三类生物冶金微生物菌种的选育及其与矿物作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
除氧化亚铁硫杆菌能浸出金属硫化矿,其它一些微生物也具有与矿物作用的能力,报道产胞外多糖的硅酸盐细菌胶质芽孢杆菌可以溶解铝硅酸盐矿物,产有机酸的黑曲霉真菌可以浸出氧化矿中的金属元素。作者在本研究中采用不同的方法分离筛选了以上三种类型的生物冶金微生物,并对它们的培养条件、浸矿生理及其与矿物作用效果进行了研究。
     首先富集筛选了江西德兴铜矿、城门山铜矿、广东大宝山铜矿等六处矿坑水中的氧化亚铁硫杆菌,获得6个富集菌株。通过研究6个菌株的Fe~(2+)和S~0氧化能力,发现不同菌株的氧化活性存在差异,但发现Fe~(2+)氧化活性高的菌株S~0氧化活性也高。同时发现S~0培养基中的细菌浓度比Fe~(2+)培养基中细菌浓度高。使用DBS菌株浸出低品位含铁闪锌矿,浸出30d,金属锌的浸出率达到100%;浸出含铁闪锌矿精矿石,浸出率也可达到50%,说明该菌株具有良好的浸矿效果。
     研究了氧化亚铁硫杆菌耐干燥、耐高温的抗逆性生理特性。发现该细菌具有较强的耐干燥能力,但不耐高温,55℃下细菌完全丧失氧化能力。同时研究了多种因素对氧化亚铁硫杆菌生长活性的影响,发现在Fe~(2+)氧化体系中添加0.25%固体物浓度的硫化矿物时,细菌的Fe~(2+)氧化速度会降低,细菌生长停滞期延长,浸出液中细菌浓度减少。当矿浆浓度增大时,由于矿物颗粒的运动及液体流动对菌体的机械损伤加剧,会使细菌的氧化活性进一步下降。在9K培养基中舔加1%的S~0时,细菌的Fe~(2+)氧化活性也会受到抑制。研究显示氧化亚铁硫杆菌具有耐受较高浓度金属离子的能力,但过高的金属离子浓度以及低浓度的有机物如细菌残体、葡萄糖、蛋白胨等会抑制细菌的氧化活性,当p[Zn~(2+)]>50 g/L,ρ[Cu~(2+)]>15g/L,ρ[Mg~(2+)]>15 g/L时,细菌的Fe~(2+)氧化活性会显著降低。
     本研究采用茚三酮比色法测定了浸矿过程中矿样表面吸附的细菌数量。首先研究了吸附细菌生物量的测定条件,发现细菌裂解液与茚三酮显色剂的反应产物在562 nm波长下有特征吸收峰,该吸光值的大小可代表细菌生物量的多少。研究发现在含铁闪锌矿摇瓶浸出20 d的过程中,矿粒表面的细菌吸附量由少到多,后期有50%~80%
    
    的细菌吸附在矿粒表面。同时发现矿样粒径越小,比表面积越大,可
    供吸附的位点越多,细菌吸附量就越大。通过柱浸体系中细菌的空间
    分布情况研究,发现浸出20d,在浸矿柱的不同部位细菌分布有差异,
    上层矿样吸附的细菌量多,下层矿样吸附的细菌量少。对细菌在矿物
    表面的吸附过程及吸附机理进行了分析与探讨,认为矿物表面细菌生
    物膜的形成有利于矿物的生物氧化,原因是生物膜中的细菌浓度要比
    浸出液中高许多倍,在这种高细菌浓度的微环境中,FeZ十和S0的氧化
    速度将大大加快。
     研究发现,浸矿体系中细菌浓度过低是造成生物氧化速度慢的主
    要原因之一。为了提高细菌的F扩十氧化速度,采用活性炭吸附固定细
    菌,进行了小型生物反应器的研究。反应器中Fe2+的氧化速度可达到
    9.38叭.h,是液体培养基中Fe扮氧化速度的20倍。研究发现反应器
    中Fe2+氧化速度的提高主要是由于活性炭表面细菌浓度高,每克活性
    炭表面吸附的细菌数量高达 4.69又10“个。因此认为活性炭可做为Fe2+
    生物反应器中的细菌载体材料。
     除氧化亚铁硫杆菌,本论文还首次进行了硅酸盐细菌和产酸黑曲
    霉这两种生物冶金微生物的研究。
     根据硅酸盐细菌胶质芽抱杆菌具有生物固氮及分解铝硅酸盐矿
    物的特性,采用铝硅酸盐矿物无氮培养基从土样、铝土矿样等多个材
    料中筛选到5个菌株。对其中生长速度最快、产胞外多糖最多的
    GsY‘5“菌株进行了培养条件研究,发现该菌株在添加有高岭土、伊
    利石、叶蜡石、石英等铝硅酸盐矿物的培养基中生长良好。通过正交
    实验,发现该菌株在250 n1L锥形瓶中振荡培养的最适条件为pH 7.0、
    温度30℃、转速200 r/min、装液量100毗。使用GsY一5#菌株浸出
    由一水硬铝石分别与高岭石、伊利石、叶蜡石、石英配成的人工混合
    铝土矿中的5102,矿浆浓度为5%,30℃下培养7d。结果表明一水
    硬铝石分别与高岭石、伊利石、叶蜡石、石英配成的人工混合铝土矿
    的AjS可由作用前的6.74、6.03、5.09、2.92分别提高到8.45、8.55、
    6.79、13.54。铝土矿原矿石的刀S也从4.58提高到5.88。还发现硅
    酸盐细菌能从伊利石中释放出K+。结果表明硅酸盐细菌具有一定的
    脱硅、释钾能力。但发现硅酸盐细菌在培养及与矿物作用过程中很少
    产酸,认为产酸不是该细菌脱硅的主要原因,胞外多糖对脱硅起主要
    作用。
    
     最后进行了产酸真菌黑曲霉菌株的筛选及浸矿效果研究。发现筛
    选到的Asp一1“菌株具有较强的产酸能力,在查氏培养基中发酵培养7
    d,发酵液的pH值能从6.5下降到2.0。用硫酸将恕p一1弃菌株发酵液
    酸化到pH 0.5,在90℃下浸出铝土矿中的杂质铁,浸出6h,铝土矿
    中FeZO3含量能从浸出前的6.36%下降到0.88%;采用同样方法浸出
    在650℃下处理4h的高岭土,可以浸出高岭土中69.59%的金属铝;
    使用Asp一1#培养液浸出氧化锌矿,浸出7d,锌的浸出率也可达到21 .9
    %。研究结果表明黑曲霉Asp一1“菌株具有良好的浸矿效果。
