强震作用下单层网壳结构倒塌机理及抗倒塌措施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单层网壳是空间结构的主要形式之一,一旦遭遇强震发生破坏甚至倒塌,会造成严重的人员伤亡、财产损失和社会影响。目前关于单层网壳倒塌机理的研究未考虑材料的Bauschinger效应、杆件失效及杆件断裂的影响,将高估网壳结构极限承载力。因此,建立考虑材料Bauschinger效应的材料本构模型以及杆件失效、杆件断裂的模拟方法,对单层球面网壳结构倒塌机理及抗倒塌措施进行深入研究,具有重要的理论意义和工程实用价值。
     本文对单层网壳结构的材料本构模型、杆件失效及杆件断裂模拟方法、单层网壳结构倒塌机理及抗倒塌措施进行了研究,主要完成了以下四个方面的工作。
     (1)考虑材料的Bauschinger效应,推导了适用于网壳结构常用杆件圆钢管的考虑损伤累积的混合强化增量本构模型,编写了适用于空间梁单元的材料本构程序,通过理论分析及已有试验测试数据对比,验证了所编写程序的正确性;将国际标准化组织建议的适用于圆钢管的杆件失稳判别条件及Marshall提出的杆件失稳后力学模型引入所编写的材料本构程序中,开发了能够同时考虑材料Bauschinger效应、损伤累积、杆件失稳及失稳后性能的计算程序,对简支梁进行拉压滞回性能分析并与已有试验结果进行对比,验证了所开发的计算程序的正确性;对单层球面网壳进行极限承载力分析,结果表明考虑损伤累积对网壳结构极限承载力影响不大,杆件失稳效应将明显降低网壳结构极限承载力。
     (2)建立了以损伤累积为杆件失效判别准则,以中心差分法为基础,通过修正杆件特性模拟杆件失效的模拟方法;通过与基于瞬时刚度法、瞬时加载法和初始条件法的双杆模型和悬臂梁模型节点位移进行对比分析验证了所建立模拟方法的正确性;通过对单层柱面网壳结构进行地震响应分析,验证了所建立模拟方法在单层网壳结构连续倒塌分析中的适用性;以杆件失效模拟方法为基础,应用分段纤维梁模型对杆件断裂进行模拟,通过对不同长度杆件断裂过程模拟结果的比较分析,确定了纤维梁模型合理的截面纤维划分数量和沿杆件长度单元划分数量;对单层网壳结构倒塌过程中杆件断裂进行模拟,验证了所建立模拟方法可应用于单层网壳结构倒塌过程中杆件断裂的模拟。
     (3)推导了地震作用下结构的能量平衡关系,并以能量不平衡为结构倒塌判别准则,考虑材料Bauschinger效应、杆件损伤累积、杆件失稳及失稳后性能、杆件失效及杆件断裂的影响,对强震作用下四类单层网壳结构进行倒塌机理研究,总结了四类单层网壳结构的倒塌机理。
     (4)采用传统设计方法,将单层网壳局部设计为双层提高网壳结构抗倒塌能力;分析了网壳结构局部采用双层前后结构自振特性及失稳杆件位置的变化,分析了局部双层的位置和厚度对网壳结构极限承载力的影响;结果表明,局部双层对结构竖向振动所对应的频率影响较大,采用局部双层后结构失效时失稳杆件位置分散,结构由整体破坏转变为局部破坏。采用在网壳结构中增设粘滞阻尼器提高网壳结构抗倒塌能力,推导了地震作用下粘滞阻尼器耗能公式,提出了以能量比例系数和位移比例系数为评价指标的阻尼器优化布置准则;以单层球面网壳和单层柱面网壳为例,验证了所提出的阻尼器优化布置准则的正确性;以单层球面网壳为例,分析了增设粘滞阻尼器对结构节点位移和极限承载力的影响;结果表明,采用优化布置准则仅需布置少量的粘滞阻尼器,便可大幅提高网壳结构极限承载力,提高网壳结构抗倒塌能力。
Single-layer reticulated shell is one of the main forms of space structures. The collapse of structures will result in serious deaths and economic loss. If some factors, like Bauschinger effect of materials, the member failure and fracture, are ignored in research on collapse mechanism of single-layer reticulated shells, the ultimate bearing capacity will be overestimated. Therefore, it is of significant theorial and practical value to study the collapse mechanism and collapse-resistance measurements of single-layer reticulated shells under strong earthquakes, considering Bauschinger effect of materials, the member failure and the member fracture.
