真空定向凝固法去除硅中金属杂质和晶体生长控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,将主要生产电子级硅的西门子法用于生产太阳能级硅,该方法环境负荷大和生产成本高成为光伏产业的发展的瓶颈。冶金法具有成本低、工艺流程简单、设备投资少、环境负荷小等特点,是现阶段全世界研究的热点工艺。本课题组发明了冶金法制备太阳能级硅的新工艺(专利授权号:ZL200610010654.8),真空定向凝固是其中一个重要的组成部分。定向凝固可同时实现去除金属杂质和控制晶体生长这两种功能,而这两方面的研究目前还鲜见报道,本文对与此相关的科学技术问题进行了较系统的研究。
     本文从定向凝固和区域熔炼的相关理论出发,较系统地计算分析了定向凝固和区域熔炼去除硅中多种金属杂质的影响因素。研究表明,固液界面间的扩散层厚度、凝固速率、扩散系数等参数对金属杂质的去除有重要影响,减薄扩散层、提高扩散系数、降低凝固速率有利于提高杂质的去除效率。进而理论上给出了能较好去除硅中金属杂质的工艺参数的取值范围:在定向凝固中,温度在1471℃-1521℃之间、凝固速度控制在3μm/s~20μm/s之间比较适宜;去除硅中高含量的金属杂质Fe和Al扩散层厚度应控制在5.0×10-3cm以下较佳;在区域熔炼中,凝固速率控制在3μ/m/s~10μm/s之间比较适宜。
     在理论计算和分析确定的工艺参数参考范围内,采用不同的工艺条件对几种常用的硅原料进行了几十克级的区域熔炼、感应定向凝固和小型电阻加热真空定向凝固以及几公斤级的中型电阻真空定向凝固去除硅中金属杂质的实验研究。实验结果表明:几种方法都能不同程度地去除硅中的金属杂质;对比一次区域熔炼或一次定向凝固对样品中金属杂质的去除效果可知,电阻加热真空定向凝固去除杂质的效率最高,感应加热定向凝固次之,一次区域熔炼去除杂质的效果最差。感应加热定向凝固对不易挥发杂质Fe和Ti的去除效果与电阻加热真空定向凝固的相近。3N级硅粉经感应和电阻加热定向凝固后,Fe和Ti的最高去除效率均可达到99.9%。而对于易挥发的杂质Al和Ca,在以3N级硅粉为原料的电阻加热真空定向凝固实验中,去除效率最高均可达到99.7%以上,而感应加热定向凝固则稍差。在优化工艺的条件下,对以3N级硅粉为原料时,感应加热定向凝固所得样品中最低的Fe.Ti.Al和Ca含量分别为0.07ppmw、0.012ppmw、1.89ppmw和0.252ppmw;小型电阻加热真空定向凝固所得样品中最低的Fe、Ti、Al和Ca含量分别为0.07ppmw、0.016ppmw、0.63ppmw和0.084ppmw。上述结果均与理论预测吻合较好。另外,实验还发现,不同硅原料定向凝固去除金属杂质的效果不同。以纯度较高、杂质较少的硅料为实验原料时,定向凝固除杂效果较好。以3N级硅粉为原料经一次电阻加热定向凝固后,除A1外,样品中Fe、Ti和Ca的含量均在0.1ppmw以下,达到太阳能级硅的要求。
     从加热方式和实验规模对比杂质的去除效率可知,与小型电阻加热真空定向凝固相比,中型电阻加热真空定向凝固对Fe和Ti的去除率较高。扩大电阻加热真空定向凝固的实验规模,即可保持Al和Ca高的去除率,又可提高Fe和Ti的去除效率。在对硅锭中杂质的理论含量进行计算时,选择了三个扩散层厚度参数。对比不同方法在不同凝固速率下对不同原料中杂质的去除效果的实验值和理论计算值表明,在感应加热定向凝固中,扩散层厚度选择0.003cm-0.005cm计算较适宜;在电阻加热真空定向凝固中,扩散层厚度选择0.005cm-0.007cm计算较适宜。
     进行了不同方法不同凝固速率的晶体生长和缺陷控制实验研究。研究表明感应加热定向凝固获得的晶体细小、杂乱,小角度晶界相对较多;小型电阻加热真空定向凝固在凝固速率为20μm/s时,大部分晶体垂直于坩埚底部生长,获得的晶体尺寸’较大、位错密度较小、小角度晶界所占比例少、∑3晶界所占比例大;中型电阻加热真空定向凝固在凝固速率为10μm/s时,晶体垂直坩埚生长较明显,获得的晶体尺寸相比最大、大角度晶界和∑3晶界所占比例较大、小角度晶界所占比例较少,晶体质量较佳。由改变坩埚形状的晶体实验结果可知,在凹形坩埚底部放置单晶籽晶时,可明显减少晶体形核区,晶体明显垂直于坩埚底部生长。
     由于沿(111)晶面择优生长的晶体有利于提高太阳能电池转换效率和改善硅片的韧性,因此进行了晶体生长取向的实验。结果表明,感应和电阻加热定向凝固均可得到沿(111)晶面择优生长的硅锭,但是感应定向凝固实验得到的硅锭中晶体没有形成强的(111)晶面织构,实验结果与理论分析吻合较好。通过对不同方法和不同实验规模对不同金属杂质的去除效果和晶体生长质量综合对比分析可知,结合获得既可使多种金属杂质去除达到太阳能级硅要求又能定向生长<111>择优取向的粗大柱状多晶硅,电阻加热真空定向凝固的效果较好,而且扩大电阻加热真空定向凝固的规模对去除杂质和晶体控制生长均有利。综合考虑去除金属杂质和晶体生长,小型电阻加热真空定向最优工艺条件为:凝固速率为20gm/s和加热温度为1500℃;中型电阻加热真空定向最优工艺条件为:凝固速率为10gm/s和热温度为1500℃。
     为了进一步改善硅晶体结构和提高硅片的电学性能,对冶金法制备的硅片进行了热处理研究。考查了热处理温度、时间、气氛、腐蚀时间等实验参数对硅片的晶体择优取向、电阻率、位错密度和晶界缺陷的影响。结果表明,各实验参数对硅片的电阻率影响较大,在适当的实验条件下,热处理技术能大大地提高定向凝固多晶硅的电学性能。
Now most polycrystalline silicon is produced by Siemens method which is used to produce electronic grade silicon, and their more environment load and high cost has blocked development of photovoltaic industry. The characteristics of metallurgy purification method is lower cost, simple process, little equipment investment and less environment load, the method is hotspot research process in the world. Vacuum directional solidification is one process of metallurgy purification method (authorized patent number:ZL200610010654.8), which is originated by our work group. The research on removing metal impurities and controlling crystal growth at the same time by vacuum directional solidification, is not discovered. In this paper, the technology problems about vacuum directional solidification are systematically studied.