A variety of microorganisms can catalyze the solubilization of minerals in natural environments. Besides Thiobacillus ferrooxidans, which can extract metal from metal sulfides, several other microorganisms such as silicate bacteria Bacillus mucilaginosus and fungi Aspergillus niger have been found to be progress in mineral bioleaching. Bacillus mucilaginosus can dissolve silicate from silicate minerals, and Aspergillus niger can dissolve metal from oxidative minerals. In this study, three types of microorganisms above have been screened from different materials using different isolating methods.
    In study of Thiobacillus ferrooxidans, 6 strains have been isolated from Dexin Copper mine, Dabaoshan Copper mine, Chengmenshan Copper mine, Tongling Copper mine, Xixiashan Copper mine and Liuyang Pyrite mine using method of enriching culture. Research indicates different strains of Thiobacillus ferrooxidans process different Fe2+ and element sulfur oxidation activities. It has been found that bacterium density in S?medium is higher than that of in 9K Fe2+ medium. The Zinc extracting rate was 100 % when low grade sphalerite was bioleached with DBS strain for 30 days, and 50 % of sphalerite concentrate also can be biooxidized.
    Two important physiological characteristics of Thiobacillus ferrooxidans, dryness tolerance and high temperature tolerance, have been researched in this study. The results show Thiobacillus ferrooxidans has excellent physiological characteristic of dryness tolerance and bad characteristic of high temperature tolerance because Thiobacillus ferrooxidans rapidly lose its oxidation activity at temperature of 55 ℃. Effects of several factors on oxidation activity of Thiobacillus ferrooxidans have been researched. Experimental results show the lag phase of Thiobacillus ferrooxidans was longer and bacterium density was decreased when 0.25 % pulp density of metal sulfides or 1% element sulfur was added in 9K medium. The research indicates metal sulfides and element sulfur may restrain Fe2+ oxidation activity of Thiobacillus ferrooxidans. It also be found that higher pulp density may decrease bacterial Fe2+ oxidation activity because the collision of mineral particles to bacterial cells will mechanically harm bacteri
    al enzyme system. Experimental results show higher concentration of metal ions, for example [Zn2+]>50 g/L, [Cu2+]>15 g/L and [Mg2+]>15 g/L, may
    IV
    
    
    restrain Fe2+ oxidation activity of Thiobacillus ferrooxidcms although this microorganism can grow in medium containing definite concentrations of metallic ions, and Thiobacillus ferrooxidans was showed to be sensitive to organic substance such as bacterial residue, glucose and peptone.
