3d过渡金属基Ⅱ-Ⅵ族半导体缺陷特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体材料的不断创新与现代信息产业日新月异般的发展是息息相关的。半导体材料按其组成元素所在的元素周期表位置大致可分为Ⅱ-Ⅵ族、III-V族、IV族、IV-VI族和II-IV-VI族等几大类体系。其中,Ⅱ-Ⅵ族半导体由于具有直接带隙、发光频率覆盖范围广、容易实现等价掺杂等特点最早被人关注。传统的Ⅱ-Ⅵ族半导体包括由II族元素Zn、Cd、Hg和VI族元素S、Se、Te、O等组成的二元或者三元单晶化合物。与传统的体系相比,3d过渡金属基Ⅱ-Ⅵ族半导体可能具有磁学方面的性质,从而表现出其特有的自旋输运和磁光耦合等新特性。
     在半导体材料制备的过程中,往往会有意地往体系里掺入各种不同的杂质,以便调控半导体的发光特性和输运特性等。同时,在现有的实验室制备条件下,得到的半导体样品普遍会存在各种各样的晶体缺陷。如何有效的控制这些杂质和缺陷的形成与分布,是半导体功能材料设计的最基本的问题。相比于其它理论方法研究,第一性原理计算方法不依赖于任何经验参数,能从电子结构层面上去模拟、解释各种材料性质的微观起源,同时还能对各种材料在结构与性能方面进行预测,起到指导实验方法的作用,越来越受到科研人员广泛的认同和器重。
     本文正是基于第一性原理计算方法模拟利用3d过渡金属对包括ZnTe、MnTe、CdTe等体系进行阳离子位的替代掺杂,研究其相关杂质相在晶体内的分布情况以及杂质相之间的磁性耦合等性质。另外,我们也对纤锌矿结构的CoO和MnO体系中本征缺陷的形成情况以及其对体系的载流子特性的影响做了系统的研究。
     本论文章节安排如下:
     在第一章,我们会对传统Ⅱ-Ⅵ族半导体和3d过渡金属基Ⅱ-Ⅵ族半导体的研究现状作一个系统的介绍。在第二章,我们会详尽地介绍密度泛函理论的理论基础。
     第三章主要介绍了利用3d过渡金属对包括ZnTe、MnTe、CdTe三种体系进行阳离子位的替代掺杂的相关性质的研究。我们发现MnTe基底的Mn反铁磁背景对掺杂过渡金属杂质的团簇化趋势有显著的减弱作用(Ni除外),同时使得Fe、Co和Ni杂质之间的磁耦合作用得到了有效增强。其中Fe掺杂到MnTe时,能同时实现团簇化趋势减弱与磁耦合增强的效果,预示着利用基底的反铁磁背景对掺杂过渡金属杂质的作用,能有效促进发展具有高居里温度的本征稀磁半导体材料。
     第四章主要介绍了基于纤锌矿结构CoO和MnO体系中的本征缺陷相关性质的研究结果。对于纤锌矿结构MnO体系,我们发现通过改变生长环境中的氧偏压,就能实现对其的p/n型导电性能调控。其中富氧环境对应的是p型导电,主要形成的缺陷包括Oi、Oi+OMn、OMn和VMn;而贫氧环境则对应n型导电,主要形成的缺陷包括VO、MnO、Mni和VO+Mni。对于纤锌矿结构CoO而言,体系很容易被设计成为p型导电,但很难实现n型导电。我们预期纤锌矿结构MnO体系的可调p/n导电特性会给六方结构的半导体材料带来更多新的应用前景。
     第五章会简单介绍目前进行的工作与未来的工作展望。
     最后是本论文的总结,其后会列出本论文相关的参考文献以及博士期间所取得的工作成果。
The rapid development of modern information industry is intensively related to thecontinuous innovation of semiconductor materials. According to the locations of theircomponents in the periodic table, semiconductors can be categorized into IV, Ⅱ-Ⅵ, III-V, IV-VI, and II-IV-VI etc. Among them, the Ⅱ-Ⅵ semiconductor received people’s attention at thevery beginning due to their unique properties of direct band gaps, wide range of light emittingfrequencies, easy practice of isovalent doping and so on. Traditional semiconductors containthe binary or ternary compounds consisted of the group II (Zn, Cd, and Hg) and group VI (S,Se, Te, and O) elements. Compared with the tradition systems, the3d transition metal (3d TM)based Ⅱ-Ⅵ semiconductors may couple with magnetic characteristics, and thus show newproperties, e.g. the unique spin transport and the magneto-optic coupling.
     During the preparation, various dopants are often deliberately introduced into thesemiconductor systemswith the purpose oftuning their optical and transport characters.Meanwhile, in general, it is hard to exclude all of the crystal defects as the samples preparedunder the lab conditions. It has been the most fundamental issue for semiconductor functionaldesigns to make clear how to effectively utilize the formation and distribution of the potentialdopants and defects. Compared with other simulation methods, the first-principles calculations,on one hand, do not depend on any empirical parameter, and are able to simulate and explainthe properties ofvarious materials at the electronic level. On the other hand, they are capable ofpredicting structural and other properties in various kinds of materials, being the guide forexperimental approaches, and really attracted more and more attentions by scientificresearchers.