     Influence facts of removing metal impurities of silicon by directional solidification and zone refining are systematically accounted and analyzed by solidification theory. The results indicate that experimental parameters including diffusion layer, solidification rate and diffusion coefficient, are important effect facts to removing metal impurities of silicon. Thinner diffusion layer, larger diffusion coefficient and lower solidification rate can enhance the segregation effectiveness of metal impurities. The fitting span of experimental parameters is presented. When the directional solidification experiment is carried out, the temperature should be controlled between 1471℃and 1521℃, and solidification rate should be controlled between 3μm/s and 20μm/s. When the diffusion layer is lower to 5.0×10-3cm, the removing effectiveness of Fe and Al is higher in the directional solidification experiment. When the zone refining experiment is carried out, solidification rate should be controlled between 3μm/s and 10μm/s.
     When the fitting span of experimental parameters is presented by theory calculation and analysis, bench-scale vacuum resistance directional solidification experiments with several decagram scale, pilot-scale vacuum resistance directional solidification experiments with several kilogram and zone refining experiments with several decagram scale were carried out. The results showed that the methods can gradely remove metal impurities of silicon. Through experiment results of once directional solidification and once zone refining were contrasted, the removal efficiency of metal impurities was the highest in vacuum resistance directional solidification experiments. The removal efficiency was higher in induction directional solidification experiments and the removal efficiency was the lowest in once zone refining experiments. The removing efficiency of Fe and Ti metal impurities which is difficult to volatilize was close in induction directional solidification experiments and resistance directional solidification experiments. When induction directional solidification experiments and vacuum resistance directional solidification experiments with 3N silicon powder as raw material were carried out, the highest removal efficiency of Fe and Ti metal impurities was 99.9 percent. When vacuum resistance directional solidification experiments with 3N silicon powder as raw material were carried out, the highest removal efficiency of Al and Ca metal impurities which is easy to volatilize was higher than 99.7 percent. But the removal efficiency of metal impurities was lower in induction directional solidification experiments than that of vacuum resistance directional solidification experiments. The concentration of Fe、Ti、Al and Ca in the samples was 0.07ppmw、0.012ppmw、1.89ppmw and 0.252ppmw in induction directional solidification experiments with optimize technical conditions. The concentration of Fe、Ti、Al and Ca in the samples was 0.07ppmw、0.016ppmw、0.63ppmw and 0.084ppmw in bench-scale vacuum resistance directional solidification experiments with optimize technical conditions. The previous experimental results were more anastomotic with theory value. In addition, the removal efficiency of metal impurities was different in directional solidification experiments with different raw materials. When the raw material was purer and metal impurities was less, the removal efficiency of metal impurities was higher. When once pilot-scale resistance directional solidification experiments with 3N silicon powder as raw material were carried out, metal impurity concentration of silicon ingots was lower than 0.1 ppmw except for Al concentration and have got the require of metal impurity concentration in solar grade silicon.
