separation. The replulsiveinteraction is harmful to the interface, while the attractive interaction can relieve theembrittlement induced by non-metallic impurities. The change of the fracture site andstrength stems from the varieties of the local electronic structure and geometricstructure in the γ/γ′interface induced by multiple S-and P-doping.
     Consequently, the individual doping of the non-metallic impurity is detrimentalto the γ-Ni/γ′-Ni_3Al interfacial properties involving rupture strength and toughness.The doping effect on the interface depends on the site occupancy of the impurityatoms in the γ/γ′interfacial region. The doping of the non-metallic impurity undercertain conditions has a little influence on the interface, and it can even improve somecharacters of the γ/γ′interface. In addition, the doping effect of the non-metallicimpurity on the strengthening alloy element in the alloy is not purely “deleteriouseffect”. The synergetic effect of the non-metallic impurity element and strengtheningalloy element can be advantageous for the γ-Ni/γ′-Ni_3Al interface and even better thanthe strengthening effect induced by an individual alloy element. Undoubtedly, theconclusions above is significant and scientific interest to the reasonable control of thetrace dopants based on the ecological desighn and cost accounting of NSCsuperalloys.
引文
[1]胡壮麒,刘丽金,金涛等.镍基单晶高温合金的发展.航空发动机,2005,31(3):1-7
    [2]聂祚仁,王志宏.生态环境材料学.北京:机械工业出版社,2004:12-76
    [3] Nystrom J D, Pollock T M. Discontinous cellular precipitation in a high-refractorynickel-base supcralloy. Metall Mater Tran,1997,28:2443-2452
    [4] Ramalhete P S, Senos A M R, Aguiar C. Digital tools for material selection inproduct design. Materials&Design,2010,31(5):2275-2287.
    [5]左铁镛,聂祚仁.环境材料基础.北京:科学出版社,2003:112-113
    [6]左铁镛,冯之浚.循环型社会材料循环与环境影响评价.北京:科学出版社,2008:1-22.
    [7] Acharya M V, Fuchs G E. The effect of stress on the microstructural stability ofCMSX-10single crystal Ni-base superalloys. Scripta Mater,2006,54:61-64
    [8] Betteridge W, Shaw S W S. Development of superalloys. Mater Sci Technol,1987,3:682-694.
    [9] Chen Q Z, Jones N, Knowles D M. The microstructures of base/modified RR2072SX superalloys and their effects on creep properties at elevated temperatures.Acta Mater,2002,50:1095-1112
    [10] Reed R C. The Superalloys fundamentals and applications. Cambridge:Cambridge University Press,2006:1-54
    [11] Acharya M V, Fuchs G E. The effect of long-term thermal exposures on themicrostructure and properties of CMSX-10single crystal Ni-base superalloys.Mater Sci Eng A,2004,381:143-153
    [12] Zhang Y H, Knowles D M, Withers P J. Microstructural development inPt-aluminide coating on CMSX-4superalloy during TMF.1998,107:76-83
    [13] Saunders N. Phase diagram calculations for high-temperature materials.Philosophical Transactions of the Royal Society of London A,1995,351:543–561
    [14] Rae C M F, Hook M S, Reed R C, The effect of TCP morphology on thedevelopment of aluminide coated superalloys. Mater Sci Eng A,2005,396:231-239
    [15] Al-Jarba K A, Fuchs G E. Effect of carbon additions on the as-cast microstructureand defect formation of a single crystal Ni-based superalloy Mater Sci Eng A,2004,373:255-267
    [16] Ofori A P, Rossouw C J, Humphreys C J. Determining the site occupancy of Ruin the L12phase of a Ni-base superalloy using ALCHEMI. Acta Mater,2005,53(1):97-110
    [17]李玉清,刘锦岩.高温合金晶界间隙相.北京:冶金工业出版社,1990:21-31
    [18] Harada H, Isihida A, Murakami Y et al. Atom-probe microanalysis of anickel-base single crystal superalloy. Appl Sur Sci,1993,67(1-4):299-304.
    [19] Chen Q Z, Jones C N, Knowles D M. Effect of alloying chemistry on MC carbidemorphology in modified RR2072and RR2086SX superalloys. Scripta Mater,2002,47:669-675
    [20]李成功,傅恒志,于翘.航空航天材料.北京:国防工业出版社,2002:87-90.