     Based on the first-principles calculations, we will study the structural and the couplingproperties of the doped systems of ZnTe:TM, CdTe:TM and MnTe:TM. We have alsoinvestigated the defect formations and their influences on the carrier characters of wurtzite (wz)CoO and MoO.
     The arrangements of this dissertation are as follows:
     In Chapter One, a systematic introduction will be given on the research background of the traditional Ⅱ-Ⅵ and3d-TM based Ⅱ-Ⅵ semiconductors. In Chapter Two, we will specificallyintroduce the theoretical foundations of the density functional theory (DFT).
     Chapter Three mainly introduce the researches of the structural and the coupling propertiesof the doped systems of ZnTe:TM, CdTe:TM and MnTe:TM.We find that the Mnantiferromagnetic (AFM) background significantly decreases the clustering trend of doped TMimpurities except Ni, and also effectively enhances the magnetic couplings between Fe, Co andNi impurities. Both the degrading of clustering trend and the enhancement of magnetic couplingare expectedfor MnTe doped with Fe, indicating that the host AFM background may bebeneficial to semiconductor materials ofhigh Currie Temperature (TC).
     Chapter Four mainly introduce the research results of intrinsic defects-related properties ofwurtzite CoO and MnO. For wurtzite MnO system, we find that the p/n conductivity could betuned through adjusting the oxygen partial pressure of the growth condition. O-rich conditioncorresponds to p-type conductivity with the mainly formed defects of Oi, Oi+OMn, OMnand VMn,while O-poor condition corresponds to n-type conducting with the dominate defects of VO, MnO,Mniand VO+Mni. For wurtzite CoO system, it is very easy to be designed as p-typesemiconductor, but hardfor the n-type one.We expect that the tunable p/n conductivity ofwurtzite MnO could brings more application prospects for wurtzite semiconductors.
     Chapter Five will concisely introduce my on-going and planned researches.
     The summary of this dissertation is arranged at the end, with the related references and theachievements during the Ph.D candidate period.
引文
[1] Boer J H d and Verwey E J W. Semi-conductors with partially and with completely filled3d-lattice bands[J], Proceedings of the Physical Society,1937,49(4S):59-71
    [2] Koizumi S, Watanabe K, Hasegawa M et al. Science,2001,292:1899
    [3] Nakamura S, Mukai T, and Senoh M. Candela-class high-brightness InGaN/AlGaNdouble-heterostructure blue-light-emitting diodes[J], Applied Physics Letters,1994,64:1687-1689
    [4] Taniyasu Y, Kasu M, and Makimoto T. An aluminium nitride light-emitting diode with awavelength of210nanometres[J], Nature,2006,441:325-328
    [5] Zhang S B, Wei S-H, and Zunger A. Stabilization of Ternary Compounds via OrderedArrays of Defect Pairs[J], Physical Review Letters,1997,78:4059
    [6] Zhang S B, Wei S-H, Zunger A et al. Defect physics of the CuInSe2[J], Physical ReviewB,1998,57:9642
    [7] Yan Y, Li J, Wei S-H et al. Possible Approach to Overcome the Doping Asymmetry inWideband Gap Semiconductors[J], Physical Review Letters,2007,98(13):135506
    [8] Yan Y and Wei S-H. Doping asymmetry in wide-bandgap semiconductors: Origins andsolutions[J], physica status solidi (b),2008,245(4):641-652
    [9] Park C H, Zhang S B, and Wei S-H. Origin of p-type doping difficulty in ZnO: Theimpurity perspective[J], Physical Review B,2002,66(7):073202
    [10] Li J, Wei S-H, Li S-S et al. Design of shallow acceptors in ZnO: First-principles band-structure calculations[J], Physical Review B,2006,74(8):081201
    [11] Hao J W, Zha G Q, and Jie W Q. Ⅱ-Ⅵ族化合物半导体量子结构材料和器件的研究与发展[J], Journal of Materials Engineering,2011,6:87-91
    [12] Look D C. Recent advances in ZnO materials and devices[J], Materials Science andEngineering: B2001,80:383
    [13] Look D C. Progress in ZnO materials and devices[J], Journal of Electronic Materials,2006,35:1299
    [14] Tsukazaki A, Kubota M, Ohtomo A et al. Blue Light-Emitting Diode Based on ZnO[J],Japanese Journal of Applied Physics,2005,44(No.21): L643-L645
    [15] Look D C and Claflin B. P-type doping and devices based on ZnO[J], Phys. Status Solidi(b),2004,241(3):624-630
    [16] Look D C, Renlund G M, Burgener R H et al. As-doped p-type ZnO produced by anevaporation/sputtering process[J], Applied Physics Letters,2004,85(22):5269
    [17] Vidya R, Ravindran P, Fjellv g H et al. Energetics of intrinsic defects and their complexesin ZnO investigated by density functional calculations[J], Physical Review B,2011,83(4):045206