     Through experiment result contrast of different heating modes and different experiment scale, the removal efficiency of Fe and Ti metal impurities was higher in pilot-scale resistance directional solidification experiments than that of bench-scale resistance directional solidification experiments. When the experiment scale of vacuum resistance directional solidification experiments was expanded, the higher removal efficiency to Al and Ca was kept, at the same time, the removal efficiency to Fe and Ti was enhanced. When the theory value of metal impurities of silicon ingots was calculated, the three value of diffusion layer thickness were used. Through experiment result contrast of removal efficiency in different heating modes with different solidification rates and different raw materials, the thickness of diffusion layer should be cheese between 0.003cm and 0.005cm in induction directional solidification experiments, and the thickness of diffusion layer should be cheese between 0.005cm and 0.007cm in vacuum resistance directional solidification experiments.
     Crystal growth and defect control were studied in the experiments. The results showed that disordered columnar crystals, small grain size and the more small-angle grain boundaries is obtained in induction directional solidification experiments. When solidification rate is 20μm/s in bench-scale resistance directional solidification experiments, the growth direction of columnar crystals was basically perpendicular to the bottom of crucibles, and columnar crystals have some characteristics of large grain size, lower dislocation density, fewer small-angle grain boundaries, and more∑3 grain boundaries. When solidification rate is 10μm/s in pilot-scale resistance directional solidification experiments, the growth direction of columnar crystals was perpendicular to the bottom of crucibles, and average grain size was largest. The results of electron back-scattered diffraction measurements showed that the large-angle boundaries was dominating and the small-angle grain boundaries was very fewer, and the∑3 grain boundaries accounted for large proportion. These suggested that high crystal quality was obtained in pilot-scale resistance directional solidification experiments. When the bottom of crucible is concave, crystal nucleation region is decreased, and columnar crystals was markedly perpendicular to the bottom of crucibles.
     Columnar crystals of preferred growth along (111) crystal face was propitious to enhance conversion efficiency of solar cell and improved the tenacity of silicon wafers, so the crystal control growth experiments carried out. The results showed that columnar crystals of<111> preferred orientation were both obtained in induction directional solidification experiments and resistance directional solidification experiments, and stronger crystal texture has been formed in resistance directional solidification experiments, but done not in induction directional solidification experiments. The experiment results and theory analysis are accordant. The results of different methods and different experiment scale showed that higher removing efficiency to metal impurities and the columnar crystals with large grain size and directional growth along (111) crystal face, can be obtained. When the experiment scale was expanded in vacuum resistance directional solidification, it was favorable to enhance the removal efficiency to metal impurities and grow high quality crystals. The optimal technological condition of bench-scale resistance directional solidification experiments is that solidification rate is 20μm/s and heating temperature is 1500℃. The optimal technological condition of pilot-scale resistance directional solidification experiments is that solidification rate is 10μm/s and heating temperature is 1500℃.
     Heat treatment experiments were carried out to improve crystal structure and heighten resistivity of silicon wafers. The experiment factors including atmosphere, temperature, heat treatment time and acid corrosion time and the influence to crystal preferred orientation, resistivity, dislocation density of silicon wafers were research in heat treatment experiments. At the same time, the influence of the experiment factors to the performance of silicon wafers which includes preferred growth orientation, resistivity, dislocation density and grain boundaries, were studied. The results of heat treatment experiments showed that the experiment factors have rather great influence to the resistivity of silicon wafers. There is a conclusion that heat treatment can increase the electricity performance.
引文
[1]S. Solomon, D. Qin, M. Manning, et al. IPCC,2007:Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,996.
    [2]黄勇,哥本哈根气候变化大会,中国环境报,2009,12,1.
    [3]A.F. Sherwani, J.A. Usmani, Varun. Life cycle assessment of solar PV based electricity generation systems:A review. Renewable and Sustainable Energy Reviews,2010,14:540-544.
    [4]BP Statistical Review of World Energy.2009.6.
    [5]Energy Information Administration. International Energy Outlook 2009. May 2009. www.eia.doe.gov/iea.
    [6]PVNET-European Roadmap for PV R&D, JRC-EUR21087EN,2004. http://www.pvaustria.at/upload/274_Roadmap_PVNET.pdf
    [7]BP Statistical Review of World Energy.2009.6.
    [8]http://www.dgsolarpowder.com/shownews.asp?ID=86.
    [9]蒋荣华,肖顺珍.碳减排时代将拉动太阳能光伏产业快速成.新材料产业,197(4) :43.
    [10]Outlook for Energy:A View to 2030.2010.3.
    [11]赵玉文.太阳电池发展趋势,2009年光伏科学技术发展沧海国际论坛,江西新余,2009,12.
    [12]郭景杰,黄锋,陈瑞润,等.太阳能电池用多晶硅铸造技术研究进展特种铸造及有色合金,2008,28(7):516-521.
    [13]Dominique S, Roland E. Silicon feedstock for the multi-crystalline photovoltaic industry. Solar Energy Materials and Solar Cells,2002,72(1-4):27 40.
    [14]闻立时.太阳能多晶硅发展面临转折,新材料产业,2008,No.6:2-5.