     In this paper, the material constitutive model, the simulation method of member failure and fracture and the collapse mechanism of single-layer reticulated shell have been analyzed. This study contains the following work:
     (1) A novel elastic-plastic constitutive of circular steel tube is derived from the combined hardening, the cumulative damage, and Bauschinger effect of materials under cyclic loading. Based on the explicit method, a program is compiled to apply the elastic-plastic constitutive to beam elements. The performance characteristics of the circular steel tube are compared to measured results in the field to certify the correctness of theoretical analysis. The comparison shows that the program is accurate at evaluating mechanical behaviors of structures and members. The discrimination criterion of member buckling and the mechanical model of member post-buckling are all employed in the program. The tension and compression performance characteristics of simply supported beam are compared to measured results in the field to certify the correctness of theoretical analysis. The analysis results about a reticulated shell show that ultimate bearing capacity of structure is little affected by cumulative damage, but significantly affected by member buckling.
     (2) Based on discrimination criterion for component failure defined by the cumulative damage and the central difference method, the member failure is simulated by modifying member characteristics. Dynamic nonlinearity analysis is applied to the cantilever beam, and the node displacements from different simulation methods are compared to certify the correctness of simulation method for member failure. Considering cumulative damage and member buckling, progressive collapse of the single-layer cylindrical reticulated shell under earthquake is analyzed. The analysis results show that the simulation method for member failure can be used in the analysis of progressive collapse of space grid structures. Based on the simulation method for member failure, fiber beams are adopted to simulate member fracture. Comparing the simulations of different length members in fracture process, the reasonable number of fibers in section and elements along the member length is proposed. The member fracture in collapse process of single-layer reticulated shell is analyzed. The results show that, based on modifying member characteristics, fiber beam could be applied in the analysis of cumulative damage and fracture in member section and the collapse process of space grid structures.
     (3) The relationship of energy equilibrium is derived from dynamic equilibrium equation of structure under earthquake. Based on discrimination criterion for structure collapse defined by energy equilibrium, collapse mechanism of different types of single-Layer reticulated shells under strong earthquakes are analyzed, considering Bauschinger effect, the cumulative damage, member buckling and post-buckling, member failure and fracture. Collapse mechanisms of different types of single-Layer reticulated shells under strong earthquakes are summarized.
     (4) Partial double-layer reticulated shell is adopted to improve the collapse-resistance capacity. The natural vibration characteristics, the ultimate bearing capacity and the placement of buckling member in partial double-layer reticulated shell are analyzed. The results show that the ultimate bearing capacity of reticulated shell is increased by adopting partial double-layer, with dispersed position of buckling member and local failure of structures. Formula of energy dissipation of viscous damper under earthquake is derived from the central difference method. Energy proportional coefficient and displacement proportional coefficient are proposed to predict the optimize location of dampers in structures. The displacement reduction factors of single-layer spherical reticulated shell and single-layer reticulated cylindrical shell under earthquake are analyzed to certify the correctness of the optimization criterion.
引文
[1]杜庆远,张焕华.大跨度空间结构在国内的发展形式和技术特点[J].山西建筑, 2007, 33(26): 94~96.
    [2]董石麟,姚谏.网壳结构的未来与展望[J].空间结构, 1994, 1(1): 3~10.
    [3]蓝天.空间钢结构的应用与发展[J].建筑结构学报, 2001, 22(4): 2~8.
    [4]宛树旗.单层球面网壳非线性稳定研究[D].武汉:武汉大学土木建筑工程学院, 2005.
    [5]张良兰.大跨度单层椭球面网壳的抗震性能试验研究[D].上海:同济大学土木工程学院, 2007.
    [6]赵宪忠,沈祖炎,陈以一等.上海东方明珠国际会议中心单层球网壳整体模型试验研究[J].建筑结构学报, 2000, 21(3): 16~22.
    [7]赵阳,陈贤川,董石麟.大跨椭球面圆形钢拱结构的强度及稳定性分析[J].土木工程学报, 2005, 38(5): 15~23.
    [8]王蕊.大跨度空间结构弹塑性时程分析[D].天津:天津大学建筑工程学院, 2007.
    [9]胡隶贤.地震工程学[M].北京:地震出版社, 2006.
