破孔—随嵌串联战斗部研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
破孔—随嵌串联战斗部是一种新型的串联战斗部,它由前级聚能装药和后级嵌入体组成,作用时前级聚能装药形成的聚能杆式侵彻体对靶板进行侵彻开孔,随后后级嵌入体依靠动能嵌入到开孔的靶板中,实现对目标的毁伤与封锁。本文采用理论分析、数值模拟与试验研究相结合的方法,对破孔—随嵌串联战斗部的作用过程及机理进行了研究,分析了前级聚能装药对靶板的侵彻开孔过程,着重研究了后级嵌入体的嵌入过程及机理,建立了嵌入体垂直嵌入过程中的断裂分析模型,并对影响嵌入体断裂失效的因素进行了分析,为破孔—随嵌串联战斗部的设计和改进提供了理论依据和技术支持。本文的主要研究内容包括:
     1)研究了前级聚能装药形成的聚能杆式侵彻体对靶板的侵彻开孔过程,并对聚能杆式侵彻体的影响因素进行了分析。研究结果表明,前级聚能装药对60mmm装甲钢板的开孔直径约为20-23mm,开孔的入口直径略小于出口直径。随着药型罩壁厚与装药口径比值δ/D的增加,聚能杆式侵彻体的长径比先增大后减小;随着药型罩曲径比R/D的增加,聚能侵彻体的长径比减小,曲径比R/D≥0.833时,将不能形成聚能杆式侵彻体
     2)研究了串联战斗部对靶板的作用过程,分析了前级聚能装药爆轰场对后级嵌入体的影响。采用数值模拟方法对破孔—随嵌串联战斗部的作用过程进行了仿真分析,得出前级聚能装药对后级嵌入体有重要影响;随着隔爆板厚度的增大,后级嵌入体的变形逐渐减小,而速度降随之先减小后增大,当隔爆板厚度为30mm时,嵌入体的变形和速度降较小;随着嵌入体初始速度的增大,嵌入体的变形差异不大,速度降随之增大;后级嵌入体与前级聚能装药的轴线不重合时,嵌入体将产生侧向偏移和攻角。
     3)研究了后级嵌入体的嵌入过程,并对影响嵌入体有效嵌入的因素进行了分析。研究表明,嵌入体的嵌入深度随着嵌入体初始速度的增加而增大,嵌入体合适的初始速度为200m/s-350m/s;嵌入体初始速度一定时,嵌入体的嵌入深度随着靶板预开孔直径的增大而增大,靶板预开孔直径为20-26mm时较为合适。
     4)建立了嵌入体垂直嵌入预开孔靶板的断裂分析模型,得出了嵌入体发生断裂失效的最小速度表达式,并结合数值仿真和试验对理论结果进行了验证。由理论分析、数值模拟和试验研究得出,嵌入体发生断裂失效的最小速度随着嵌入体材料屈服应力、切线模量和失效应变的增大而增大,随着密度的增大而减小。
Tandem shape charge --- embedding warhead is a new type of warhead, which is consisted of forward shaped charge and backward penetrator. Firstly, the jetting projectile formed by the shaped charge penetrated the target, then the backward penetrator embedded the perforated target by the kinetic energy, thus the damage and blockade effect of the warhead was realized. In this thesis, Tandem shape charge --- embedding warhead's embedded process and mechanism was studied by theoretical analysis, numerical simulation and experimental study. The fracture analysis model about the penetrator embedding perforated target was established, and the factors which affected the fracture failure model were analyzed. The result of this thesis would provide valuable theoretical basis and technical reference for the Tandem shape charge --- embedding warhead's design and improvement. The followings are the main contents of this dissertation:
     1) The penetration process of the jetting projectile charge towards the target was firstly studied. Factors influenced the penetrate effect was analyzed. The result indicated:(a) Diameter of perforated hole caused by forward shaped charge was around 20-23mm (60mm steel plate), the diameter of the entrance hole was slightly smaller than the oulet hole; (b) As the liner thickness --- charge diameter ratioδ/D increased, the aspect ratio of the jetting projectile charge first increased and then decreased; (c) As liner curvature radius --- charge diameter ratio R/D increased, the aspect ratio of the jetting projectile charge decreased, when R/D≥0.833, the jetting projectile would fail to form.
     2) Action process of the tadem warhead towards the target was studied, the forward shaped charge's detonation effect on the backward penetrator was analyzed. The simulation model was set up respectively, result of which indicated that forward charge affected the backward penetrator greatly. While with the increase of baffle plate's thickness, the negative influence was decreased, when the thickness reached 30mm, the deformation and velocity drop of the penetrator was relatively minimum. With the initial velocity of the penetrator increased, the deformation was insignificant while the velocity drop increased accordingly. And if axis of the backward penetrator was not coincided with the forward shaped charge, the penetrator would possess the angle of attack during the embedding process.