    [21] Moverare J J, Johansson S, Reed R C. Deformation and damage mechanismsduring thermal–mechanical fatigue of a single-crystal superalloy. Acta Mater,2009,57:2266-2276
    [22]王云江.镍基合金力学性能与元素分配行为的第一原理研究[清华大学博士论文],北京:清华大学,2010,4-5
    [23] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbineblade applications. Aerosp Sci Technol,1999,3(8):513-523.
    [24]郭建廷.高温合金材料学.北京:科学出版社,2008:89-195
    [25]王铁利,郭建亭,王勇等.返回次数对钴基高温合金K640S返回料组织和性能的影响.金属学报,1999,35(增刊2):598.
    [26]黄学兵.氮对镍基高温合金显微组织和力学性能的影响[中国科学院金属研究所博士学位论文],沈阳:中国科学院金属研究所,1997:7-11
    [27]周兰章,郭建亭.微量硫对K4169合金组织与性能的影响.金属学报,1995,31(6): A261.
    [28]孙文儒,郭守仁,陆德忠等. S和Si对GH761合金凝固过程和元素偏析的影响.金属学报,1995,31(增刊): S112.
    [29] Jeng C A., Huang J L. The influence of oxidation on crack resistance in injectionmoulded Cr3C2/Al2O3composites. J Eur Ceram Soc,2003,23(9):1477-1484.
    [30] Han Y. F, Xing Z. P, Chaturvedi M. C et al. Oxidation resistance andmicrostructure of Ni–Cr–Al–Y–Si coating on Ni3Al based alloy. Mater Sci EngA,1997,239–240:871-876
    [31] Zhou W, Zhao Y G., Qin Q D et al. A new way to produce Al+Cr coating on Tialloy by vacuum fusing method and its oxidation resistance. Mater Sci Eng A,2006,430(1–2):254-259
    [32] Rae C M F. Alloys by Design: modelling next generation superalloys. Mater SciTechnol,2009,25:479-487
    [33] Wang W Z, Jin T, Sun X F et al. Role of Re and Co on microstructures and γ′coarsening in single crystal superalloys. Mater Sci Eng A,2008,479(2):173-181
    [34] Warren P J, Cerezo A, Smith G D W. An atom probe study of the distribution ofrhenium in a nickel-based superalloy, Mater Sci Eng A,1998,250:88-92
    [35] Epishin A, Bruchner U, Portella P D, et al. Influence of small rhenium additionson the lattice spacing of nickel solid solution. Scripta Mater,2003,48:455-459
    [36] Zhang, J X, Murakumo T, Harada H, et al. Dependence of creep strength on theinterfacial dislocations in a fourth generation SC superalloy TMS-138. ScriptaMater,2003,48:287-293
    [37] Le Graverend J B, Cormier J, Caron P, et al. Numerical simulation of γ/γ′microstructural evolutions induced by TCP-phase in the MC2nickel base singlecrystal superalloy. Mater Sci Eng A,2011,528:2620-2634
    [38] Yeh A. C., Tin S. Effects of Ru and Re additions on the high temperature flowstresses of Ni-base single crystal superalloys. Scripta Mater,2005,52(6):519-524
    [39] Liu J L, Jin T, Yu J J, et al. Effect of thermal exposure on stress ruptureproperties of a Re bearing Ni base single crystal superalloy. Mater Scien Eng A,2010,527(4–5):890-897
    [40] Wang Y J, Wang C Y. Influence of the alloying element Re on the ideal tensileand shear strength of γ′-Ni3Al. Scripta Mater,2009,61(2):197-200
    [41] Heckl A, Neumeier S, GoKen M, et al. The effect of Re and Ru on γ/γ′microstructure, γ-solid solution strengthening and creep strength in nickel-basesuperalloys. Mater Sci Eng A,2011,528(9):3435-3444
    [42] Yu J, Sun X, Jin T, et al. Effect of Re on deformation and slip systems of a Nibase single-crystal superalloy. Mater Sci Eng A,2007,458(1-2):39-43
    [43] Rae C M F, Reed R C. The precipitation of topologically close-packed phases inrhenium-containing superalloys. Acta Mater,2001,49(19):4113-4125
    [44] Zhang J, Li J, Jin T, et al. Effect of Mo concentration on creep properties of asingle crystal nickel-base superalloy. Mater Sci and Eng A,2010,527(13-14):3051-3056
    [45] Harris K, Erickson G L, Sikkenga S L, et al, Development of two rhenium-containing superalloys for single-crystal blade and directionally solidified vaneapplications in advanced turbine engines. J Mater Eng Perform,1993,4(2):481-488
    [46] Giamei A, Anton D. henium additions to a Ni-base superalloy: effects onmicrostructure. Metall Mater Trans,1985,16A:1997-2005
    [47] Erickson G L. A new third-generation single-crystal casting superalloy. J Metals,1995,47(4):36-39
    [48] Cheng Y, Zhang H, Song L W, et al. Effect of Re element on oxidation resistanceof Ni3Al-Mo based alloys at1150°C. Transactions of Nonferrous Metals Societyof China,2012,22(3):510-515.
