不同增强相对弥散强化铜合金性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文目的在于采用机械合金化(MA)的方法研制一种强度高、导电性高的铜合金。弥散强化铜具有强度高,导电性好,软化温度高等特性,国外已广泛应用于制作电极及集成电路的引线框架材料。本文就机械合金化法的方法制备弥散铜合金进行了一些基础研究与探索。
     机械合金化制备弥散强化铜材料是一种可行、简单的方法。为此本文首先分析用粉末冶金法制备的电解无氧纯铜粉末的导电性、硬度及密度,确定了最佳烧结温度为950℃。然后选用高能球磨机对金属粉末进行球磨,通过大量试验,确定了适当的球磨工艺。
     本文选用WC、TiB_2、Cr_3C_2作为弥散强化相,在相同体积分数的条件下,研究了其对弥散强化铜合金电导率和强度的影响。试样由将第二相粒子与铜粉充分高能球磨混合,退火还原,压型,烧结,锻造,及机械加工制成。通过实验,表明在铜合金中加入5%(Vol%)的不同第二相粒子,950℃×2h条件下烧结,经900℃~950℃锻打后获得试样,在WC、TiB_2、Cr_3C_23种增强相中,在本实验条件下,加入WC粒子有利于提高弥散铜合金的电导率,加入Cr_3C_2粒子有利于提高硬度,加入TiB_2粒子时所获电导率和硬度均比较差。第二相弥散强化的效果受多种因素的影响,细小均匀分布的第二相有利于提高铜合金的强度,第二相粒子本身硬度的贡献不大。弥散强化铜合金的电导率低于烧结铜合金电导率,在本实验条件下,第二相粒子本身导电性对合金电导率贡献较小。MA过程中杂质铁的掺入对合金的导电性十分有害,当用不锈钢磨筒时,存在着杂质铁的掺入,采用紫铜作磨筒可以基本避免杂质铁的掺入。
     论文中还对如何提高弥散强化铜性能的途径进行了分析,为进一步研究及应用提供借鉴。
This article introduces a mechanical alloying method to research and manufacture a kind of alloy with high strength and electrical conductivity. Dispersion-strengthened copper has characteristics of high strength, good electrical conductivity, high-softened temperature, etc. It is already extensively applied in manufacturing and integrated circuit.
    To manufacture dispersion-strengthened copper with MA method is feasible and simple. This article analyzes the electrical conductivity, hard degree and densities of electrolysis non-oxygen native copper powder which is manufactured with powder metallurgy method, and makes sure the best burning-knot temperature is 950C. Then high power ball whetting machine is elected to ball whet the metals powder. By a large quantity of experiments, appropriate ball whet technology is decided.
    The research shows different influence in strength and electrical conductivity rate with WC, TiB2 and Cr3C2 used as dispersing enhancing phase respectively when the volume fraction is fixed. The second phase will be mingled with copper powder and will ball whetted, then reverting through annealing, pressing type, burning knot, forging, finally process to standard experimental sample with machine. Experiments show that samples can be manufactured by add is 5 %(Vol%)various second phase into copper alloy, under the circumstance of burning knot at 950Cx2h, forging at 900C-950 C:WC as the enhancing phase, higher electrical conductivity rate achieved; Cr3C2 particles enhanced strength; TiB2 particles result in less strength and lower electrical conductivity rate. It is not the second phase particle itself but its small evenly divided state that contributes to the strength of the copper alloy. The electrical conductivity rate of dispersion-strengthened copper is lower than the burning-knot copper's, and the second
     phase particle itself has not much to do with the electrical conductivity rate of alloy. Impure iron involved will spoil the electrical conductivity in the course of MA. So
    
    
    
    red copper is employed as grinding pot instead of stainless steal.
    In this article, approaches to improve the properties of dispersion-strengthened copper are discussed and it laid the foundation for further research and application.
引文
[1]杨华明等.机械合金化(MA)技术的新进展.稀有金属,1999,22(4):313~316.
    [2]李文生.高强铜基合金材料的研究与应用现状.有色金属,2002,54(2):30~33.
    [3]杨贵荣.高性能铜材的研究近况.铸造技术,2003,24(1):13-15.
    [4]方正春.耐热和导电铜合金发展现状.材料开发与应用,1997,12(4):27~31.
    [5]高陇桥.微波电子器件用铜及其合金的应用开发.上海有色金属,2001,22(1):1~4.
    [6]Benjamin JS Dispersion strengthened super alloys by mechanical alloying[J]. Metallurgical transactions, 1970,8(1):2934~2940.
    [7]宁爱林.弥散强化铜的研制现状与展望.邵阳高等专科学校学报,2001,14(3):165~166.
    [8]杨朝聪.高强高导电铜合金的研究及进展.云南冶金,2000,29(6).
    [9]程建奕等.内氧化法制备的Cu Al_2O_3合金的显微组织与性能材料.热处理学报,2003,24(1):23~27.
    [10]梁淑华.Al_2O_3/Cu复合材料内氧化粉末的制备.粉末冶金技术,2003,21(4):201~205.
    [11]曹先杰.李娜娜.内氧化工艺对弥散强化铜粉末强化质点特性和显微硬度的影响.矿冶工程,2002,22(3):101~103.
    [12]高陇桥.微波电子器件用铜及其合金的应用开发.上海有色金属,2000,22(1):1~6.
    [13]娄燕.彭大暑.王孟君.机械合金化法制备弥散铜电极.南华大学学报(理工版),2002,16(2):30~32,
    [14]石子源.王德庆.Al_2O_3表面弥散基导电材料的制备.功能材料,2002,33(4):381~383.
    [15]宁爱林等,铜合金的强化方法,邵阳学院学报(自然科学),2003,2(2):76~78.
    [16]张先胜.冉广.机械合金化的反应机制进展.金属热处理,2003,28(6):28~32
    [17]何启基.金属的力学性能(M).北京:冶金工业出版社,1982,193.
    [18]郑雁军等.高强高导铜的研究现状及展望(J).材料导报,1997,11(6):52~55.
    [19]左孝青,王吉坤等.有色金属矿产资源的开发及加工技术(加工部分)(M).昆明:云
    