    Growth of Thiobacillus ferrooxidans on sphalerite surface and in 9K leach media was studied through estimation of bacterial protein using ninhydrin colorimetric method in the different leach phases. The mineral samples containing adhered bacterium are digested in 0.5 M NaOH in a boiling water bath for 25 min. The digested soup then filtered and the filtrate is neutralised to pH 7 using 0.5 M HC1. Then 1 mL of reagent ninhydrin is added to 2 mL of protein extracted solution and mixed thoroughly. The mixed solution is heated in a boiling water bath for 20 min, then the boiled solution is cooled for 6 min. After development of the color, the absorbance is measured at 562 nm using UV-1100 for the protein content, which provides a measure of the attached cell mass. This study indicated that the attachment of Thiobacillus ferrooxidans to sphalerite mineral is dependent on three factors, namely, particle size, expose period of the sphalerite mineral to the bacteria and as to whether stationary or agitation conditions are used during incubation. The results showed bacterial growth, both in the liquid and on the solid substrate, was found to be increased with increasing incubation periods for two size fractions of sphalerite mineral used. In this study 20 days of incubation were needed for any significant zinc dissolution. Experimental results showed 50 % -80 % of bacterial
引文
[1] Murr L E. Theory and practice of copper sulphide leaching in dumps and in-situ (J). Mine. Sci. Eng., 1980,12(3): 121~189
    [2] Taylor J H and Whelan P F. The leaching of cuprous pyrite and the precipitation of copper at Rio Tinto (J). Spain, Trans. Inst. Min. Metal., 1943, 52:35-71
    [3] Colmer A R and Hinckle M E. The role of microorganisms in acid mine drainage (J). A Preliminary Report, Science, 1947, 106: 253~256.
    [4] Temple K L and Delehamps E W. Autotrophic bacteria and the formation of acid in Bituminous Coal Mines (J). Applied Microbiology, 1953,1:255~258.
    [5] Leathen W W, Kinsel N A and Braley S A. Ferrobacillus ferrooxidans: A chemosynthetic autotrophic bacterium (J). Bacterial., 1956, 72:700~704
    [6] Bryner L C, et al. Microorganisms in leaching of sulfide minerals (J). Industrial and Engineering Chemistry, 1954, 46: 2587~2592.
    [7] Shoemaker R S and Darrah R M. The economics of heap leaching (J). Mining Engineering, Idem, 1968,20(12): 90~92
    [8] Fisher J R. bacterial leaching of Elliot Lake Uranium Ore (J). Can. Min. Met. Bull., 1966,69:167~171.
    [9] 王淀佐等.矿物生物提取技术的研究与进展(A).铜镍湿法冶金技术交流及应用推广会论文集(C).200 1:2~9
    [10] Kuyucak N. Microorganisms, biotechnology and acid rock drainage-emphasis on passive-biological control and treatment methods (J). Minerals and Metallurgical Processing, 2000, 17(02): 85~95
    [11] Wood T A, Murray K R, Burgess J G. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine-drainage (J). Appl Microbiol Biotechnol, 2001, 56:560~565
    [12] 童雄.微生物浸矿的理论与实践(M).北京:冶金工业出版社,1997
    [13] 魏以和,钟康年,王军.生物技术在矿物工程中的应用(J).国外金属矿选矿.1996,1:1~13
    [14] D 桑瑟亚.用硫氧化硫杆菌调节方铅矿和闪锌矿的表面性质(J).国外金属选矿.2002,7:29~36
    [15] 索洛日金.细菌在矿物工程中的应用(J).国外金属矿选矿,1991,(5):1~10
    
    
    [16] 格劳德夫.矿物原料的生物选矿(J).国外金属矿选矿,2000,(6):2-9
    [17] Arpad E Torma.生物湿法冶金的现状和未来的挑战(J).国外金属矿选矿,1990.10:1~7
    [18] P C范.阿斯韦根.难浸金矿的生物氧化——Genmin的经验(J).国外金属矿选矿.1996,1:40-46
    [19] 杨显万,邱定蕃.湿法冶金(M).北京:冶金工业出版社,1997
    [20] 王恩德.环境资源中的微生物技术(M).北京:冶金工业出版社,1997
    [21] 姜成林,徐丽华.微生物资源学(M).上海:科学出版社,1997
    [22] 陈华癸,樊庆笙.微生物学(M).北京:农业出版社,1984
    [23] Brown E J, Luong H V, Forshsnug J M. The occurrence of Thiobacillus ferrooxidans and arsenic in subarctic streams affected by gold-mine drainage (J). Arctic, 1982, 35(3): 417~421
    [24] Brown E J, Forshaug J M. Metabolic properties of Thiobacillus ferooxidans isolated from neutal pH mine drainage(J). Gov. Rep. Announce. Index. 1983, 83(18): 4465
    [25] Ehrlich H L. Ocean manganese nodules: Biogenesis and bioleaching possibilities (J). Minerals and Metallurgical Processing, 2000, 17(2): 121~128
    [26] 沈萍.微生物学(M).北京:高等教育出版社,2000
    [27] 钟慧芳,陈秀珠,李雅芹等.一个嗜热嗜酸细菌的新属——硫球菌属(J).微生物学报.1982,22(1):1~7
    [28] Ake Sandstrom.用嗜中温和嗜高温微生物浸出复杂硫化矿(J).湿法冶金.1998,66(2):57~62
    [29] 李雅芹,钟慧芳,陈秀珠等.嗜酸热硫球菌(S-5)对硫化物的氧化(J).微生物学报.1987,27(3):271~276
    [30] Y 科西尼.嗜热嗜酸A.b酸杆菌浸出硫化锌精矿(J).国外金属矿选矿.2000,9:31~35
    [31] Douglas E Rawlings. Biomining: Theory, Microbes and Industrial Processes (M). Springer-Verlag and Landes Bioscience. 1997.