    [10]张雷鸣,刘西拉.钢筋混凝土结构倒塌分析的前沿研究[J].地震工程与工程振动, 2003, 23(3): 47~52.
    [11]范峰,催航宇,沈氏钊.单层球壳结构弹塑性抗震性能分析[J].第九届全国空间结构学术会议, 2000.
    [12]催航宇.单层球壳弹塑性抗震性能分析[D].哈尔滨建筑大学硕士学位论文,哈尔滨, 2000.
    [13]曹资,张毅刚.单层球面网壳地震反应特征分析[J].建筑结构, 1998, 8: 40~43.
    [14]薛素铎,曹资,王建宁.单层柱面网壳弹塑性地震反应特征[J].地震工程与工程振动, 2003, 22(1): 56~60.
    [15]曹资,薛素铎,张毅刚等.单层球面网壳在多维地震作用下的随机响应分析[J].空间结构, 2002, 8(2): 3-11.
    [16]王建平,郑瑾,叶春阳.单层网壳三维地震反应分析及参数研究[J].武汉理工大学学报, 2010, 32(12): 41-44.
    [17] Budiansky B., Roth R.S. Axisymmetric dynamic buckling of clamper shallowspherical shells[A]. Collected papers on instability of shell structures[C], NASA TND-1501, 1962.
    [18]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报, 2003, 24(3): 1~10.
    [19]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报, 2000, 28(2): 148~151.
    [20]沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报, 2005, 38(1): 11~20.
    [21]陈军明,陈应波,李秀才.单层柱面网壳结构的非线性稳定性研究[J].武汉理工大学学报, 2003, 25(4): 51~54.
    [22] Ishikawa K., Kato S. Elastic-plastic dynamic buckling analysis of reticular domes subjected to earthquake motion[J]. international journal of space structures, 1997(3&4), 205-215
    [23]陈应波,陈军明,吴代华.网壳结构在地震作用下的动力稳定研究[J].华中科技大学学报(自然科学版), 2004, 32(10): 40~42.
    [24]曹正罡,范峰,沈世钊.大矢跨比单层球面网壳弹塑性稳定性研究[J].哈尔滨工业大学学报(自然科学版), 2008, 40(2): 183~186.
    [25] Rabotnov Y N, On the equations of state for creep[M]. In:Progress in applied Mechanics. 1963, 307~315.
    [26]尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社, 1992.
    [27] Sidney A G, Erber T, Stefanis J, et al. Plastic collapse, shakedown and hysteresis of multistory steel structures[J]. Journal of Structural Engineering, 1986, 112(12): 2610-2627.
    [28] Darwin D, Nmai C K. Energy dissipation in RC beams under cysilc load[J]. Journal of Structural Engineering, 1986, 112(8): 1829-1846.
    [29]杜修力,欧进萍.建筑结构地震破坏评估模型[J].世界地震工程, 1991, (3): 52-58.
    [30] Kumar S, Usami T. A note on ecaluation of damage in steel structures under cycle loading[J]. JSCE, J Struc. Engg, 1994, 40A:177~188.
    [31]支旭东,吴金妹,范峰等.考虑材料损伤累积单层柱面网壳在强震下的失效研究[J].计算力学学报, 2008, 25(6): 770-775.
    [32]支旭东,聂桂波,范峰等.大跨度单层球面网壳的损伤模型及强震失效[J].哈尔滨工业大学学报, 2009, 41 (8): 6-11.
    [33]吴金妹.基于损伤的单层柱面网壳强震失效机理研究[D].哈尔滨:哈尔滨工业大学土木工程学院, 2007.
    [34] YU Xiaoye, FAN Feng, ZHI Xudong, et al. Damage mechanism of single-layer reticulated domes under severe earthquakes[J]. Journal of Harbin Institute of Technology, 2009, 16(1): 121~130.
    [35]范峰,支旭东,沈世钊.大跨度网壳结构强震失效机理研究[J].建筑结构学报, 2010, 31 (6): 153-158.
    [36] British Standard Institute. Structural use of concrete. Part1: Code of practice for design and construction[S]. 1997.
    [37] General services administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects [S]. 2003.
    [38]胡庆昌,孙金墀,郑琪等.建筑结构抗震减震与连续倒塌控制[M].北京:中国建筑工业出版社, 2007.