    [18] Zhang S B, Wei S-H, and Zunger A. Overcoming doping bottlenecks insemiconductors[J], Physica B: Condensed Matter,1999,273-274:976-980
    [19] Laks D, Van de Walle C, Neumark G et al. Native defects and self-compensation inZnSe[J], Physical Review B,1992,45(19):10965-10978
    [20] Northrup J and Zhang S. Dopant and defect energetics: Si in GaAs[J], Physical ReviewB,1993,47(11):6791-6794
    [21] Chadi D and Chang K. Theory of the Atomic and Electronic Structure of DX Centers inGaAs and AlxGa1-xAs Alloys[J], Physical Review Letters,1988,61(7):873-876
    [22] Zhang S and Chadi D. Stability of DX centers in AlxGa1-xAs alloys[J], Physical ReviewB,1990,42(11):7174-7177
    [23] Petit L, Schulthess T, Svane A et al. Electronic structure of transition-metal impurities inp-type ZnO[J], Physical Review B,2006,73(4):045107
    [24] Continenza A, Profeta G, and Picozzi S. Transition metal impurities in Ge: Chemicaltrends and codoping studied by electronic structure calculations[J], Physical Review B,2006,73(3):035212
    [25] Furdyna J K. Diluted magnetic semiconductors[J], Journal of Applied Physics,1988,64(4): R29-R64
    [26] Ohno H, Shen A, Matsukura F et al.(Ga, Mn)As: A new diluted magnetic semiconductorbased on GaAs[J], Applied Physics Letters,1996,69(3):363-365
    [27] Dietl T, Ohno H, Matsukura F et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors[J], Science,2000,287:1019-1022
    [28] Zhao Y-J, Mahadevan P, and Zunger A. Practical rules for orbital-controlledferromagnetism of3d impurities in semiconductors[J], Journal of Applied Physics,2005,98(11):113901
    [29] Mahadevan P and Zunger A. Room-Temperature Ferromagnetism in Mn-DopedSemiconducting CdGeP2[J], Physical Review Letters,2002,88(15):159904
    [30] Sato K and Katayama-Yoshida H. Ab initio Study on the Magnetism in ZnO-, ZnS-,ZnSe-and ZnTe-Based Diluted Magnetic Semiconductors[J], physica status solidi (b),2002,229(2):673-680
    [31] Zhang C-W, Yan S-S, Wang P-J et al. Half-metallic ferromagnetism in Cd1xTMxSe(TM=Cr, V and Mn) semiconductors[J], Computational Materials Science,2008,43(4):710-714
    [32] Zhang J, Jie W, Luan L et al. Evaluation of Mn Uniformity in CdMnTe Crystal Grownby the Vertical Bridgman Method[J], Journal of Electronic Materials,2008,37(8):1158-1162
    [33] Liu Y and Liu B-G. Magnetic semiconductors in ternary Cd-Mn-Te compounds[J],physica status solidi (b),2008,245(5):973-979
    [34] Wojnar P, Suffczynski J, Kowalik K et al. Size-dependent magneto-optical effects inCdMnTe diluted magnetic quantum dots[J], Nanotechnology,2008,19(23):235403
    [35] Irie Y, Sato T, and Ohta E. Weak ferromagnetic behavior of Cd1-x-yMnxFeyTe(y~0.01)[J],Journal of Magnetism and Magnetic Materials,1995,140-144:2027-2028
    [36] Shen S, Liu X, Tivakornsasithorn K et al. Magneto-optical Studies of Spin Phenomenain CdMnTe Doped with Co and Cr[J], Journal of Electronic Materials,2009,38(8):1554-1557
    [37] Huffman D and Wild R. Specific Heat of MnS through the Néel Temperature[J], PhysicalReview,1966,148(2):526-527
    [38] Ito T, Ito K, and Oka M. Magnetic Susceptibility, Thermal Expansion and ElectricalResistivity of MnSe[J], Japanese Journal of Applied Physics,1978,17(2):371-374
    [39] Ozawa K, Anzai S, and Hamaguchi Y. Effect of pressure on the magnetic transition pointof manganese telluride[J], Physics Letters,1966,20:132-133
    [40] Nam K M, Kim Y I, Jo Y et al. New crystal structure: synthesis and characterization ofhexagonal wurtzite MnO[J], Journal of the American Chemical Society,2012,134(20):8392
    [41] Durbin S M, Han J, O S et al. Zinc blende MnTe epilayers and quantum well structures[J],Applied Physics Letters,1989,55(20):2087-2089
    [42] Ando K, Takahashi K, Okuda T et al. Magnetic circular dichroism of zinc-blende-phaseMnTe[J], Physical Review B,1992,46(19):12289-12297
    [43] Klosowski P, Giebultowicz T M, Rhyne J J et al. Antiferromagnetism in epilayers andsuperlattices containing zinc-blende MnSe and MnTe[J], Journal of Applied Physics,1991,70:6221-6223
    [44] Nakamura K, Ito T, and Freeman A. Half-metallic ferrimagnetism in zincblende Mn-doped transition metal chalcogenides[J], Physical Review B,2005,72(6):064449
    [45] Giebultowicz T, Klosowski P, Samarth N et al. Neutron-diffraction studies of zinc-blendeMnTe epitaxial films and MnTe/ZnTe superlattices: The effect of strain and dilution on astrongly frustrated fcc antiferromagnet[J], Physical Review B,1993,48(17):12817-12833
    [46] Zhu L-F and Liu B-G. Half-metallic ferrimagnet formed by substituting Fe for Mn insemiconductor MnTe[J], physica status solidi (b),2009,246(5):1094-1098