    [49] Acharya M V, Fuchs G E. The effect of long-term thermal exposures on themicrostructure and properties of CMSX-10single crystal Ni-base superalloys.Mater Sci Eng A,2004,381(1–2):143-153
    [50] Wilson B C, Cutler E R, Fuchs G E. Effect of solidification parameters on themicrostructures and properties of CMSX-10. Mater Sci Eng A,2008,479(1–2):356-364
    [51] Acharya M V, Fuchs G E. The effect of stress on the microstructural stability ofCMSX-10single crystal Ni-base superalloys. Scripta Mater,2006,54(1):61-64
    [52] Simonetti M, Caron P. Role and behaviour of μ phase during deformation of anickel-based single crystal superalloy. Mater Sci Eng A,1998,254:1-12
    [53] Rettig R, Singer R F. Numerical modelling of precipitation of topologicallyclose-packed phases in nickel-base superalloys. Acta Mater,2011,59:317-327
    [54] Hou J S, Guo J T, Yang G X, et al. The microstructural instability of a hotcorrosion resistant superalloy during long-term exposure. Mater Sci Eng A,2008,498:349-358.
    [55] Sugui T, Minggang, Lang L, et al. Influence of TCP phase and its morphology oncreep properties of single crystal nickel-based superalloys. Mater Sci Eng A,2010,527:5444-5451
    [56] Zhao K, Ma Y H, Lou L H. μ Phase in a Nickel Base Directionally SolidifiedAlloy. Mater Trans,2005,46(1):54-58
    [57] Reed R C, Matan M, Cox D C, et al. Creep of CMSX-4superalloy single crystals:effects of rafting at high temperature. Acta Mater,1999,47:3367-3381
    [58] He L Z, Zheng Q, Sun X F, et al. Effect of carbides on the creep properties of aNi-base superalloy M963. Mater Sci Eng A,2005,397(1-2):297-304
    [59] Yang J X, Zheng Q, Sun X F, et al. Formation of μ phase during thermal exposureand its effect on the properties of K465superalloy. Scripta Mater,2006,55:331-334
    [60] Sato A, Harada H, Yokokawa T, et al. The effects of ruthenium on the phasestability of fourth generation Ni-base single crystal superalloys. Scripta Mater,2006,54:1678-1684
    [61] Yeh A C, Tin S. Effects of Ru on the high-temperature phase stability of Ni-basesingle-crystal superalloys, Metall Mater Tran,2006,37:2621-2631
    [62] Hobbs R A, Zhang L, Rae C M F, et al. Mechanisms of TopologicallyClose-Packed Phase Suppression in an Experimental Ruthenium-BearingSingle-Crystal Nickel-Base Superalloy at1100℃. Metall Mater Tran,2008,39(5):1014-1025
    [63] Feng Q, Nandy T K, Tin S, et al. Solidification of high-refractoryruthenium-containing superalloys. Acta Mater,2003,51(1):269-284
    [64] Carroll L J, Feng Q, Mansfield J F, et al. High refractory, low misfitru-containing single-crystal superalloys. Metal Mater Trans,2006,37:2927-2938
    [65] Carroll J, Feng Q, Pollock T M. Interfacial Dislocation Networks and Creep inDirectional Coarsened Ru-Containing Nickel-Base Single-Crystal Superalloys.Metall Mater Trans,2008,39:1290-1307
    [66] Tan X P, Liu J L, Jin T, et al. Effect of ruthenium on high-temperature creeprupture life of a single crystal nickel-based superalloy. Mater Sci Eng A,2011,528(29-30):8381-8388