    [32] 冯树,张忠泽.混合类——一类值得重视的微生物资源(J).世界科技研究与发展.2000,22(3):44~47
    [33] Grudev S. Oxidation of arsenopyrite by pure and mixed cultures of Thiobacillus ferrooxidans and Thobacillus thiooxidans (J). Dokl. Bolg. Akad. Nauk. 1981, 34(8): 1139~1142
    
    
    [34] Nemati M, Harrison S T L, Hansford G S, et al. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects (J). Biochemical Engineering Journal, 1998, 1:171~190
    [35] 小西康裕,浅井悟,德重雅彦等。好酸性.好热性Acidianus brierleyi黄铜矿.浸出(J).资源素材,1999,19(2):1~9
    [36] Inoue Takao, Kamimura Kazuo, Sugio Tsuyoshi. Isolation and some properties of a mesophilic and mixotrophic iron-oxidizing bacterium, OKM-9 (J). Biosic., Biotechnol., Biochem., 2000, 64(10): 2059~2067
    [37] Manning H L. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage (J). Applided Microbiology, 1975,30(6): 1010~1016
    [38] Kishimoto N, Kosako Y, Tano T. Acidobacterium capsulatum gen. nov.: an acidophilic chemoorganotrophic bacterium containing meuaquinoue from acidic mineral environment (J). Curr Microbiol., 1991,22:1~7
    [39] Tuovinen O H, Kelley B C, Groudev S N. Mixed cultures in biological leaching processes and mineral bioteclmology (J). In: Zeikus G, Johnson EA, eds. Mixed cultures in Biotechnology. New York: McGraw-Hill, 1991:373~427
    [40] 魏以和,王军,钟康年.矿物生物技术的微生物学基本方法(J).国外金属矿选矿.1996,1:14-27
    [41] 张在海.铜硫化矿生物浸出高效菌种选育及浸出机理(M).中南大学博士学位论文,2002.
    [42] 林建群,彭基斌,颜望明.氧化亚铁硫杆菌基因转移系统研究进展(J).应用与环境生物学报.2001,7(2):193~196
    [43] Paolo V, Bianchi E, Polidoro M, et al. A new solid medium for isolating and enumerating Thiobacillusferrooxidans(J). J. Gen. Appl. Microbiol., 1989, 35:71~81
    [44] 沈萍,范秀容,李广武.微生物学实验(M).北京:高等教育出版社,2001
    [45] 张英杰,杨显万.硫化矿细菌浸出机理(J).有色金属.1997,49(4):39~44
    [46] Pistorio M, Curutche G, Donati E and Tedesco P. Direct zinc sulphide bioleaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans(J). Biotechnology Letter. 1994, 16,(4): 419~424.
    [47] Oswaldo G, Bigham J J M, Tuovien O H. Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans(J). Can.J.Microbiol. 1995,41:
    
    578~584.
    [48] Porto S, Ramiez S, Reche C, Curutchet G, Alonso-Romanowski S and Donati E. attachment:its role in bioleaching process (J). Process Biochemistry. 1997, 32,(7): 573~578
    [49] Harvey P I, Crtmdwell F K. Growth of Thiobacillus ferrooxidans: a novel experimental design for batch growth and bacterial studies (J).Applied and Environmental Microbiology. 1997,63,(7):2586~2592
    [50] Fowler T A, Crundwell F K. Leaching of zinc sulfide by Thiobacillus ferrooxidans;Expeiments with a controlled redox potential indicate no direct bacterial mechanism (J). Applied and Enviromental Microbiology. 1998, 64,(10): 3570~3575
    [51] Fowler T A, Crundwell F K. Leaching of sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate zinc sulfide at high concentrations of ferrous ions(J). Applied and Environmental Microbiology, 1999,65,(12): 5285~5292
    [52] Fowler T A, Crundwell F K. The role of Thiobacillus ferrooxidans in the bacterial leaching of zinc sulphide (J). Presented at IBS99,Spain 1999,273~282
    [53] Driessens Y P M, Fowler TA, Cnmdwell F K. A comparison of the bacterial and chemical leaching of sphalerite at the same solution conditions (J). Presented at IBS99, Spain 1999,: 201~208
    [54] 雷云,贾云芝.细菌浸出硫化锌矿氧化动力学研究进展(J).有色金属.1999,51(04):80~82
    [55] 邱冠周,柳建设,王淀佐等.氧化亚铁硫杆菌生长过程铁的行为(J).中南工业大学学报.1998(3):226~228
    [56] 何正国,李雅芹,周培瑾.氧化亚硫杆菌的铁和硫氧化系硫及其分子遗传学(J).微生物学报.2000,40(5):563~566
    [57] Nunzi F, Woudstra M, Campese D, et al. Amino-acid sequence of rusticyanin from Thiobacillus ferrooxidans and its comparison with other blue copper proteins (J). Biochim Biophys Acta, 1993, 1162(05): 28~34
    [58] Douglas E, Rawlings. The molechlar genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, ehemolithotrophic, iron-or sulfur-oxidizing bacteria (J). Hydrometallurgy, 2001,59:187~201
    [59] Schippers A, Jozsa P G, Sand W. Sulfur chemistry in bacterial leaching of
    
    pyrite(J). Applied and Environmental Microbiology, 1996, 62(09): 3424~3431
    [60] Kino Kuniki, Usami Shoji. Biological reduction of ferric iron by iron-and sulfur-oxidazing bacteria (J). Agric. Biol. Chem., 1982, 46(3): 803~805