    南科技出版社,2000.
    [20]Hunt M. Mater Eng (J). 1990,107(1):33~36.
    [21]VerhoebenJD. et al J. Mater .Sci [j].1989,24:1748
    [22]高桥等.粉体粉末冶金(J).1990,36(6):688~690.
    [23]曾松岩等.宇航材料工艺(J).1995,25(5):27~30.
    [24]Koch C C.Cavin O B. Mcchamey C G. Preparation of amorphous Ni60NB40 by mechanical alloying[J]. Applied physics letters, 1983,43:1017-1019.
    [25]Xu J. Klassen U H. Formation of supersaturated solutions in the immiscible Ni~AG system by mechanical alloying[J]. Journal of applied physics, 1996, 79(8):3935~3939
    [26]Koch C C. Intermetallic matrix composites prepared by mechanical alloying a review [J]. Materials science and engineering A, 1998,244:39~48.
    [27]王尔德等.机械合金化诱导固溶度扩展机制研究进展[J].粉末冶金技术,2002,24(2):109~112
    [28]Schaffer G B. et al. On the kinetics of mechanical alloying [J]. Metallurgical transactions A, 1992,23:1285~1298.
    [29]Lu L. Lai M O. Formation of new materials in the solid state by mechanical alloying[J], Materials and Design, 1995,16(1):33~39.
    [30]Bhaduri A.Miodownik A P.et al. Processing and properties of SiC. Particulate reinforced Al~6,2Zn~2.5 Mg~1.7 Cu alloy(7010) matrix composites prepared by mechanical alloying[J]. Materials Science and Engineering A,1996\221(1~2):94~101.
    [31]Li Feng. et al. The formation of met stable phase by mechanical alloying in the AI and Cu system [J].Metallurgical transactions A,. 1991,22(12):2849 2855.
    [32]Koch C C. Materials synthesis by mechanical alloying [J].Annual review of materials science,1989,19:121 143
    [33]Atzmon M. In situ thermal observation of explosive compound formation reaction during mechanical alloying [J]. Physical review letrers, 1990,64(3):487 490.
    
    
    [34]Deevi S C.Self~propagating high~temperature synthesis of molyb denum disilicide [J] .Journal of Materials Science, 1991,26:3343~3349
    [35]黄培云.粉末冶金基础理论与新技术.第一版.中南工业大学出版社:1995年出版.1
    [36]王德志.刘心宇.左铁镛.机械合金化和自蔓延高温合成MoSi_2,粉末的烧结工艺研究.金属热处理,2001(3):7~9.
    [37]董仕节.史耀武.雷永平.烧结工艺对TiB_2增强铜基复合材料性能的影响.西安交通大学学报,2000,34(7),73~77.
    [38]朱心昆等.机械合金化制备Cu/TiC材料的研究.机械工程材料,2003,27(5):26~28.
    [39]张立勇.WC含量对弥散强化铜Cu/WC组织与性能影响的研究.稀有金属,2003,27(1):108~110.
    [40]王孟君等.弥散强化铜电阻焊电极材料的研制.矿冶工程,2000,20(2):55~56.
    [41]Schaffer G B .Forrester J S. The influence of collision energy and strain accumulation on the kinetics of mechanical alloying [J]. Journal of materials science, 1997,32(12):3157 3162.
    [42]田荣璋,王祝堂.铜合金及其加工手册.第一版.中南大学出版社:2002.7~25
    [43]Groza J R, Fibeling J C. Materials Science and Engineering A, 1993, 171:115
    [44]胡锐.商宝禄.李华伦.兵器材料科学与工程,1998.21:40
    [45]陈民芳.赵乃勤.李国俊.兵器材料科学与工程,1998,21:22
    [46]E.E.Walker.Trans.Faraday Soc. 19(1923/1924)73~82
    [47]Uenishi Robayashi R, Naso S, et al. Mechanical alloying in the Fe~Cu system[J]. Zeitschrift fur Metallkunde, 1992,83:132~135
    [48]Shingu P H,.Ishihara K N. Non~equilibrium Materials by Mechanical Alloying [J]. Materials transactions, JIM, 1995,36(2):96~101.
    [49]彭茂公.高强高导弥散强化铜材料可锻性研究.兵器材料科学与工程,2003,26(1):23~28.
    [50]王孟君.张立勇.刘心宇.碳化钨弥散铜的高温烧结及高温退火.金属热处理,
    
    2003,28(4):20~23
    [51]《有色金属及其热处理》编写组.有色金属及其热处理.北京:四防工业出版社,1981:269,270,274
    [52]曹明盛,物理冶金基础,北京:冶金工业出出版,1991:252
    [53]美国金属学会.金属手册.北京:机械工业出版社,1992
    [54]仓田修一等.物理学常用数表.北京:科学出版社,1979:199
    [55]柏振海等.机械合金化制备镍基固溶体细微粉末的工艺研究.矿冶工程.2001,21(2):69~71
    [56]黄培云.粉末冶金原理(第二版)[M],冶金工业出版社,北京,1997:173-208
    [57]蒋成禹等.材料加工原理[M],哈尔滨工业大学出版社,哈尔滨,2001:54-56,115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700