    [39] UFC 4-023-03. Design of buildings to resist progressive collapse[S]. Washington, D.C: Department of Defense. 2005.
    [40]陈以一,赵宪忠.高冗余度钢结构倒塌控制设计指南[M].上海:同济大学出版社, 2007.
    [41]柳承茂,刘西拉.基于刚度的构件重要性评估及其与冗余度的关系[J].上海交通大学学报, 2005, 39(5): 746-750.
    [42]高杨,刘西拉.结构鲁棒性评价中的构件重要性系数[J].岩石力学与工程学报, 2008, 27(12): 2575-2584.
    [43]马人乐,陈俊岭,何敏娟.建筑结构二次防御能力分析方法[J].同济大学学报:自然科学版, 2006, 34( 5): 569-573.
    [44]胡晓斌,钱稼茹.单层平面钢框架连续倒塌动力效应分析[J].工程力学, 2008, 25(6): 28-43.
    [45]胡晓斌,钱稼茹.结构连续倒塌分析改变路径法研究[J].四川建筑科学研究, 2008, 34(4): 8-13.
    [46]蔡建国,王蜂岚,冯健.大跨空间结构抗连续性倒塌概念设计[J].建筑结构学报, 2010, S1: 283-287.
    [47]徐赵东,李爱群,叶继红.大跨空间网壳结构减震控制的研究与发展[J].振动与冲击, 2005, 24(3): 59-61.
    [48]李娜.单层网壳结构与下部支承结构间的相互作用[D].沈阳:东北大学资源与土木工程学院, 2008.
    [49]王秀丽,周锟,吴长.强震作用下带屈曲约束支撑的K型网壳整体结构性能分析[J].北京交通大学学报, 2011, 35(1):61-67.
    [50]朱礼敏,钱基宏,张维.某站房结构抗震性能分析及采用粘滞阻尼器的减震分析[J].建筑结构, 2008, 38(12):42-45.
    [51] Kawaguchi M, Tatemichi I. Seismic isolation systems and their application in space structures[J]. In: Proc. of IASS-MSU International Symposium, Istanbul, 2000: 217-228.
    [52] Kawaguchi M, Kato S. Metal space structures[J]. Journal of the International Association for Shell and Spatial Structures, 2001, 42(135-136): 21-26.
    [53] Kato S, Nakazawa S, et al. Earthquake response of domes implemented by hysteresis dampers for earthquake isolation[J]. In: Proc. of IASS, LASAA International Congress, Sydney, 1998: 451-459.
    [54] Kato S, Nakazawa S, et al. Response reducing effect of seismic isolation system installed between large dome and lower structure. In: Proc. of APCS 2000 Conference, Seoul, Korea, 2000, I:323-330.
    [55]严慧,董石麟.板式橡胶支座节点的设计与应用研究[J].空间结构, 1995, 1(2):33-40.
    [56]周晓峰,陈福江,董石麟.粘弹性阻尼材料支座在网壳结构减震控制中性能研究[J].空间结构, 2000, 6(4):21-28.
    [57]薛素铎,周乾. SMA-橡胶复合支座在空间网壳结构中的隔震研究[J].北京工业大学学报, 2004, 30(2):176-176.
    [58]庄鹏,薛素铎,李彬双. SMA-橡胶支座在单层球面网壳结构中的隔震分析[J].建筑结构, 2006, 36(11):103-106.
    [59]唐柏鉴,张建.复合隔震支座在网格屋盖结构中的应用研究[J].地震工程与工程振动, 2010, 30(1):134-141.
    [60] Shingu K, Fukushima K. Base isolation and fuzzy vibration control of a spherical shell subjected to seismic forces[C]. Proc. of Asia-Pacific Vibration Conference, Kitakyushu, Japan, 1993:1413-1418.
    [61] Shingu K, Hiratsuka K. Dynamic response of base isolated rotational shell with edge beam and vibration control of the shell[J]. International Journal of Space Structures, 1997, 12(4):173-179.
    [62]薛素铎,蔡炎城,李雄彦.被动控制技术在大跨空间结构中的应用概况[J].世界地震工程, 2009, 25(3):25-33.
    [63]胡继军,黄金枝,李春祥.网壳-TMD风振控制分析[J].建筑结构学报, 2001, 22(3):31-34.