    [61] Cobett C M, Ingledew W J. Is iron (3+/2+) cycling an intermediate in sulfuroxidation by iron (2+)-grown Thiobacillus ferrooxidans? (J). FEMS Microbiol. Lett. 1987, 41(1): 1~6
    [62] Kovaleva T V, Karavaiko G I, Piskunov V P. Identification and distribution of sulfur in Thiobacillus ferrooxidans cells (J). Mikrobiologiya. 1983, 52(3): 455~460
    [63] Karavaiko G I, Gromova L A, Pereverzev N A. Nature of a sulfur containing component and its function in Thiobacillus ferrooxidans cells (J). Mikrobiologiya. 1983, 52(4): 559~562
    [64] Denisov G V, Kovrov B G, Kovaleva T F. Effect of pH and temperature of the medium on the rate of oxidation of ferrous to ferric iron by a Thiobacillus ferrooxidans culture and the efficiency coefficient of the biosynthosis (J). Mikrobiologiya, 1981, 50(5): 919~923
    [65] Kovaleva T V, Karavaiko G I. Effect of temperature on the resistence of Thiobacillus ferrooxidans to bivalent copper ions (J). Mikrobiologiya, 1981, 50(5): 913~918
    [66] Kovaleva T V, Karavaiko G I, Piskunov V P. Effect of iron(3+) ions on ferrous iron oxidation by Thiobacillus ferrooxidans at various temperatures (J). Mikrobiologiya, 1982, 51(1): 156~160
    [67] Roy P, Mishra A K. Iron oxidation not coupled to growth in Thiobacillus ferrooxidans in presence of toxic metals (J). J. Appl. Bacterial, 1981, 52(3):387~392
    [68] Sugio Tsuyoshi, Hirose Toru, Oto Aya, et al. The regulation of sulfur use by ferrous iron in Thiobacillusferrooxidans (J). Agric. Biol. Chem, 1990, 54(8):2017~2022
    [69] Boon M, Heijnen J J, Hansford G S. The mechanism and kinetics of bioleaching sulfide minerals (J). Miner. Process. Extr. Metall. Rev, 1998, 19(1-4): 107~115
    [70] 陈世馆.生物浸出及其在有色冶金中的应用(J).上海有色金属,2000,21(03):137~146
    
    
    [71] Bagheri S A, Hassani H R. Isolation and preliminary identification of some iron-and sulfur-oxidizing microorganisms from the Sarcheshmed copper mine (J). Process Metallurgy, 2001, 11A: 393~396
    [72] Elzeky M, Attia Y A. Effect of bacterial adaptation on kinetics and mechanisms bioleaching ferrous sulfides(J). The chemical Engineering Journal, 1995, 56,: B 115~124
    [73] 柳建设.硫化矿物生物提取及腐蚀电化学研究(M).中南大学博士学位论文,2002.
    [74] Patnaik L, Kar R N, Sukla L B. Infuluence of pH on bioleaching of copper and zinc from complex sulfide concentrate using Thiobacillus ferrooxidans (J). Transactions of the Indian Institute of Metals, 2001, 54(4): 139~144
    [75] A D贝雷,G S汉斯福德。高浓度下硫化矿生物氧化的影响因素综述(J).国外金属矿选矿.1996,1:28~39
    [76] Harahuc Lesia, Lizama H M, Suzuki I. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores (J). Biotechnol. Bioeng., 2000, 69(2): 196~203
    [77] 童雄,魏以和.细菌氧化硫化矿物的机理及探讨(J).云南冶金,1996,4:19~23
    [78] Toma M K, Ruklisha M P, Vanags J J. Inhibition of microbial growth and metabolism by excess turbulence (J). Biotechnol. Bioeng., 1991, 38:552~556
    [79] carranza F, Glesias N I. Application of IBES process to A Zn Sulphide concentrate: Effect of Cu~(2+) ions (J): Minerals Engineering, 1998, 11 (4): 385~390
    [80] Nemati M, Harrison S T L. A comparative study on thermophilic and mesophilic biooxidation pf ferrous iron (J). Miner. Eng., 2000, 13(1): 19~24
    [81] Tipre D R, Vora SB, Dove S R. Improval metal extraction by selected Thiobacillus ferrooxidans consortium from polymetallic concentrate (J). J. Sci. Ind. Rev., 1998, 57(10-11): 805~808
    [82] Frattini C J, Leduc L G, Ferroni G D. Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillusferrooxidans (J). Antonie van leeuwerthoek, 2000, 77(1):57~64
    [83] Yuan Xin, Yuan Chuxiong, Gong Wenqi, et al. The depression of pyrite flotation by Thiobacillus ferrooxidans (J). J. Wuhan Univ. Technol., Mater. Sci. Ed., 2000, 15(1):60~65
    
    
    [84] Khalid A M, Bhatti T. An improved solid medium for isolation, enumeration and genetic investigation of artotrophic iron- and sulphur-oxidizing bacteria (J). Appl Microbiol Biotechnol, 1993, 39:259~263
    [85] 邱冠周,王军,钟康年.铜矿石银催化研究(J).矿冶工程,1998,3:22~25
    [86] 胡岳华,张在海,邱冠周.Ag~+在细菌浸出中的催化作用研究(J).矿冶工程,2001,21(1):24~28
    [87] Norton A, Batty J D K, Dew D W, et al. Concentration of precious metal in ore residue by bioleaching of sulfides in slurry with oxygen injection (P). WO 20001018267 A1 15 Mar 2001, 39pp.