    [67] Newell M, Devendra K, Jennings P A, et al. Role of dendrite branching andgrowth kinetics in the formation of low angle boundaries in Ni–base superalloys.Mater Sci Eng A,2005,412(1–2):307-315
    [68] Dsouza N, Newell M, Devendra K, et al. Formation of low angle boundaries inNi-based superalloys. Mater Sci Eng A,2005,413–414:567-570
    [69]郑运荣,韩雅芳.燃气涡轮用单晶高温合金的成本因素.金属学报,2002,38(11):1203-1209
    [70] Yamabe-mitarai Y., Ro Y., Harada H., et al. Ir-base refractory superalloys forultra-high temperatures. Metal Mater Trans,1998,29(2):537-549
    [71] Harris A, Wahl J B. Developments in superalloy castability and new applicationsfor advanced superalloys. Mate Sci Techno,2009,25(2):147-153
    [72] Kitashima T, Yokokawa T, Yeh A C, et al. Analysis of element-content effects onequilibrium segregation at γ/γ′interface in Ni-base superalloys using the clustervariation method. Intermetallics,2008,16(6):779-784
    [73] Booth-morrison C, Mao Z, Noebe R D, et al. Chromium and tantalum sitesubstitution patterns in Ni3Al (L12)γ′-precipitates. Appl Phy Lett,2008,93(3):033103
    [74] Zhou Y., Mao Z., Booth-morrison C., et al. The partitioning and site preferenceof rhenium or ruthenium in model nickel-based superalloys: An atom-probetomographic and first-principles study. Appl Phy Lett,2008,93(17):171905
    [75] Amouyal Y, Mao Z, Seidman D N. Effects of tantalum on the partitioning oftungsten between the γ-and γ′-phases in nickel-based superalloys: Linkingexperimental and computational approaches. Acta Mater,2010,58(18):5898-5911
    [76] Amouyal Y, Mao Z, Booth-morrison C, et al. On the interplay between tungstenand tantalum atoms in Ni-based superalloys: An atom-probe tomographic andfirst-principles study. Appl Phy Lett,2009,94(4):041917
    [77] Wang Y J, Wang C Y. The alloying mechanisms of Re, Ru in the quaternaryNi-based superalloys γ/γ' interface: A first principles calculation [J]. MaterialsScience and Engineering A,2008,490:242-249
    [78] Zhou Y, Mao Z G, Seidman D N. Phase partitioning and site-preference ofhafnium in the γ′(L12)/γ(fcc) system in Ni-based superalloys: An atom-probetomographic and first-principles study. Appl Phy Lett,1009,95:161909
    [79] Mottura A, Warnken N, Miller M K, et al. Atom probe tomography analysis ofthe distribution of rhenium in nickel alloys. Acta Mater,2010,58:931-942
    [80] Ge B H, Luo Y S, Li J R, et al. Distribution of rhenium in a single crystalnickel-based superalloy. Scripta Mater,2010,63:969-972
    [81] Zhu T, Wang C Y, Gan Y. Effect of Re in γ phase, γ′phase and γ/γ′interface ofNi-based single-crystal superalloys. Acta Mater,2010,58:2045-2055
    [82] Wu Y X, Li X Y, Wang Y M. First-principles study of the influence of latticemisfit on the segregation behaviors of hydrogen and boron in the Ni–Ni3Alsystem. Acta Mater,2007,55:4845-4852
    [83] Sanyal S, Waghmare U., Subramanian P R, et al. First-principles understandingof environmental embrittlement of the Ni/Ni3Al interface. Scripta Mater,2010,63(4):391-394.