    [47] Lee Y R and Ramdas A K. A piezomodulation study of the absorption edge and Mn++internal transition in Cd1xMnxTe, a prototype of diluted magnetic semiconductors[J],Solid State Communications,1984,51(11):861-863
    [48] Kendelewioz T. Reflectivity spectra of Cd1-xMnxTe mixed crystals in the vicinity of theE1and E1+Δ1transitions[J], Solid State Communications,1980,36(2):127-131
    [49] Wei S-H and Zunger A. Total-energy and band-structure calculations for thesemimagnetic Cd1-xMnxTe semiconductor alloy and its binary constituents[J], PhysicalReview B,1987,35(5):2340-2365
    [50] Ando K. Optical study of Mn2+intraionic transitions in zinc-blende MnTe[J], PhysicalReview B,1993,47(15):9350-9353
    [51] Sato H, Taniguchi M, Mimura K et al. Electronic structure of zinc-blende MnTeinvestigated by photoemission and inverse-photoemission spectroscopies[J], PhysicalReview B,2000,61(16):10622-10627
    [52] Sato H, Tamura M, Happo N et al. Electronic structure of NiAs-type MnTe studied byphotoemission and inverse-photoemission spectroscopies[J], Solid StateCommunications,1994,92(11):921-924
    [53] Fleszar A, Potthoff M, and Hanke W. Electronic structure of zinc-blende MnTe withinthe GW approximation[J], physica status solidi (c),2007,4(9):3270-3279
    [54] Long N and Akai H. Ab-initio Calculation of Electronic and Magnetic Propertiesof Mn1xCrxTe[J], Journal of Superconductivity and Novel Magnetism,2007,20(6):473-478
    [55] Koizumi S, Watanabe K, Hasegawa M et al. Ultraviolet Emission from a Diamond pnJunction[J], Science,2001,292(5523):1899-1901
    [56] Isberg J, Hammersberg J, Johansson E et al. High Carrier Mobility in Single-CrystalPlasma-Deposited Diamond[J], Science,2002,297(5587):1670-1672
    [57] Chevallier J, Teukam Z, Saguy C et al. Shallow donor induced n-type conductivity indeuterated boron-doped diamond[J], physica status solidi (a),2004,201(11):2444-2450
    [58] Redman M J and Steward E G. Cobaltous Oxide with the Zinc Blende/Wurtzite-typeCrystal Structure[J], Nature,1962,193(4818):867-867
    [59] Nam K M, Kim Y-I, Jo Y et al. New Crystal Structure: Synthesis and Characterization ofHexagonal Wurtzite MnO[J], Journal of the American Chemical Society,2012,134(20):8392-8395
    [60] Grimes R W and Lagerl f K P D. Polymorphs of Cobalt Oxide[J], Journal of theAmerican Ceramic Society,1991,74(2):270-273
    [61] Risbud A S, Snedeker L P, Elcombe M M et al. Wurtzite CoO[J], Chemistry of Materials,2005,17(4):834-838
    [62] Seo W S, Shim J H, Oh S J et al. Phase-and Size-Controlled Synthesis of Hexagonal andCubic CoO Nanocrystals[J], Journal of the American Chemical Society,2005,127(17):6188-6189
    [63] An K, Lee N, Park J et al. Synthesis, Characterization, and Self-Assembly of Pencil-Shaped CoO Nanorods[J], Journal of the American Chemical Society,2006,128(30):9753-9760
    [64] Alaria J, Cheval N, Rode K et al. Structural and magnetic properties of wurtzite CoO thinfilms[J], Journal of Physics D: Applied Physics,2008,41(13):135004
    [65] Archer T, Hanafin R, and Sanvito S. Magnetism of CoO polymorphs: Density functionaltheory and Monte Carlo simulations[J], Physical Review B,2008,78(1):014431
    [66] Hanafin R, Archer T, and Sanvito S. Magnetism of wurtzite CoO nanoclusters[J],Physical Review B,2010,81(5):054441
    [67] Han M J, Kim H-S, Kim D G et al. Collinear and noncollinear spin ground state ofwurtzite CoO[J], Physical Review B,2013,87(18):184432
    [68] Schr n A, R dl C, and Bechstedt F. Energetic stability and magnetic properties of MnOin the rocksalt, wurtzite, and zinc-blende structures: Influence of exchange andcorrelation[J], Physical Review B,2010,82(16):165109
    [69] Gopal P, Spaldin N A, and Waghmare U V. First-principles study of wurtzite-structureMnO[J], Physical Review B,2004,70(20):205104
    [70] Sun Q, Jena P, Wang Q et al. First-Principles Study of Hydrogen Storage on Li12C60[J],Journal of the American Chemical Society,2006,128(30):9741-9745
    [71] Hohenberg P and Kohn W. Inhomogeneous Electron Gas[J], Physical Review,1964,136(3B): B864-B871
    [72] Kohn W and Sham L J. Self-Consistent Equations Including Exchange and CorrelationEffects[J], Physical Review,1965,140(4A): A1133-A1138
    [73] Langreth D C and Perdew J P. Theory of nonuniform electronic systems. I. Analysis ofthe gradient approximation and a generalization that works[J], Physical Review B,1980,21(12):5469-5493
    [74] Perdew J P. Generalized gradient approximations for exchange and correlation: A lookbackward and forward[J], Physica B: Condensed Matter,1991,172(1-2):1-6