    [88] Dew D W, Basson P, Miller D M. Bioleaching of copper sulfide ores in heated slurry with controlled oxygen feed (P). WO 20001018269 A1 15 Mar 2001, 44pp.
    [89] Nakamura K, Noike T, Matsumoto J. Effect of operational condition on biological Fe(Ⅱ) oxidation with rotating biological contactors (J). Water Res. 1986, 20:73~77.
    [90] Carmza F, Garcia M J. Kinetic comparision of support materials in the bacterial ferrous iron oxidation in packed-bed column (J). Biorecovery, 1990, 2:15~27
    [91] Laney E D, Tuovinen O H. Ferrous iron oxidation by Thiobacillus ferrooxidans cells immobilized in polyurethane form support paricles (J). Appl. Microbiol. Biotechnol, 1984, 20:94~99.
    [92] Mazuelos A, Romero R, Palencia I, et al. Continuous ferrous iron biooxidation in flooded packed bed reactors (J). Minerals Engineering, 1999, 12: 559~564.
    [93] Karamanev D G. Model of the biofilm structure of Thiobacillus ferrooxidans (J). J. Biotechnol, 1991, 20:51~64
    [94] Grishin S I, Tuovinen O H. Fast kinetics of Fe~(2+) oxidation in packed-upreactors(J). Appl Environ Microbiol, 1998, 54:3092~3100
    [95] Myerson A S, Kline P. The adsorption of Thiobacillus ferrooxidans on solid particles (J). Biotechnol Bioeng, 1983, 25:1669~1676
    [96] Wood T A, Murray K R, Burges J G. Ferrous sulfate oxidation using Thiobaciilus ferrooxidans cells immobilized on sand for the purpose of treating acid mine-drainage (J). Appl Microbiol Biotechnol, 2001, 56:560~565
    
    
    [97] Kai T, Suenage Y, Migita A, et al. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria (J). Chem Eng Sci, 2000, 55:3429~3436
    [98] Gomez J M, Cantero D, Webb C. Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation (J). Appl Microbiol Biotechnol, 2000, 54:335~340
    [99] Colowick S P, Kaplan N O. Immobilised enzymes and cells (J). Methods Enzymol, 1987, 135:1~593
    [100] Armentia H, Webb C. Ferrous sulfate oxidation using Thiobacillus ferrooxidans cells immobilized in polyurethane foam support particles (J). Appl Microbiol Biotechnol, 1992, 36:697~700
    [101] Lancey E D, Tuovinen O. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized in calcium alginate (J). Appl Microbiol Biotechnol, 1984, 20: 94~99
    [102] Chisholm I A, Leduc L G, Ferroni G D. Metal resistance and plasmid DNA in thiobacillus ferrooxidans (J). Antonie van leeuwenhoek, 1998, 73(3): 245-254
    [103] Mishra A K, Roy P, Mahapatra S S R. Isolation of Thiobacillus ferrooxidans from various habitants and their growth pattern on solid medium (J). Curr Microbial., 1983, 8(3): 147~152.
    [104] Kusano T, Sugawara K, Inoue C, et al. Electrotransformation of Thiobacillus ferrooxidans with plasmid containing a mer determinant as the selective marker by electroporation (J). J. Bacterial, 1992, 174(20):6617~6623.
    [105] Peng J B, Yah W M, Bao X Z. Plasmid and transfer to Thiobacillus ferrooxidans (J). J. Bacterial, 1994, 176(10): 2892~2897.