     3) Embedding process of the backward penetrator was studied, and factors which affected the embedding were analyzed. The result indicated:(a) With the initial velocity of the penetrator increased, the embedding depth increased, and the appropriate initial velocity would be 200m/s-350m/s; (b) When the initial velocity was a constant, the embedding depth increased with the pre-proforated hole's diameter dimension, however, the 20-26mm diameter proved appropriate.
     4) Fracture failure analysis model about the penetrator embedding pre-perforated target vertically is established, and the penetrator's threshold velocity when the failure occurred was obtained, numerical simulation and experiment were both adopted to validate the theoretical result. Further research indicated the threshold velocity increases along with the penetrator's material yield stress, tangent modulus and failure strain, inversely along with the material density.
引文
[1]张彤,阳世清,徐松林,雷永鹏.串联战斗部的技术特点及发展趋势[J].飞航导弹,2006(10):51-54.
    [2]李向东,钱建平等.弹药概论[M].北京:国防工业出版社,2004.
    [3]王儒策,赵国志.弹丸终点效应[M].北京:国防工业出版社,1990.
    [4]赵国志.穿甲工程力学[M].北京:兵器工业出版社,1992.
    [5]李良杰.动能嵌入体对预开孔钢板的嵌入机理研究[D].南京:南京理工大学机械工程学院,2007.
    [6]左振英.串联战斗串联技术研究[D].南京:南京理工大学机械工程学院,2006.
    [7]黎春林,谢乐平.单兵攻坚战斗部的试验研究[J].弹箭与制导学报2003,23(1):56-57.
    [8]午新民,王中华.国外机载武器战斗部手册[M].北京:兵器工业出版社,2005.
    [9]Thomas H Bootes, Jesse T Waddell. Multi-mission payload system. USP0223930,2005.
    [10]Kind Code, Yael, Cohen-Arazi,et al. Non-explosive energetic material and a reactive armor element using same. USP0011057,2006.
    [11]Bootes, Thomas H, Castillo, et al. Missile warhead design. USP5939662,1992.
    [12]Adding new punch to Cruise missiles[J]. Jane's International Defense Review, 1998(1):36-42.
    [13]TME pionreers smart fuze for bunker-bunker-busting[J]. Jane's International Defense Review,1999(1):50-55.
    [14]William Walters, Elkton, Daniel R Scheffler, et al. Shaped charge explosive device and method of making same. USP6983698,2006.
    [151国防科工委情报研究所.外军武器装备现状及发展趋势[M].北京:解放军出版社.1994.
    [16]中国兵器工业集团第210研究所.世界兵器发展年度报告(2008)[M].(内部),2009.
    [17]中国兵器工业集团第210研究所.世界兵器发展年度报告(2007)[M].(内部),2008.
    [18]洪元军.外军侵彻弹药及引信技术的最新进展[J].探测与控制学报2000,22(2):8-10.
    [19]方鸿宾.国外破甲弹发展现状.破甲技术文集.1982:255-262.
    [20]刘焕松.步兵便携式武器系统战斗部的新发展[J].国防科技,2005(9):12-13.
    [21]周天胜.串联聚能装药战斗部技术综述[J].弹箭与制导学报,1997,1:61.
    [22]徐辉.防空舰与反航母作战[J].世界军事,2006,12:78-82.
    [23]朱丽华.串联战斗部的演变和发展[J].现代军事,1992,16(4):27-30.
    [24]王成.同口径破—破型串联装药战斗部的试验研究[J].弹箭与制导学报,2002,(2):13-15.
    [25]蒋浩征,周兰庭,蔡汉文.火箭战斗部设计原理[M].北京:国防工业出版社,1982.
    [26]郭志俊,张树才,林勇.药型罩材料技术发展现状和趋势[J].中国钼业,2005,29(4):40.
    [27]Timothy L Spivak, King George, Manurice, et al. Explosively formed penetrator (EFP) and frangnenting warhead USP 6619210,2003.
    [28]Joseph Haney, Dalton Gardens, David Wesson, et al. Shaped charge USP 0056459,2005
    [29]王成,恽寿榕,黄风雷.W型聚能装药射流形成及侵彻的实验和数值仿真研究[J].兵工学报,2003,24(4):451.
    [30]王涛,余文力,王少龙.钻地武器采用的关键技术及实现途径[D].飞航导弹,2005(8).
    [31]谭多望.高速杆式弹丸的成型机理和设计技术[D].中国工程物理研究院博士学位论文,2005.
    [32]Blache A. Weiman K. Shaped Charge with Jetting Projectile for Extended Targets.17th International Symposium on Ballistics, Vol.2,1998, pp.207-215.
    [33]杨亚东,陈智刚.起爆方式对杆式射流形成影响的数值模拟研究[J].弹箭与制导学报,2008,28(5):89.
    [34]Whelan A J, Furnisss D R, Townsley R G. Experimental and simulated (analytical&numerical) elliptical-form shaped charges.20th International Symposium on Ballistics,2002:446-454.
    [35]Baler E L. A Sdaniels. Selectable initiation shaped charges.20th International Symposium on Ballistics,2002,10.