    [75] Anisimov V I, Zaanen J, and Andersen O K. Band theory and Mott insulators: HubbardU instead of Stoner I[J], Physical Review B,1991,44(3):943-954
    [76] Anisimov V I, Solovyev I V, Korotin M A et al. Density-functional theory and NiOphotoemission spectra[J], Physical Review B,1993,48(23):16929-16934
    [77] Deng X Y, Dai X, and Fang Z. LDA+Gutzwiller method for correlated electronsystems[J], Europhysics Letters,2008,83(3):37008
    [78] Georges A, Kotliar G, Krauth W et al. Dynamical mean-field theory of stronglycorrelated fermion systems and the limit of infinite dimensions[J], Reviews of ModernPhysics,1996,68(1):13-125
    [79] Kotliar G, Savrasov S Y, Haule K et al. Electronic structure calculations with dynamicalmean-field theory[J], Reviews of Modern Physics,2006,78(3):865-951
    [80] Ceperley D M and Alder B J. Ground State of the Electron Gas by a Stochastic Method[J],Physical Review Letters,1980,45(7):566-569
    [81] Perdew J P and Zunger A. Self-interaction correction to density-functionalapproximations for many-electron systems[J], Physical Review B,1981,23(10):5048-5079
    [82] Vosko S H, Wilk L, and Nusair M. Accurate spin-dependent electron liquid correlationenergies for local spin density calculations: a critical analysis[J], Canadian Journal ofPhysics,1980,58(8):1200-1211
    [83] Perdew J P, Burke K, and Ernzerhof M. Generalized Gradient Approximation MadeSimple[J], Physical Review Letters,1996,77(18):3865-3868
    [84] Hammer B, Hansen L B, and N rskov J K. Improved adsorption energetics withindensity-functional theory using revised Perdew-Burke-Ernzerhof functionals[J], PhysicalReview B,1999,59(11):7413-7421
    [85] Perdew J P, Chevary J A, Vosko S H et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J],Physical Review B,1992,46(11):6671-6687
    [86] Bagno P, Jepsen O, and Gunnarsson O. Ground-state properties of third-row elementswith nonlocal density functionals[J], Physical Review B,1989,40(3):1997-2000
    [87] Dufek P, Blaha P, Sliwko V et al. Generalized-gradient-approximation description ofband splittings in transition-metal oxides and fluorides[J], Physical Review B,1994,49(15):10170-10175
    [88] Hamann D R, Schlüter M, and Chiang C. Norm-Conserving Pseudopotentials[J],Physical Review Letters,1979,43(20):1494-1497
    [89] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism[J], Physical Review B,1990,41(11):7892-7895
    [90] Laasonen K, Car R, Lee C et al. Implementation of ultrasoft pseudopotentials in ab initiomolecular dynamics[J], Physical Review B,1991,43(8):6796-6799
    [91] Laasonen K, Pasquarello A, Car R et al. Car-Parrinello molecular dynamics withVanderbilt ultrasoft pseudopotentials[J], Physical Review B,1993,47(16):10142-10153
    [92] Payne M C, Teter M P, Allan D C et al. Iterative minimization techniques for ab initiototal-energy calculations: molecular dynamics and conjugate gradients[J], Reviews ofModern Physics,1992,64(4):1045-1097
    [93] Bl chl P E. Projector augmented-wave method[J], Physical Review B,1994,50(24):17953-17979
    [94] Kresse G and Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J], Physical Review B,1999,59(3):1758-1775
    [95] Kresse G and Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J], Physical Review B,1999,59:1758
    [96] Holzwarth N A W, Matthews G E, Dunning R B et al. Comparison of the projectoraugmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms fordensity-functional calculations of solids[J], Physical Review B,1997,55(4):2005-2017
    [97] Ihm J, Zunger A, and Cohen M L. Momentum-space formalism for the total energy ofsolids[J], Journal of Physics C: Solid State Physics,1979,12(21):4409
    [98] Herring C and Hill A G. The Theoretical Constitution of Metallic Beryllium[J], PhysicalReview,1940,58(2):132-162
    [99] Feynman R P. Forces in Molecules[J], Physical Review,1939,56(4):340-343
    [100] Ohno H. Making Nonmagnetic Semiconductors Ferromagnetic[J], Science,1998,281(5379):951-956
    [101] Sato K, Bergqvist L, Kudrnovsky J et al. First-principles theory of dilute magneticsemiconductors[J], Reviews of Modern Physics,2010,82(2):1633-1690
    [102] Kobayashi M, Ishida Y, Hwang J I et al. Local electronic structure of Cr in the II-VIdiluted ferromagnetic semiconductor Zn1-xCrxTe[J], New Journal of Physics,2008,10(5):055011
    [103] de Groot R A, Mueller F M, Engen P G v et al. New Class of Materials: Half-MetallicFerromagnets[J], Physical Review Letters,1983,50(25):2024-2027
    [104] Shen S, Liu X, Cho Y J et al. Ferromagnetic behavior of CdMnCrTe quaternary system[J],Applied Physics Letters,2009,94(14):142507