    [106] Peng J B, Yan W M, Bao X Z. Expression of heterogenous arsenic resistance gens in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans (J). Appl Environ Microbial., 1994, 60(7): 2651-2656
    [107] Liu Z, Bome F, Ratouchnik J, et al. Genetictransfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation (J), Hydrometallurgy, 2001, 59:339~345
    [108] 亚历山大罗夫著(叶维青译).硅酸盐细菌(M).北京:科学出版社
    [109] 李元芳.硅酸盐细菌肥料的特性和作用(J).土壤肥料,1994(2):48~49
    [110] V I Grondeva等.铝土矿的微生物选矿(J).国外金属矿选矿,1989,(11):
    
    9~11
    [111] Groudreev S, Genchev F. Bioleaching of bauxites by wild and laboratory-bred mixrokial strains (J). Int Congr Study bauxites Alum (Prepr) 4th, 1978,1:271~278
    [112] Andreev P I, Lydheva L V. Effect of the composition of the culture medium on the bacterial decomposition of aluminosilicates (J). IZV Vyssh Uchebn Zaued Tsuetn metall, 1979,(5):7~9
    [113] 索洛日金.细菌在矿物工程中的应用(J).国外金属矿选矿,1991,(5):1~10
    [114] Kupdyanova-Ashina F G, et al. The peculiariarities of destruction of some silicates during the development of B.mucilignosus spores treated with a microbial ribormuclease (J). Biotekhnoloya, 1994,(6):24~27
    [115] Yakhontova L K, Nesterovich L G, et al. Possibility of bacterial leaching of aluminum from dawsonite (J). Earth Science Sections v 322 n 1 Apr 1994 p 152~156 0012-494x TUESEL
    [116] S N格劳德夫.矿物原料的生物选矿(J).国外金属矿选矿,2000,(6):2~9
    [117] Vrvic M M, Matic V, et,al. Demineralization of an oil shale by Bacillus circulans (J). Organic Geochemistry Advances in Organic Geochemistry, 1989, 16(4-6): 1203~1209
    [118] Dragutinovic vesva Vet al. Bacterial demineralization of an oil shale (J). Hem Ind, 1995, 49(5):217~219
    [119] Andreev P I, Andreeva G S, Sidyakina G G. Bioflotation, its possibilities and prospects (J). Razued okhr.Nedr, 1992,(2):27~28
    [120] 魏以和、钟康年、王军.生物技术在矿物工程中的应用(J).国外金属矿选矿,1996,(1):1~13
    [121] 吴小琴.硅酸盐细菌的应用概况(J).江西科学,1997,15(1):60~66
    [122] Monib. Role of silicate bacteria in releasing K ang Si from Biblite and Orthoclase (J). Soil biology and conservation of the biosphere, 1984, (2):733~743
    [123] 陈华葵.微生物(M),1962,2(3)
    [124] 池景良、葛英华.硅酸盐细菌解钾活性的研究(J).微生物学杂志,1999,19(2):43~51
    [125] 李明等.硅酸盐细菌JF88菌株磷化作用的研究(J).云南环境科学,2000,19(4):11-13
    
    
    [126] 蒋先军等.硅酸盐细菌对矿粉和土壤的解钾强度及来源研究(J).西南农业大学学报,1999,21(5):473-476
    [127] 吴观以等.用海绿石作为载体吸附硅酸盐细菌的初步研究(J).土壤肥料,1997,(2):43-45
    [128] 连宾等.硅酸盐细菌的初步研究与应用(J).1995年全国微生物肥料专业会议论文集.1995
    [129] SahooD K, Kar R N, et al. Bioaccumulation of heavy metals ions by Bacillus circulans (J). Bioresou Technol, 1992, 41 (2): 177~179
    [130] 张冬艳.氧化亚铁硫杆菌的菌数测定法(J).内蒙古工业大学学报,1996,15(1):62~65
    [131] 张在海,胡岳华,邱冠周等.从细菌学角度探讨硫化矿的细菌浸出(J).矿冶工程,2000,20(2):15~18
    [132] 柳建设,邱冠周,王淀佐等.氧化亚铁硫杆菌在氧化过程中的铁行为(J).湿法冶金,1997,(3):1~3
    [133] 雷云,贾云芝.细菌浸出硫化锌矿氧化动力学研究进展(J).有色金属(季刊),1999,51(4):80-82.
    [134] Boon M, Heijnen J J, Hansford G S. The mechanism and kinetics of bioleaching sulfide minerals (J). Miner. Process. Extr. Metall. Rev, 1998, 19(1-4): 107~115
    [135] Karamanev D G, Nikolov L N. Influence of Some Physicochemical Parameters on Bacterial Activity of Biofilm: Ferrous Iron Oxidation by Thiobacillus ferrooxidans(J). Biotechnology and Bioengineering, 1988, 31:295~299.