    [15]http://www.gov.cn/zwgk/2009-09/29/content_1430087.htm.
    [16]蒋荣华.肖顺珍.国内外多晶硅发展现状.半导体技术.2001,2601,7-10.
    [17]http://www.2ic.cn半导体技术.国内外多晶硅生产的主要工艺技术.
    [18]屈平,白木,周洁.光伏产业多晶硅材料发展现状.装备机械,2008,2: 61-65.
    [19]Christy M. White, Paul Ege, B. Erik Ydstie. Size distribution modeling for fluidized bed solar-grade silicon production. Powder Technology 2006,163: 51-58.
    [20]闻立时,黄荣芳.冶金法制备多晶硅的现状和前瞻,09冶金高层论坛,昆明,2009,3(特邀报告).
    [21]陈朝,罗学涛.物理冶金法的技术动态和质量分析,2008年中国硅业国际论坛年会,昆明,2008,9.
    [22]A.F.B. Braga, S.P.Moreira, P. R. Zampieri et al. New processes for the production of solar grade polycrystalline silicon:A review. Solar Energy Materials & Solar Cells,2008,92:418-424.
    [23]N. Yuge. Purification of metallurgical-grade silicon up to solar grade. Progress in photovoltaics:research and applications,2001,9:203-209.
    [24]K. Morita, T. Miki. Thermodynamics of solar-grade-silicon refining. Intermetallics,2003,11:1111-1117.
    [25]L. A. V. Teixeira, Y. Tokuda, T. Toko et al. Behavior and state of boron in CaO-SiO2 slags during refining of solar grade silicon. ISIJ International,2009, 49(6):777-782.
    [26]C. Zahedi, E. Enebakk, K. Friestad, et al. Solar grade silicon from metallurgical route. Technical digest of the international PVSEC-14, Bangkok, Thailand, 2004:673-676.
    [27]J.C.S. Pires, J. Otubo, A.F.B. Braga, et al. The purification of metallurgical grade silicon by electron beam melting. Journal of Materials. Processing Technology,2005,169:16-20.
    [28]Peter Woditscha, Wolfgang Koch. Solar grade silicon feedstock:supply for PV Industry. Solar Energy Materials & Solar Cells,2.002,72:11-26.
    [29]马文会,戴永年,杨斌等.一种制备太阳能级多晶硅的方法,发明专利号:ZL 200610010654.8.
    [30]Wei Kuixian, Ma Wenhui, Dai Yongnian et al. Vacuum distillation refining:of metallurgical grade silicon (Ⅰ)-Thermodynamics on removal of phosphorus from metallurgical grade silicon. Transactions of Nonferrous Metals Society of China,2007,17:s1022-s1025.
    [31]Ma Wenhui, Wei Kuixian, Dai Yongnian et al. Vacuum distillation refining of metallurgical grade silicon (Ⅱ)-kinetics on removal of phosphorus from metallurgical grade silicon. Transactions of Nonferrous Metals Society of China,2007,17:s1026-s1029.
    [32]吴亚萍,张剑,李廷举等.多晶硅的真空感应熔炼及定向凝固研究.特种铸造及有色合金,2006,26(12):792-794.
    [33]马晓东,李廷举.冶金法去除工业硅中杂质的研究[硕士学位论文],大连,大连理工大学,2009.
    [34]张伟娜,谭毅,许富民.显微组织对冶金法制备多晶硅电阻率的影响.机械工程材料,2008,(1):17-20.
    [35]陈玉武,郝秋艳,刘彩池等.快速热处理对铸造多晶硅性能的影响.材料热处理学报,2008,29(5):5-8.
    [36]H. A. Aulich, K.H. Eisenrit, F.W. Scgulze et al.6thE.C.Photovoltaic Energy Conf. London:Commun. Eur. Communities Rep, EUR10025,1985:951.
    [37]Dietl, Helmreich, D. Sirtl E. Solar. Silicon in:crystal growth. properties and applications,1981,5:43.
    [38]赵春江.锌还原法生产多晶硅.新材料产业,2009,No.5:15-18.
    [39]Wenhui Ma, Masaru Ogura, Takeshi Kobayashi et al.Preparation of solar grade silicon from, optical fibers wastes with thermal plasmas. Solar Energy Materials & Solar cells,2004,81:477-483.
    [40]T. Nohira, K. Yasuda, Y. Ito. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon..Nature Materials,2003,2:397-401.
    [41]K.Yasuda, T.Nohira, R. Hagiwara et al. Direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar grade silicon. Electrochimica Acta 2007,53 (1):106-110.
    [42]S.C. Lee, X.M. Hur, C.S. Seo. Silicon powder production by electrochemical reduction of SiO2 in molten LiCl-Li2O. Journal of Industrial and Engineering Chemistry,2008,14:651-654.
    [43]田忠良,贾明,刘业翔等.熔盐直接电沉积及电解精炼硅研究.中国科技论文在线,2009,6.