    [105] Dietl T, Ohno H, Matsukura F et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors[J], Science,2000,287(5455):1019-1022
    [106] Dietl T, Ohno H, and Matsukura F. Hole-mediated ferromagnetism in tetrahedrallycoordinated semiconductors[J], Physical Review B,2001,63(19):195205
    [107] Bergqvist L, Sato K, Katayama-Yoshida H et al. Computational materials design for high-Tc (Ga, Mn)As with Li codoping[J], Physical Review B,2011,83(16):165201
    [108] Kowan-Young K. Ferromagnetic Phase in Bulk (Cd, Cr)Te Dilute MagneticSemiconductor[J], Magnetics, IEEE Transactions on,2009,45(6):2428-2430
    [109] Stefaniuk I, Bester M, and Kuzma M. Ferromagnetic resonance in CdCrTe solidsolution[J], Journal of Physics: Conference Series,2008,104(1):012010
    [110] Li Y B, Zhang Y Q, Sun N K et al. Ferromagnetic semiconducting behavior of Mn1-xCrxTe compounds[J], Physical Review B,2005,72(19):193308
    [111] Nakamura K, Ito T, and Freeman A J. Half-metallic ferrimagnetism in zincblende Mn-doped transition metal chalcogenides[J], Physical Review B,2005,72(6):064449
    [112] Gon alves J N, Amaral V S, Correia J G et al. Hyperfine interactions in MnAs studiedby perturbed angular correlations of γ-rays using the probe Br77→Se77and first-principles calculations for MnAs and other Mn pnictides[J], Physical Review B,2011,83(10):104421
    [113] Kim W, Il Jin P, Hyung Joon K et al. Room-Temperature Ferromagnetic Property in MnTeSemiconductor Thin Film Grown by Molecular Beam Epitaxy[J], IEEE Transactions onMagnetics,2009,45(6):2424-2427
    [114] Ottaviano L, Continenza A, Profeta G et al. Room-temperature ferromagnetism in Mn-implanted amorphous Ge[J], Physical Review B,2011,83(13):134426
    [115] Rench D W, Schiffer P, and Samarth N. Structural and magnetic characteristics of MnAsnanoclusters embedded in Be-doped GaAs[J], Physical Review B,2011,84(9):094434
    [116] Hennion B, Szuszkiewicz W, Dynowska E et al. Spin-wave measurements on MBE-grown zinc-blende structure MnTe by inelastic neutron scattering[J], Physical Review B,2002,66(22):224426
    [117] Qi S, Jiang F, Fan J et al. Carrier-mediated nonlocal ferromagnetic coupling betweenlocal magnetic polarons in Fe-doped In2O3and Co-doped ZnO[J], Physical Review B,2011,84(20):205204
    [118] Kittilstved K R, Schwartz D A, Tuan A C et al. Direct Kinetic Correlation of Carriers andFerromagnetism in Co2+: ZnO[J], Physical Review Letters,2006,97(3):037203
    [119] Alawadhi H, Miotkowski I, Souw V et al. Excitonic Zeeman effect in the zinc-blende II-VI diluted magnetic semiconductors Cd1-xYxTe (Y=Mn, Co, and Fe)[J], Physical ReviewB,2001,63(15):155201
    [120] Echeverría-Arrondo C, Pérez-Conde J, and Ayuela A. First-principles calculations of themagnetic properties of (Cd, Mn)Te nanocrystals[J], Physical Review B,2009,79(15):155319
    [121] Sato K, Schweika W, Dederichs P H et al. Low-temperature ferromagnetism in (Ga,Mn)N: Ab initio calculations[J], Physical Review B,2004,70(20):201202
    [122] Griffin Roberts K, Varela M, Rashkeev S et al. Defect-mediated ferromagnetism ininsulating Co-doped anatase TiO2thin films[J], Physical Review B,2008,78(1):014409
    [123] Lin X-L, Yan S-S, Zhao M-W et al. Long-ranged and high temperature ferromagnetismin (Mn,C)-codoped ZnO studied by first-principles calculations[J], Journal of AppliedPhysics,2010,107(3):033903
    [124] Huang D, Zhao Y-J, Chen D-H et al. Magnetism and clustering in Cu doped ZnO[J],Applied Physics Letters,2008,92(18):182509
    [125] Ueda K, Tabata H, and Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films[J], Applied Physics Letters,2001,79(7):988
    [126] Editorial. More than just room temperature[J], Nature Materials,2010,9:951
    [127] Samarth N. A model ferromagnetic semiconductor[J], Nature Materials,2010,9:955-956
    [128] Chambers S. Is it really intrinsic ferromagnetism?[J], Nature Materials,2010,9:956-957
    [129] Zunger A, Lany S, and Raebiger H. The quest for dilute ferromagnetism insemiconductors: Guides and misguides by theory[J], Physics Letters,2010,3:53
    [130] Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides[J], NatureMaterials,2010,9(12):965-974
    [131] Touat S A, Litimein F, Tadjer A et al. The spin effect in zinc-blende and diluted magneticsemiconductors: FP-LAPW study[J], Physica B: Condensed Matter,2010,405(2):625-631
    [132] Banerjee P and Ghosh B. NiP:Mn as a potential magnetic contacting material toCd1xMnxTe[J], Applied Surface Science,2009,255(8):4689-4692