    [84] Peng L, Peng P, Wen D D, et al. Site preference of S-doping and its influence onthe properties of a Ni/Ni3Al interface. Model Simul Mater SC,2011,19(6):065002
    [85] Chen k, Zhao L R, Tse J S. Sulfur embrittlement on γ/γ′interface of Ni-basesingle crystal superalloys. Acta Mater,2003,51(4):1079-1086
    [86] Chen K, Zhao L R, Tse J S. A first-principles survey of γ/γ′interfacestrengthening by alloying elements in single crystal Ni-base superalloys. MaterSci Eng A,2004,365(1-2):80-84
    [87] Chen K, Zhao L R, Tse J S. Synergetic effect of Re and Ru on γ/γ′interfacestrengthening of Ni-base single crystal superalloys. Mater Sci Eng A,2003,360(1-2):197-201
    [88] Gong X F, Yang G X, Fu Y H, et al. First-principles study of Ni/Ni3Al interfacestrengthening by alloying elements. Comp Mate Sci,2009,47(2):320-325
    [89] Wang C, Wang C Y. Density functional theory study of Ni/Ni3Al interfacealloying with Re and Ru. Sur Sci,2008,602(14):2604-2609
    [90] Peng P., Soh A. K., Yang R., et al. First-principles study of alloying effect of Reon properties of Ni/Ni3Al interface. Comp Mater Sci,2006,38(2):354-361
    [91] Zhang X, Wang C Y. First-principles study of vacancy formation and migrationin clean and Re-doped γ′-Ni3Al. Acta Mater,2009,57:224-231
    [92] Gu Y F, Yamabe-Mitarai Y, Yokokawa T, et al. Effects of boron addition onmicrostructure and mechanical properties of an Ir85Hf15two-phase refractorysuperalloy. Mater Lett,2003,57(5-6):1171-1178
    [93] Hu Q M, Yang R, Xu D S, et al. Energetics and electronic structure of grainboundaries and surfaces of B-and H-doped Ni3Al. Phys Rev B,2003,67(22):224203
    [94] Cohron J W, George E P, Heatherly L, et al. Hydrogen-boron interaction and itseffect on the ductility and fracture of Ni3Al. Acta Mater,1997,45(7):2801-2811
    [95] Liu Y, Chen K Y, Lu G, et al. Impurity effects on the Ni/Ni3Al interface cohesion.Acta Mater,1997,45(5):1837-1849
    [96] Wei Y, Zhou H B, Zhang Y, et al. Effects of O in a binary-phase TiAl-Ti3Al alloy:from site occupancy to interfacial energetics. J Phys-Condens Mat.2011,23(22):225504
    [97] Wei Y, Zhang Y, Zhou H B, et al. First-principles investigation on sheardeformation of a TiAl/Ti3Al interface and effects of oxygen. Intermetallics,2012,22:41-46
    [98] Peng P, Zhou D W, Liu J S, et al. First-principles study of the properties ofNi/Ni3Al interface doped with B or P. Mater Sci Eng A,2006,416(1–2):169-175
    [99]廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社,1984,1-10
    [100]周世勋.量子力学教程.北京:高等教育出版社,1992,21-32
    [101]冯瑞,金国钧.凝聚态物理(上卷).北京:高等教育出版社,2003,22-24
    [102]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002,35
    [103] Paul Z, Stefan K, John P P. Density functional from LDA to GGA [J]. ComputMater Sci,1998,11(1):122-127
    [104] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B,1964,136(3):864-871
    [105] Kohn W, Sham L J. Self-consistent equations including exchange andcorrelation effects. Phys Rev A,1965,140(3):1133-1138
    [106] Hedin L, Lundqvist B I. Explicit local exchange-correlation potentials. J. Phys.C,1971,14(4):2064-2083
    [107] Barth U V, Hedin L. A local exchange-correlation potential for the spinpolarizied. J. Phys. C,1972,13(5):1629-1642
    [108] Ceperley D M, Alder B J, The ground state of the electron gas by a stochasticmethod. Phys Rev Lett,1980,45(7):566-569
    [109] Janak J F, Itinerant ferromagnetism in fcc cobalt. Solid State Commun,1978,25(2):53-55
    [110] Perdew J P, Wang Y. Accurate and simple analytic representation of theelectron-gas correlation energy. Phys Rev B,1992,45(23):13244-13249
    [111] Langreth D C, Mehl M J. Beyond the local-density approximation incalculations of ground-state electronic properties. Phys Rev B,1983,28(4):1809-1834
    [112] Perdew J P. Accurate density functional for the energy: real-space cutoff of thegradient expansion for the exchange hole. Phys Rev Lett,1985,55(16):1665-1668
    [113] Perdew J P, Wang Y. Accurate and simple density fuctional for the electronicexchange energy: generalized gradient approximation. Phys Rev B,1986,33(12):8800-8802
    [114] Perdew J P. Density functional approximation for correlation energy of theinhomogeneous electron gas. Phys Rev B,1986,33(12):8822-8828