    [36]汪永庆,黄风雷,段卓平.杆式射流的实验初步研究[J].含能材料,2004,12(A02):366-369
    [37]黄正祥.聚能杆式侵彻体成型机理研究[D].南京理工大学博士学位论文,2003.
    [38]王树有.串联侵彻战斗部对钢筋混凝土介质的侵彻机理[D].南京理工大学博士学位论文,2006.
    [39]Flis, W. J., Chou P. C..Penetration of compressible materials by shaped charge jets.7th International Symposium on Ballistics,1983,617-624.
    [40]Y. Kivity.. The penetration cutoff velocity of ideal jets.10th International Symposium on Ballistics,1987,383-388.
    [41]Chou P. C., Foster, J. C.. Theory of penetration by jets of non-linear velocity and in layered targets.10th International Symposium on Ballistics,1987,373-380.
    [42]朱文和,赵有守,李向东.球形破片侵彻有限厚靶板的模型建立与计算[J].弹道学报,1997,9(3):20-23.
    [43]朱学旺,黄寅生,李永池.贯穿有限厚靶板的一种模型[J].弹道学报,2001,13(2):1-6.
    [44]隋树元,王树山.终点效应学.北京:国防工业出版社,2000.
    [45]张先锋,陈惠武,赵有守.EFP对有限厚靶板侵彻过程及后效研究[J].爆炸与冲击,2006,2694):323-327.
    [46]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005.
    [47]庞勇,于川,桂毓林.球缺药型罩爆炸成型弹丸数值模拟[J].高压物理学报,2005,19(1):86-89.
    [48]张明.射流形成及其侵彻混凝土靶的数值计算[A].爆轰研究论文集[C].绵阳:中国工程物理研究院流体物理研究所,1998.177-185.
    [49]Wu Hai-jun, Huang Feng-lei, Zhang Qing-ming, Cao De-qing. Application of ALE Method on the Numerical Simulation of Reinforced Concrete Penetration[J]. Journal of Beijing Institute of Technology(S1004-0579),2002,11(4):405-408.
    [50]J F Molinari. Finite element simulation of shaped charges[J]. Finite Elements in Analysis and Design(S0168-874X),2002,38(3):921-936.
    [51]曹德青,恽寿榕,丁刚毅等.用ALE方法实现射流侵彻靶板的三维数值模拟[J].北京理工大学学报,2000,20(2):171-173.
    [52]D. J. Benson. Computational methods in Lagrangian and Eulerian Hydrodynamics[A]. Computer Methods in Applied Mechanics and Engineering.1992.
    [53]张先锋,陈惠武.三种典型聚能射流侵彻靶板数值模拟[J].系统仿真学报,2007,19(19):4400.
    [54]Gu Changchun, Shi Mingquan. Numerical Simulation of High-velocity Impact with ANSYS/LS-DYNA [J]. Journal of System Simulation 2009.8; 21(15):4621-4624.
    [55]J. F. Molinari. Finite element simulation of shaped charges[J]. Finite Elements in Analysis and De sign 2002,38:921-936.
    [56]E. Lee, M. Finger, W. Collins. JWL Equation of State Coefficients for High Explosives [D]. Lawrence Livermore Laboratory, University of California/Livermore,1973.
    [57]时党勇,李裕春等.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2009.
    [58]李裕春,时党勇等.ANSYS 11.0基础理论与工程实践[M].北京:中国水利水电出版社,2008.
    [59]周栋,王志军,吴国栋.曲率半径和壁厚对EFP成形性能的影响[J].华北工学院学报,2004,25(1):39-42.
    [60]李裕春,杨万江,沈蔚.药型罩曲率半径对爆炸成型弹丸参数的影响[J].火工品,2003,1:45-48.
    [61]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [62]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [63]LSTC, LS-DYNA Keyword User's Manual. Version 970. Nonlinear Dynamic Analysis of Structures in Three Dimensions. Livermore Software Technology Corporation, Livermore,2005
    [64]Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. Proceedings of the Seventh International Symposium on Ballistics, The Hague,1983.
    [65]涂侯杰,怦寿榕,赵衡阳.破爆型串联战斗部第一级爆炸对第二级影响的研究[J].兵工学报,1994,14(3):18-22.
    [66]张先锋,陈惠武.破爆型串联战斗部前级对后级影响数值模拟[J].弹箭与制导学报,2006,26(2):67-69.
    [67]Hallquist J O, LS-DYNA Theoretical manual[M]. LSTC:1998.
    [68]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [69]王仲仁,苑世剑.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,1997
    [70]Backman M, Goldsmith W. The mechanics of penetration of projectiles into targets[J]. Int J Engng Sci,1978,16(1):1-108.
    [71]Brvik T, Langseth M, Hopperstad O S, et al. Ballistic Penetration of Steel plates[J]. International Journal of Impact Engineering,1999,855-886.
    [72]钱伟长.穿甲力学[M].北京:国防工业出版社,1984
    [73](美)迈耶斯著,张庆明等译.材料的动力学行为[M].北京:国防工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700