    [44]Wei Xiao, Xianbo Jin, Yuan Deng et al. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaC12 in accordance with dynamic three-phase interlines based voltammetry. Journal of Electroanalytical Chemistry,2010,639:130-140.
    [45]吉川健.利用Al-Si溶液低温凝固Si精炼过程物理化学研究[博士学位论文],东京,日本东京大学,2005.
    [46]Takeshi Yoshikawa, Kazuki Morita. Refining of silicon during its solidification from a Si-Al melt. Journal of Crystal Growth,2009,311:776-779.
    [47]郭占成.熔析法制备太阳能级多晶硅.冶金法太阳能多晶硅制备技术及应用研讨会,厦门,2009.6.
    [48]Tihu Wang; Theodore F. Ciszek. Purified Silicon Production System. U.S. Patent 6712,908.
    [49]Tihu Wang; Theodore F. Ciszek. Purification and Deposition of Silicon by an Iodide Disproportionation Reaction. U.S. Patent 6468,886.
    [50]Tokuyama Corp. Responsible Care & Eco Management Department Tokuyama Corporation—Responsible Care Report 2005. http://www. tokuyama.co.jp/eng/enviro/report/pdf/2005rc_report_e.pdf
    [51]吴云才,刘磊磊.直拉法生长硅单晶产生的埚底料的除杂方法.中国,专利申请号200610155648.1.
    [52]A. A. Istratov, H. Hieslmair, E. R. Weber. Iron contamination in silicon technology. Material Science & Processing,2000,70:489-534.
    [53]M. Seibt, K. Graff. High-temperature Properties of 3d Transition Elements in Si. Mat. Res. Symp. Proc,1983,130:196-201.
    [54]席珍强.晶体硅中过渡族金属的沉淀规律[博士论文].杭州,浙江大学:2003.
    [55]Wolf E, Klinger D, Bergmann S. Investigations for the detection of microdefectsin cast multi-crystalline silicon. Solid State Phenomena,1996, 51-52:87-92.
    [56]Scott A McHugo, Thompson AC, Moharmed A. Nanometer-scale metal precipitates in multierystalline silicon solar cells. J.Appl.Phys,2001,89: 4282-4288.
    [57]H. Nakashima, T. Sadoh, and T. Tsurushima, Electrical and thermal properties of structurally metastable iron-boron pairs in silicon. Phys.Rev.B, 1994,49:16983-16993.
    [5.8]席珍强,杨德仁,陈君等.晶体硅中的铁沉淀规律.半导体学报,2003(11): 1166-1170.
    [59]T.Heiser A. A. Istratov, C. Flink and E. R.Weber. Electrical characterization of copper related defect reactios in silicon. Mater.Sci.Eng.B,1999,58:149-54.
    [60]M.Shiraishi, J.U. Sachse, H.Lemke, J.Weber. DLTS analysis of niekel-hydrogen complex defects in silicon. Mater.Sci.Eng.B,1999,58:130-133.
    [61]C.P.Khattak,D.B.Joyce, and F.Schmid. Production of SoG Silicon by Refining Liquid MG Silicon. Final Report,2001,8.
    [62]Progress in Photovoltaics:Research and applications,2001; 9; 203—209, Intern. Workshop on Sicience and Technology of Crystalline Si Solar Cells,2-3 Oct. 2006, Sendai, Japan.
    [63]《太阳能级多晶硅》国家标准(报批稿),2009.
    [64]高技术新材料要览编辑委员会.高技术新材料要览.北京:中国材料技术出版社,1993.
    [65]Versnyder F L,Barlow R B,Sink L W,et al.Directional Solidification in the Precision Casting of Gas Turbine Parts. Modern Casting,1967,52(6):68-75.
    [66]Versnyder F L.Shank M E.Development of Cloumnar Grain and Single Crystal High Temperature Materials through Directional Solidification. Materials Science and Engineering,1970,6(4):213-247.
    [67]J S Erickson.Process Speeds up Directional Solidification. Metal Process,1971, (3):58-62.
    [68]Giamei A F, Tschinkel J G. Liquid metal cooling:a new solidification technique.Materials Transactions,1976,7A (9):1427-1434.
    [69]钱志屏.材料的变形与断裂.上海:同济大学出版社,1989.
    [70]Nakagawa Y G and Murakami K, Directional growth of eutectic composite by fluidized bed quenching. Trans,1980,20:614-62.
    [71]Dohson A J D, Hellawel A. Application of Electro-slag Melting. Metallagical Tranactions,1972, (3):1016.
    [72]Mclean M著,陈石卿,陈荣章译.定向凝固高温材料.北京:航空工业出版社,1988.
    [73]彭桂林γ-TiAl基金属间化合物电磁成形定向凝固及组织特性研究[硕士学位论文],西安,西北工业大学,2004:2.
    [74]B. Lux, G. Haour, F. Molland. Dynamic Undercooling of Superalloys. Metall.1981,35:1235-1239.
    [75]傅恒志,张军.电磁流体力学与材料工程.北京:高等教育出版社,1998.