    [115] Becke A D. Density functional calculations of molecular bond energies. J ChemPhys,1986,84(8):4524-4529
    [116] Becke A D. Density functional exchange energy approximation with correctasymptotic behavior. Phys Rev A,1988,38(6):3098-3100
    [117] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation energyand correlation. Phys Rev B,1988,37(2):785-789
    [118] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids andsurfaces: applications of the GGA for exchange and correlation. Phys Rev B,1991,46(11):6671-6687
    [119] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation madesimple. Phys Rev Lett,1996,77(18):3865-3868
    [120] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas,illustrations and the CASTEP code. J Phys: Condens Matter,2002,14(11):2717–2744
    [121] Hammer B, Hansen L B, Norskov J K,. Improved adsorption energetics withindensity-functional theory using revised Perdew-Burke-Ernzerhof functionals.Phys Rev B,1999,59(11):7413-7421
    [122] Bromley A V, Parker R H. Sources of trace elements in primary raw materialsused in production of superalloys. Met Technol,1984,10:419-427
    [123] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques forab initio total-energy calculations: molecular dynamics and conjugate gradients.Rev Mod Phys,1992,64(4):1045-1097
    [124] Vanderbil T D. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism. Phys Rev B,1990,41(11):7892-7895
    [125] Francis G P, Payne M C Finite basis set corrections to total energypseudopotential calculations. J Phys: Condens Matter,1990,2(19):4395-4404
    [126] Pulay P. Ab initio calculation of force constants and equilibrium geometries inpolyatomic molecules. Mol Phys,1969,17(2):197-204
    [127] Fischer T. H, almlof J. General Methods for Geometry and Wave FunctionOptimization. J Phys: Condens Matter,1992,96(24):9768-9774
    [128] Ravindran P, Subramoniam G, Asokamani R. Ground-state properties andrelative stability between the L12and DOaphases of Ni3Al by Nb substitution.Phys Rev B,1996,53(3):1129-1137
    [129] Xu J H, Min B I, Freeman A J, et al. Phase stability and magnetism of Ni3Al.Phys Rev B,1990,41(8):5010-5016
    [130] Sahu B R. Electronic structure and bonding of ultralight LiMg. Mater Sci Eng B,1997,49(1):74-78
    [131] Segall M D, Shah R, Pickard C J, et al. Population analysis of plane-waveelectronic structure calculations of bulk materials. Phys Rev B,1996,54(23):16317-16320
    [132] Chen K, Zhao L R, Tse J S. Atomic mechanism of the Re and Ru strengtheningeffect on the γ/γ′interface of Ni-based single-crystal superalloys: Afirst-principles study. Philos Mag,2003,83(14):1685-1698
    [133] Fu C L, Yoo M H. Electronic structure and mechanical behavior oftransition-metal aluminides: a first-principles total-energy investigation. MaterChem Phys,1992,32(1):25-36
    [134] Peng P,Jin Z H, Yang R, et al. First principles study of effect of lattice misfit onthe bonding strength of Ni/Ni3Al interface. J Mater Sci,2004,39(12):3957-3963
    [135]袁超,郭建亭,李古松,等.铸造高温合金中氮的影响机理与控制.中国有色金属学报,2011,21(4):733-746
    [136] Zhang W, Smith J. R, Wang X G, et al. Influence of sulfur on the adhesion ofthe nickel/alumina interface. Phys Rev B,2003,67(24):245414
    [137]牛建平,杨克努,孙晓峰,等.镍基高温合金真空感应熔炼脱氮与脱硫.稀有金属材料与工程,2003,32(1):63-66
    [138] Reed R C, Yeh A C, Tin S, et al. Identification of the partitioning characteristicsof ruthenium in single crystal superalloys using atom probe tomography. ScriptaMater,2004,51(4):327-331
    [139] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation madesimple [J]. Phys Rev Lett,1996,77(18):3865
    [140] Li Y J, Hu Q M, Xu D S, et al. Strengthening of γ-TiAl-Nb by short-rangeordering of point defects. Intermetallics,2011,19(6):793-796
    [141] Sanyal S, Waghmare U V, Ruud J A. Adsorption of water on TiN (100),(110)and (111) surfaces: A first-principles study. Appl Sur Sci,2011,257(15):6462-6467
    [142] Geng W T, Freeman A J, Wu R, et al. Embrittling and strengthening effects ofhydrogen, boron, and phosphorus on a Σ5nickel grain boundary. Phys Rev B,1999,60(10):7149-7155
    [143] Liu X, Liu H, Dong J, et al. Molecular dynamics simulation on phosphorusbehavior at Ni grain boundary. Scripta Mater,2000,42(2):189-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700