    [136] 赵善欢编著.植物化学保护(M).北京:农业出版社,1980
    [137] Schaeffer W L, Holbert P E, Umbreit W W. Attachment of Thiobacillus ferrooxidans to sulfur crystal(J). J. Bacteriol. 1963,85:137~140
    [138] Muthy K S N, Natarajan K A. The role of surface attachment of Thiobacillus ferrooxidans on the biooxidation of pyrite(J). Mineral. Metall. Process, 1992, 9:20~24
    [139] 李建武,萧能赓,余瑞元等.生物化学实验原理与方法(M).北京:北京大学出版社,1994
    [140] Van Loosdrecht M C M, Lyklema J, Norde Wet al. Influence of interfaces on microbial activity(J). Microbiol Rev, 1990,54:75~87
    
    
    [141] Haddadin J, Dagot C, Fick M. Model of bacterial leaching. Enzyme and Microbiol Technology(J). 1995, 17:290~305
    [142] Arrendondo R, Garcia A, Jerez C A. Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids(J). Appl Environ Microbiol, 1994, 60:2846~2851
    [143] Devasia P, Natarajan K A, Sathyanarayana, et al. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mimeral surfaces(J). Appl Environ Microbiol, 1993, 59:4051~4055
    [144] RC Blake I I, Sasaki K, Ohmura N. Does aporusticyanin mediate the adhesion of to pyrite(J)? Hydrometallurgy, 2001, 59:357~372
    [145] Crundwell FK, Formation of biofilms of iron-oxidizing bacteria on pyrite(J). Minerals Engineering, 1996, 9:2137~2142
    [146] Grishin S I, Tuovinen OH. Fast kinetics of Fe~(2+) oxidation in packed-up reactors[J]. Appl Environ Microbiol, 1998, 54:3092~3100
    [147] Arrnentia H, Webb C. Ferrous sulfate oxidation using Thiobacillus ferrooxidans cells immobilized in polyurethane foam support particles[J]. Appl Microbiol Biotechnol, 1992, 36:697~700
    [148] Lancey E D, Tuovinen O. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized in calcium alginate[J]. Appl Microbiol Biotechnol, 1984, 20:94~99
    [149] Nemati M, Harrison S T L, Hansford G S, et al. Biological of ferrous sulfide by Thiobacillusferrooxidans: a review on the kinetics aspects[J]. Biochemical Engineering Journal, 1998, 1:171~190
    [150] Kai T, Takahashi T, Shirakawa Y, et al. Decrease in iron oxidizing activity of Thiobacillusferrooxidans adsorbed on activated carbon[J]. Biotechnol Bioeng, 1990, 36:1105~1109
    [151] Carranza F, Igleslas N. Application of IBES process to A Zn sulfide concentrate: Effect of Cu~(2+) ion[J]. Mineral Engineering, 1998, 11(4): 385~390
    [152] Carranza F, Igleslas N, Romero R, et al. Kinetics improvement of high-grade sulfides bioleaching by effects separation[J]. TEMS Microbiol Reviews, 1993, 11: 129~138
    [153] Nemati M, Webb C. Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans[J]. Appl Microbiol
    
    Biotechnol, 1996, 46:250~255
    [154] 周吉奎,胡岳华,邱冠周.硅酸盐细菌在矿物工程领域应用研究进展(J).金属矿山,2002,307(1):29~28
    [155] 连宾.硅酸盐细菌GY92对伊利石的释钾作用(J).矿物学报,1998,18(20:234~238
    [156] 许光辉,郑洪元.土壤微生物分析方法手册(M).北京:农业出版社,1986
    [157] 盛下放,黄为一.硅酸盐细菌NBT菌株生理特性研究(J).土壤学报,2001,38(4):569~574
    [158] 陈汉清,吴文礼,林昆明等.周毛德克斯氏菌胞外多糖化学组分分析(J).福建农业大学学报(自然科学版),1994,23(4):476~479
    [159] Zakaharenko S V, Milevskii E I, Lavrentev N I. Effect ofpolysaacharides of B. mucilaginosus on phage activity(J). Microbiologiya, 1962, 31: 1007~1010
    [160] Isobe Yuka, Endo Kinji, Kawai Hiroyasu. Properties of a highly viscous polysaacharides producted by a B. strain isolated from soil(J). Biosci Biotechnd Biochem. 1992, 56(4): 636~639
    [161] Voronkov M G, Vinogradov E Y, Kuz mina L A. Aliphatc and alicyclic carboxylic acid of the B. mucilaginosus biomass(J). IZV Sib Akad Nauk SSSR Ser Biol Nauk, 1987, 2:88~91
    [162] Weeke Chiristian, Vinogredov J J, Chockrin Savva N, et al. Protein quality of bacterial biomass (B. mucilaginosus) and results of its use in feeding domestic animals(J). Wiss Z-karl-Marx-Univ, Leipzig Math-Naturwiss reihe 1983, 32(6):601~605
    [163] 连宾,Donald L Smith,傅平秋。硅酸盐细菌在工农业生产中的应用及其作用机理(乃贵州科学,2000,18(1-2):43~53
    [164] 陈华葵,樊庆笙.微生物学(M).北京,农业出版社,1984
    [165] Arpad E Torma.生物湿法冶金的现状和未来的挑战(J).国外金属矿选矿,1990,10:1~7(李纪归译)
    [166] Castro M, Fietto J L R, et al. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures(J). Hydrometallurgy, 2000, 57: 39~49.
    [167] Mishra S P, Chaudhury R G. Kinetics of Zn~(2+) adorption by Penicillum. sp (J). Hydrometallurgy, 1996, 40:11~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700