    [76]S. C. Gill, W. Kurz. Laser Rapid Solidification of Al-Cu Alloys:Banded and plane Front Growth. Materials Science&Engineering.1993, A 12:335-338.
    [77]C.W. Lan, F.C. Chen.A finite volume method for solute segregation in directional solidification and comparison with a finite element method. Comput. Methods Appl. Mech. Engrg,1996,131:191-207.
    [78]苏彦庆,郭景哲,刘畅.定向凝固技术与理论研究的进展.特种铸造及有色合金,2006,26(1):25-30.
    [79]K. Morita, T. Miki. Thermodynamics of solar-grade-silicon refining. Intermetallics,2003,11:1111-1117.
    [80]F.schmid,M.Basaran and C. P.Khattak., Directional Solidification of MG Silicon by Heat Exchanger Method (HEM) for Photovoltaic Applications, Proc.3rd E.C. Photovoltaic Solar Energy, Conf., D. Reidel Publ. Co.1981:252.
    [81]Chandra P.Khattak, Frederick Schmid, David B.Joyce, etal.15th program review meeting. AIP Conference Proceedings,1999,462:731-736.
    [82]R. Kishore, J. L. Pastol,G. Revel, et al.Growth and characterization of polycrystalline silicon ingots doped with Cu, C, B or Al by directional solidification for photovoltaic application. Solar Energy Materials,1989,19: 221-236.
    [83]A. Muhlbauer, V. Diers and A. Walther,J. G. Grabmaier,et al. Removal of C/SiC from liquid silicon by directional solidification. Journal of Crystal Growth,1991,108:41-52.
    [84]Chandra P. Khattak, David B. Joyce, Frederick Schmid.A simple process to remove boron from metallurgical grade silicon. Solar Energy Materials & Solar Cells.2002,74:77-89.
    [85]Yuge Noriyoshi, Hanazawa Kazuhiro, Hiwasa Shoichi. Removal of Metal Impurities in Molten Silicon by Directional Solidification with Electron Beam Heating. Journal of the Japan Institute of Metals.2003,67:575-582.
    [86]J.C.S. Pires, A.F.B. Braga, P.R. Mei,etal.Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace. Solar Energy Materials & Solar Cells,2003,79:347-355.
    [87]J.C.S. Pires, J. Otubo, A.F.B. Braga, P.R. Mei, The purification of metallurgical grade silicon by electron beam melting. Journal of Materials Processing Technology,2005,169:21-25.
    [88]Chandra P. Khattak, David B. Joyce, Frederick Schmid.A simple process to remove boron from metallurgical grade silicon. Solar Energy Materials & Solar Cells,2002,74:77-89.
    [89]C. Alemany,. C. Trassy, B. Pateyron, et al. Delannoy. Refining of metallurgical-grade silicon by inductive plasma. Solar Energy Materials & Solar Cells,2002,72:41-48.
    [90]武冠男,张军,刘林等.太阳能级多晶硅定向凝固技术的研究进展.铸造技术,2008,29(5):673-677.
    [91]吴亚萍.冶金法制备太阳能级多晶硅工艺研究[硕士学位论文],大连,大连理工大学,2007,12.
    [92]张慧星;工业硅定向凝固提纯研究[硕士学位论文],大连,大连理工大学,2009.
    [93]K. Yang, G.H. Schwuttke, T.F. Ciszek, et al. Structural and Electrical Characterization of Crystallographic Defects in Silicon Ribbons. J. Crystal Growth.1980,50:301.
    [94]A.L.Endros, Mono-and tri-crystalline Si for PV application. Solar Energy Materials & Solar Cells.2002,72:109-124.
    [95]T.F. Ciszek, G. H. Schwuttke,K. H. Yang,et al.Directionally solidified solar-grade silicon using carbon crucibles. Journal of Crystal Growth,1979,46: 527-533.
    [96]S. Rajendran,William R. Wilcox,P. S. Ravishankar,et al. Solidification behavior in casting of silicon. Journal of Crystal Growth,1986,75:353-366.
    [97]P. S. Ravishankar,J. P. Dismukes,W. R. Wilcox,et al. Influence of acrt on interface stability and particle trapping behavior in directional solidification of silicon. Journal of Crystal Growth,1985,71:579-586.
    [98]Koji Arafune, Eichiro Ohishi, Hitoshi Sai,et al.Directional solidi.cation of polycrystalline silicon ingots by successive relaxation of supercooling method. Journal of Crystal Growth,2007,1016:1-5.
    [99]Dae il Kim,Young Kwan Kim. Characteristics of structural defects in the 240 kg silicon ingot grown by directional solidification process. Solar Energy Materials & Solar Cells,2006,90:1666-1672.
    [100]Jung Min Kim, Young Kwan Kim. Growth and characterization of 240 kg multicrystalline silicon ingot grown by directional solidification. Solar Energy Materials & Solar Cells,2004,81:217-224.
    [101]Kozo Fujiwara, Wugen Pan, Noritaka Usami, et al. Growth of structure-controlled polycrystalline silicon ingots for solar cells by casting. Acta Materialia,2006,54:3191-3197.