    [64]叶继红,陈月明,沈世钊. TMD减震系统在网壳结构中的应用[J].哈尔滨建筑大学学报, 2000, 33(5):10-14.
    [65]叶继红,陈月明.网壳结构TMD减震系统的优化设计[J].振动工程学报, 2000, 13(3):376-384.
    [66]韦德香,崔湘玲,张元超.结构被动控制研究进展[J].贵州工业大学学报(自然科学版), 2001, 30(6):77- 83.
    [67] Nielsen LO, Mualla IH, IWAI Y. Seismic isolation with a new friction viscoelastic damping system[C]. Proceedings, 13th World Conference on Earthquake Engineering, Vancouver, 2004.
    [68]吴长.约束屈曲支撑在大跨度双层网壳的减震性能分析[D].兰州:兰州理工大学土木工程学院, 2009.
    [69]胡静.约束屈曲支撑在落地球形网壳中的减震效果分析[D].兰州:兰州理工大学土木工程学院, 2008.
    [70]周福霖.工程结构减震控制[M].北京:地震出版社, 1997.
    [71] Zhang Y G, Ren G Z. A practical method on seismic response controlled double layer cylindrical lattice shell with variable stiffness members[A]. Proc of IASS Symposium[C]. 2001, Nagoya, Japan.
    [72]杨飏,李友明,沈世钊.单层网壳结构的阻尼减振控制分析[J].世界地震工程, 2009, 25(1):143-147.
    [73]范峰,沈世钊.网壳结构的粘滞阻尼减振分析与试验研究[J].地震工程与工程振动, 2000, 20(1):106-111.
    [74]范峰,沈世钊.网壳结构的粘弹阻尼器减振分析[J].地震工程与工程振动, 2003,23(3):156-159.
    [75]李媛萍,张卫.粘弹性阻尼器减震系统对单层球壳动力稳定性的影响分析[J].建筑结构, 2010, 40(1): 47-49.
    [76]李媛萍,张卫,王仕统.单层球面网壳的粘弹性阻尼器减振控制参数分析[J].暨南大学学报, 2010, 31(3):263-267.
    [77]杨飏,李友明,何政.双层球面网壳结构的阻尼替代杆件减振控制研究[J].世界地震工程, 2011, 27(1):83-89.
    [78]朱礼敏,钱基宏,张维.双层柱面网壳采用粘滞阻尼器的减震参数分析[J].建筑结构学报, 2007, 28(4):58-63.
    [79] Prager.W. A new method of analyzing stresses and strains in working hardening plastic solids[J]. Journal of Applied Mechanics. Transactions of the American Society of Mechanical Engineers. 1956, 78: 493-502.
    [80] Axeksson. K, Samuelsson. A. Finite element analysis of elastic-plastic materials displaying mixed hardening[J]. International Journal for Numerical Methods in Engineering , 1979, 14:211-215.
    [81]顾强.钢结构滞回性能及抗震设计[M].北京:中国建筑工业出版社, 2009.
    [82]范峰,聂桂波,支旭东.三向荷载作用下圆钢管材料本构模型研究[J].建筑结构学报, 2011, 32(8): 59-68.
    [83]王娜,陈昕,沈世钊.薄壁钢管杆件结构几何和材料非线性性能研究[J].哈尔滨建筑工程学院学报, 1992, 25(4): 39-44.
    [84]宋振森,顾强,苏明周.考虑混合强化和弹塑性损伤的有限元模型[J].西安交通大学学报, 2000, 34(1): 95-98.
    [85]宋振森.超高层钢结构考虑损伤和损伤累积分析方法[D].上海:同济大学土木工程学院, 2004.
    [86] L.M.Kachanov. Time of the rupture process under creep condition[M]. Izv. Akad Nauk. U.S.S.R.Otd. Tekhn.1958, Nauk 8, 26~31.
    [87] Satoshi Iwai, Yeon-Soo Park, Taijiro Nakata, et al. Very low-cycle eest of steel angle members under earthquake loading[J]. Eathquake Engineering. Tenth World Confernce, 1992, 5: 2879~2884.
    [88] Park Y.J., Ang A.H.S., Wen Y.K. Seismic damage analysis of reinforced concrete buildings[J], ASCE Journal of Structural Engineering, 1985, 111(4):740~757.