    [133] Long N H, Ogura M, and Akai H. Design of half-metallic ferrimagnets: Doped MnX(X=Te, Se, S)[J], Journal of Applied Physics,2009,106(12):123905
    [134] Hastings J M, Elliott N, and Corliss L M. Antiferromagnetic Structures of MnS2, MnSe2,and MnTe2[J], Physical Review,1959,115(1):13-17
    [135] Sato H, Mihara T, Furuta A et al. Chemical trend of occupied and unoccupied Mn3dstates in MnY (Y=S, Se, Te)[J], Physical Review B,1997,56(12):7222-7231
    [136] Kresse G and Hafner J. Ab initio molecular dynamics for liquid metals[J], PhysicalReview B,1993,47(1):558-561
    [137] Kresse G and Furthmüller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J], Physical Review B,1996,54(16):11169-11186
    [138] Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy[J], Physical Review B,1992,45(23):13244-13249
    [139] Wang L, Maxisch T, and Ceder G. Oxidation energies of transition metal oxides withinthe GGA+U framework[J], Physical Review B,2006,73(19):195107
    [140] Schr n A, R dl C, and Bechstedt F. Crystalline and magnetic anisotropy of the3d-transition metal monoxides MnO, FeO, CoO, and NiO[J], Physical Review B,2012,86(11):115134-
    [141] Lee Y R, Ramdas A K, and Aggarwal R L. Energy gap, excitonic, and "internal" Mn2+optical transition in Mn-based II-VI diluted magnetic semiconductors[J], PhysicalReview B,1988,38(15):10600-10610
    [142] Allen J W, Lucovsky G, and Mikkelsen Jr J C. Optical properties and electronic structureof crossroads material MnTe[J], Solid State Communications,1977,24(5):367-370
    [143] Kramers H A. L'interaction Entre les Atomes Magnétogènes dans un CristalParamagnétique[J], Physica,1934,1(1–6):182-192
    [144] Roth W L. Magnetic Structures of MnO, FeO, CoO, and NiO[J], Physical Review,1958,110(6):1333-1341
    [145] O zgu r U, Alivov Y I, Liu C et al. A comprehensive review of ZnO materials anddevices[J], Journal of Applied Physics,2005,98(4):041301
    [146] Zhang S B, Wei S-H, and Zunger A. Overcoming doping bottlenecks insemiconductors[J], Physica B,1999,273-274:976-980
    [147] Koizumi S, Watanabe K, Hasegawa M et al. Ultraviolet emission from a diamond pnjunction[J], Science,2001,292(5523):1899-1901
    [148] Isberg J, Hammersberg J, Johansson E et al. High carrier mobility in single-crystalplasma-deposited diamond[J], Science,2002,297(5587):1670-1672
    [149] Yan Y and Wei S-H. Doping asymmetry in wide-bandgap semiconductors: Origins andsolutions[J], Phys. Status Solidi (b),2008,245(4):641-652
    [150]Janotti A and Van de Walle C G. Native point defects in ZnO[J], Physical Review B,2007,76(16):165202
    [151] Oba F, Togo A, and Tanaka I. Defect energetics in ZnO: A hybrid Hartree-Fock densityfunctional study[J], Physical Review B,2008,77(24):245202
    [152] Risbud A S, Snedeker L P, Elcombe M M et al. Wurtzite CoO[J], Chem. Mater.,2005,17:834-838
    [153] Robin W G, Lagerl f K P D, and Cleveland O. Polymorphs of Cobalt Oxide[J], Journalof the American Ceramic Society,1991,74:270
    [154] Oba F, Choi M, Togo A et al. Native defects in oxide semiconductors: a density functionalapproach[J], Journal of Physics: Condensed Matter,2010,22(38):384211
    [155] Kresse G and Furthmu ller J. Effcient iterative schemes for ab initio total-energycalculations using a plane-wave basis set[J], Physical Review B,1996,54:11169
    [156] Perdew J P, Burke K, and Ernzerhof M. Generalized Gradient Approximation MadeSimple[J], Physical Review Letters,1996,77:3865
    [157] Gopal P, Spaldin N, and Waghmare U. First-principles study of wurtzite-structureMnO[J], Physical Review B,2004,70(20):205104
    [158] Zhao Y-J, Persson C, Lany S et al. Why can CuInSe2be readily equilibrium-doped n-typebut the wider-gap CuGaSe2cannot?[J], Applied Physics Letters,2004,85(24):5860
    [159] Persson C, Zhao Y-J, Lany S et al. n-type doping of CuInSe2and CuGaSe2[J], PhysicalReview B,2005,72(3):035211
    [160] Makov G and Payne M C. Periodic boundary conditions in ab initio calculations[J],Physical Review B,1995,51:4014
    [161] Schultz P A. Charged Local Defects in Extended Systems[J], Physical Review Letters,2000,84:1942
    [162] Lento J, Mozos J-L, and Nieminen R M. Charged point defects in semiconductors andthe supercell approximation[J], Journal of Physics: Condensed Matter,2002,14:2637
    [163] Liu R, Tian R-Y, and Zhao Y-J. Structural stability of Cr-related defect complex indiamond for single photon sources: A first-principles study[J], Journal of Applied Physics,2013,113(10):103516
    [164] Gillan M J, Harding J H, and Leslie M. A comparison of methods for calculating defectentropies in ionic crystals[J], Journal of Physics C: Solid State Physics,1988,21:5465