    [102]Bei Wu, Nathan Stoddard, Ronghui Ma,et al. Bulk multicrystalline silicon growth for photovoltaic (PV) application. Journal of Crystal Growth,2008,310: 2178-2184.
    [103]G. Martinelli, R. Kibizov, Growth of stable dislocation-free 3-grain silicon ingots for thinner slicing. Appl. Phys. Lett,1993,62:3262-3263.
    [104]J. Chen, T. Sekiguchi, R. Xie,et al, Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scr. Mater,2005,52: 1211-1215.
    [105]J. Chen, D. Yang, Z. Xi, T. Sekiguchi, Recombination activity of ∑3 boundaries in boron-doped multicrystalline silicon:Influence of iron contamination. J. Appl. Phys,2005,97:033701-0337.05.
    [106]I. Kuchiwaki, T. Hirabayashi, H. Fukushima, TEM Studies of Grain Boundary Structure in a Cast Polycrystalline Silicon. Mater. Sci. Forum,2005,475--479: 1673-1676.
    [107]陈君.铸造多晶硅晶界电学特性的EBIC研究[博士学位论文],杭州,浙江大学,2005.
    [108]陈玉武.快速热处理对多晶硅中杂质和缺陷行为的影响[硕士学位论文],石家庄,河北工业大学,2008.
    [109]S. M. Myers, M. Seibt and W. Schroter. Mechanisms of transition-metal gettering in silicon. An account of work sponsored by an agency of the United States Government. March 14,2000:1-69.
    [110]W. Schroter and M. Seibt, in Properties of Crystalline Silicon, edited by R. Hull INSPEC, London,2000:543-572.
    [111]E.R.Weber,Transition metals in silicon, Appl. Phys. A,1983,30:1-22.
    [112]F.A Trumbore, Solid Solubilities of Impurity Elements in Germanium:and Silicon. Bell Syst. Tech. J,1960,39,205-211.
    [113]关旭东.硅集成电路工艺基础.北京:北京大学出版社,2008.
    [114]戴永年主编.二元合金相图集.北京:科学出版社,2009.
    [115]闵乃本.晶体生长物理基础.上海:上海科学技术出版社,1982.
    [116]胡起汉.金属凝固原理.北京:机械工业出版社,2000.
    [117]S. Martinuzzi,I.Pe'richaud, O. Palais, etal.Segregation phenomena in large-size cast multicrystalline Si ingots[J]. Solar Energy Materials & Solar Cells.2007,91:1172-1175.
    [118]周尧和,胡壮麒,介万齐.凝固技术[M].(第一版).北京:机械工业出版社.1998.
    [119]杨世铭.传热学.(第一版).北京:人民教育出版社,1981.
    [120]Y.Kamon, H.Harima, A.Yanase, et al. "Ultra fast diffusion mechanism of the late 3d transition metal impurities in silicon". Physics B,2001,308-310: 391-393.
    [121]多晶硅材料产业发展及标准研讨会.中国电子材料行业协会.中国,上海.2007.3.
    [122]A.Mesli, T.Heiser, "Defect reactions in copper-diffused and quenched p-type silicon". Phys.Rev. B,1992,45:11632-11641.
    [123]W.G,蒲凡,刘民治.区域熔化.北京:科学技术出版社,1962.
    [124]E.G Colas, E.R. Weber, R. Hull, Influence of oxygen precipitates on the solution of trnsition metals in silicon. Mater. Sci. Forum,1986,10-12:881-886.
    [125]T.Heiser, A.Mesli, Determination of the copper diffusion coefficient in siliconion from transiention drifty. Appl. Phys. A, Solids Surf.,1993,57: 325-328.
    [126]姚连增.晶体生长基础.中国科技大学出版社:合肥,1995.
    [127]Ekyo KURODA and Tadashi SAITOH. GROWTH AND CHARACTERIZATION OF POLYCRYSTALLINE SILICON INGOTS FROM METALLURGICAL GRADE SOURCE MATERIAL. Journal of Crystal Growth 1979,47:251-260:3-30.
    [128]N.Yuge, H. Baba, Y. Sakaguchi, etal. Purification of metallurgical silicon up to solar grade. Solar Energy Materials and Solar Cells,1994,34:243-250.
    [129]T.Y. Wang, S.L. Hsu, C.C. Fei,etal. Grain control using spot cooling in multi-crystalline silicon crystal growth. Journal of Crystal Growth,2009,311: 263-267.
    [130]K. Fujiwara, W. Pan, K. Sawada, etal. Directional growth method to obtain high quality polycrystalline silicon from its melt. Journal of Crystal Growth, 2006,292:282-285.
    [131]魏奎先,马文会,戴永年,等.提纯工业硅除铝的实验研究.功能材料,2007,38(12):2087-2089.
    [132]Poirier D R. Metal Trans A,1988,19(9):2349-2354.
    [133]周公度主编.元素周期表.北京:化学工业出版社,2006.