    [89] Zhi Xudong, Fan Feng, Shen Shizhao. Failure mechanism of single-layer reticulated domes subjected to earthquakes [J]. Journal of the International Association for Shell and Spatial Structures. 2007, (1): 29-44
    [90]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报, 1997, 25(2):135~140.
    [91] Zuyan Shen, Bao Dong. An experiment-based cumulative damage mechanics model of steel under cyclic loading[J]. Advances in Structural Engineering, 1997(1): 39~ 46.
    [92]沈世钊,支旭东.球面网壳在强震作用下的失效机理[J].土木工程学报, 2005, 38(1):11~20.
    [93] ISO10721-1. Steel structure. Material and Design[S]. Switzerland: European Committee for Standardization, 1997.
    [94] Higginbotham. A. B, Hanson. R. D. Axial hysteretic behavior of steel members[J]. Journal of the Structural Division, ASCE, 1976, 102(7): 1365-1381.
    [95] Marshall. P W, Gates. W E, Anagnostopoulos. S. Inelastic dynamic analysis oftubular offshore structures[A]. In: proceedings of ninth annual offshore technology conference[C]. Houston, U S A: 1977. 235-246.
    [96] K. Kayvani, F. Barzegar. Hysteretic modelling of tubular members and offshore platforms[J]. Engineering Structures, 1996, 18(2): 93-101.
    [97]江晓峰,陈以一.大跨桁架体系的连续性倒塌分析与机理研究[J].工程力学, 2010, 27(1): 76~83.
    [98] EN1991-1-1:2002. Eurocode 1[S]. Bruxelles: European committee for standardization, 2002.
    [99] NBC 2010. National building code for Canada[S]. Ottawa: National research council of Canada, 2010.
    [100] Nanci B, Shalva M, SDOF model for progressive collapse analysis[C]. New York, NY, United States: Structures-ASCE, 2005: 2243-2254.
    [101] F.A.Tavarez, M.E.Plesha. Discrete element method for modeling solid and particulate materials[J]. International Journal for Numerical Methods in Engineering, 2007, 70: 379~404.
    [102] Jian-Hong Wu, Yuzo Ohnishi, Gen-Hua Shi, et al. Theory of three-dimensional discontinuous deformation analysis and its application to a slope toppling at Amatoribashi, Japan[J]. International Journal of Geomechanics, 2005. 5(3): 179~195.
    [103] Shi GH, Goodman RE. Discontinuous deformation analysis[A]. In: Proceedings of the 25th US Symposium on rock mechanics[C]. Evanston, Illinois, USA, 1984. p. 269~277.
    [104] Tagel-Din H, Meguro K. Nonlinear simulation of RC structures using applied element method[J]. Struct Eng/Earthquake Eng 2000, 17(2): 137~148.
    [105]庄茁,张帆,岑松等. ABAQUS非线性有限元分析实例[M].北京:科学出版社, 2005.
    [106] GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010.
    [107] JGJ7-2010.空间网格结构技术规程[S].北京:中国建筑工业出版社, 2010.
    [108]支旭东,范峰,沈世钊.凯威特型单层球面网壳在强震下的失效研究[J].工程力学, 2008, 25(9):7-12.
    [109]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报, 2007, 40(8):29-34.
    [110]齐麟.强震作用下单层网壳结构动力破坏机理[D].天津:天津大学建筑工程学院, 2011.
    [111]杜文风,高博青,董石麟.单层网壳动力失效的形式与特性研究[J].工程力学, 2009, 26(7):39-65.
    [112]刘英亮,邢佶慧.基于能量的单层球面网壳强震响应规律研究[J].建筑结构学报(增刊2), 2009.
    [113]梁国亮.单层鞍型网壳强动力荷载下破坏准则的研究[D].北京:北京交通大学土木建筑工程学院, 2009.
    [114]杨飏,李友明,沈氏钊等.单层网壳结构阻尼减振控制分析[J].世界地震工程. 2009, 25(1):143-147.
    [115]叶爱君,范立础.附加阻尼器对超大跨度斜拉桥的减震效果[J].同济大学学报(自然科学版), 2006, 34(7): 859~863.
    [116]张微敬,钱稼茹,沈顺高等.北京A380机库采用粘滞阻尼器的减振控制分析[J].建筑结构学报, 2009, 30(2): 1~7.
    [117]范峰,沈氏钊.单层柱面网壳的粘滞阻尼器减振分析[J].地震工程与工程振动, 2003, 19(2): 27~32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700