    [165] Hedstr m M, Schindlmayr A, and Scheffler M. Quasiparticle Calculations for PointDefects[J], Physica Status Solidi (b),2002,234:346-353
    [166] Castleton C W M and Mirbt S. Finite-size scaling as a cure for supercell approximationerrors in calculations of neutral native defects in InP[J], Physical Review B,2004,70(19):195202
    [167] Van de Walle C G. First-principles calculations for defects and impurities: Applicationsto III-nitrides[J], Journal of Applied Physics,2004,95(8):3851
    [168] McDonald G. A preliminary study of a solar selective coating system using a black cobaltoxide for high temperature solar collectors[J], Thin Solid Films,1980,72(1):83-88
    [169] Smith G B, Ignatiev A, and Zajac G. Solar selective black cobalt: preparation, structure,and thermal stability[J], Journal of Applied Physics,1980,51(8):4186-4196
    [170] Nakaoka K, Nakayama M, and Ogura K. Electrochemical Deposition of Spinel-TypeCobalt Oxide from Alkaline Solution of Co2+with Glycine[J], Journal of TheElectrochemical Society,2002,149(3): C159-C163
    [171] Ando M, Kobayashi T, Iijima S et al. Optical recognition of CO and H2by use of gas-sensitive Au-Co3O4composite films[J], Journal of Materials Chemistry,1997,7(9):1779-1783
    [172] Poizot P, Laruelle S, Grugeon S et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J], Nature,2000,407(6803):496-499
    [173] Seo W S, Jo H H, Lee K et al. Preparation and Optical Properties of Highly Crystalline,Colloidal, and Size-Controlled Indium Oxide Nanoparticles[J], Advanced Materials,2003,15(10):795-797
    [174] Wang X, Song J, Liu J et al. Direct-Current Nanogenerator Driven by UltrasonicWaves[J], Science,2007,316(5821):102-105
    [175] Terakura K, Oguchi T, Williams A R et al. Band theory of insulating transition-metalmonoxides: Band-structure calculations[J], Physical Review B,1984,30(8):4734-4747
    [176] Fender B E F, Jacobson A J, and Wedgwood F A. Covalency Parameters in MnO, α‐MnS, and NiO[J], The Journal of Chemical Physics,1968,48(3):990-994
    [177] Khan D C and Erickson R A. Magnetic Form Factor of Co++Ion in Cobaltous Oxide[J],Physical Review B,1970,1(5):2243-2249
    [178] Herrmann-Ronzaud D, Burlet P, and Rossat-Mignod J. Equivalent type-II magneticstructures: CoO, a collinear antiferromagnet[J], Journal of Physics C: Solid State Physics,1978,11(10):2123
    [179] Cheetham A K and Hope D A O. Magnetic ordering and exchange effects in theantiferromagnetic solid solutions MnxNi1-xO[J], Physical Review B,1983,27(11):6964-6967
    [180] Wertheim G K and Hüfner S. X-Ray Photoemission Band Structure of Some Transition-Metal Oxides[J], Physical Review Letters,1972,28(16):1028-1031
    [181] Anisimov V I and Gunnarsson O. Density-functional calculation of effective Coulombinteractions in metals[J], Physical Review B,1991,43(10):7570-7574
    [182] Anisimov V I, Kuiper P, and Nordgren J. First-principles calculation of NiO valencespectra in the impurity-Anderson-model approximation[J], Physical Review B,1994,50(12):8257-8265
    [183] Aulbur W G, J nsson L, and Wilkins J W, Solid State Physics[M]. Academic Press,1999,54,1-218.
    [184] Svane A and Gunnarsson O. Transition-metal oxides in the self-interaction–correcteddensity-functional formalism[J], Physical Review Letters,1990,65(9):1148-1151
    [185] Szotek Z, Temmerman W M, and Winter H. Application of the self-interaction correctionto transition-metal oxides[J], Physical Review B,1993,47(7):4029-4032
    [186] Arai M and Fujiwara T. Electronic structures of transition-metal mono-oxides in the self-interaction-corrected local-spin-density approximation[J], Physical Review B,1995,51(3):1477-1489
    [187] Wei P and Qi Z Q. Insulating gap in the transition-metal oxides: A calculation using thelocal-spin-density approximation with the on-site Coulomb U correlation correction[J],Physical Review B,1994,49(16):10864-10868
    [188] Boussendel A, Baadji N, Haroun A et al. Effect of substrate strain on calculated magneticproperties and magnetic anisotropy energy of CoO[J], Physical Review B,2010,81(18):184432
    [189] Heyd J, Scuseria G E, and Ernzerhof M. Hybrid functionals based on a screened Coulombpotential[J], The Journal of Chemical Physics,2003,118(18):8207-8215
    [190] Krukau A V, Vydrov O A, Izmaylov A F et al. Influence of the exchange screeningparameter on the performance of screened hybrid functionals[J], The Journal of ChemicalPhysics,2006,125(22):224106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700