    [134]魏奎先.真空冶金法去除工业硅中易挥发杂质制备太阳能级多晶硅的研究[博士学位论文].昆明,昆明理工大学,2009,12.
    [135]戴永年,杨斌.有色金属材料的真空冶金.北京:冶金工业出版社,2006.
    [136]Macdonald D.Transition-metal profiles in a multi-crystalline silicon ingot. Journal of Applied Physics,2005,97:033523.
    [137]邓海,杨德仁,唐骏等.铸造多晶硅中杂质对少子寿命的影响.太阳能学报,2007,28(2):151-153.
    [138]梁英教,车荫昌,主编.无机物热力学数据手册.沈阳:东北大学出版社,1993.
    [139]杜清枝,杨继舜主编.物理化学.重庆:重庆大学出版社,1997.
    [140]Wang Kunlin. Material Engineering Foundation. Beijing:Tsinghua University Press,1997:68.
    [141]Chen Yajun,Chen Qi,Wang Zidong,etal.Growth mechanism of column crystals in directional solidifivation. J Tsinghua Univ(Sci&Tech),2004,44(11): 1464-1467.
    [142]B.R.潘普林主编.晶体生长.北京:中国建筑工业出版社,1981.
    [143]黄有志、王丽.直拉单晶硅工艺技术,北京:化学工业出版社,2009.
    [144]胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2000.
    [145]阙端麟.陈修治.硅材料科学与技术.杭州:浙江大学出版社,2001.
    [146]余思明.半导体硅材料学.武汉:中南工业大学出版社,2001.
    [147]Randle V. The Measurement of Grain Boundary Geometry. lnd ed. UK:Institute of Physics Publishing,1993,79-89:33-62.
    [148]Chen J, Sekiguchi T, R Xie, et al, Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scr Mater,2005,52: 1211-1215.
    [149]Sopori B, Tenth International Workshop,NREL,Delhi:1999:1-13.
    [150]孙海知.太阳电池用晶体硅中的氧和金属杂质对电池性能的影响[硕士学位论文].石家庄,河北工业大学,2007.
    [151]张伟娜.冶金多晶硅的电学性能研究[硕士学位论文].大连,大连理工大学,2007.
    [152]姜岩峰,黄庆安,吴文刚.硅在KOH中各向异性腐蚀的物理模型.半导体学报,2002,4(23):434-439.
    [153]阙端麟.陈修治.硅材料科学与技术.杭州:浙江大学出版社,2001.
    [154]Seibt M, Sattler A etc. Gettering in silicon photovoltaics:current state and future perspectives. Phys.stat.sol.(a),2006,203:696-71.
    [155]PHerichaud I. Gettering of impurities in solar silicon. Solar enery materials & solar cells,2002,72:315-326.
    [156]Schultz O, Glunz S W,Riepe S, Willeke G P. High-efficiency solar cells on phosphorus gettered multicrystalline silicon substrates. Prog. Phtovolt:res appl,2006,14:711-719.
    [157]Macdonalda D,Cuevasa A, Ferrazza F. Response to phosphorus gettering of different regions of cast multicrystalline silicon ingots. Solid-State Electronics,1999,43:575-581.
    [158]赵慧,徐征,励旭东等.磷铝吸杂在多晶硅太阳电池中的应用.半导体学报,2005,26(2):341.
    [159]Boudaden J,Monna R,Loghmarti M,et al. Comparison of phosphorus gettering for different multicrystalline silicon. Solar Energy Materials & Solar Cells,2002,72:381-387.
    [160]王书荣,陈庭金,刘祖明等.多晶硅太阳电池的吸杂实验研究.云南师范大学学报:自然科学版,2001,21(6):43-44.
    [161]A. Haarahiltunen, H. Talvitie, H. Savin,et al. Modeling boron diffusion gettering of iron in silicon solar. Appl. Phys. Lett,2008,92:021902.
    [162]朱琳.徐征.许颖等.多孔硅对多晶硅太阳电池中缺陷和杂质的吸除效应.太阳能学报,2004,25(4):061-063.
    [163]P.N. Vinod et al. Porous silicon and aluminum co-gettering experiment in p-type multicrystalline silicon substrate. Science and Technology of Advanced Materials,2007,8,231-234.
    [164]Kveder V,Scatter,et al. Simlation of Al and phosphorus diffusion gettering in Si.Materials. Science and Engineering,2000,B71:175-181.
    [165]K. Fujiwara, W. Pan, K. Sawada, et al. Directional growth method to obtain high quality polycrystalline silicon from its melt. Journal of Crystal Growth, 2006,292:282-285.
    [166]Jaccodine,R.J. Surface energy of germanium and silicon. J. Electrochem. Soc. 1963,110:524.
    [167]Kozo Fujiwara, Yoshikazu Obinata, Toru Ujihara.et al. Grain growth behaviors of polycrystalline silicon during melt growth processes. J Cryst Growth,2004, 266:441-448.
    [168]王坤林.材料工程基础.北京:清华大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700