特种小型机电引信设计及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代战争中,特别是在恐怖活动日益猖獗的形势下,适合城市巷战使用的单兵空炸榴弹成为世界各国研究的重点,而特种小型机电引信则决定其起爆方式和毁伤威力,是小口径弹药设计的瓶颈。实现特种小型机电引信灵巧化设计能够大幅度提高小口径武器弹药的作战性能。
     特种小型机电引信灵巧化设计体现为引信小型化和功能化设计。本文以某型小口径单兵武器采用的空炸榴弹为应用背景,对其特种小型机电引信灵巧化设计进行了系统的研究,具体内容包括:小口径空炸引信总体设计、微机电(MEMS)安全与解除保险装置设计、膛内电磁感应供能及信息装定的电磁场分析以及引信电路软硬件设计。
     针对小口径弹药引信的需求、设计要求和技术难点,从微小型安全与解除保险装置、空炸作用体制、可编程装定方法和引信电源四个方面,对小口径榴弹空炸引信各组成部分进行详细的分析讨论;并以此为依据,构建某小口径榴弹空炸引信设计的框架,归纳其关键技术。
     安全与解除保险装置是引信不可或缺的重要组成部分,本文探讨了以引信微机电安全与解除保险装置为核心内容的引信小型化技术;分析和设计了两种引信微机电安全与解除保险装置,详细分析了其关键部件的设计,包括储能弹簧部件、后坐滑块延期机构、电磁驱动机构;并通过与国家同步辐射实验室联合微机电加工工艺的研究,展开了微机电安全与解除保险装置的微加工制作。
     感应装定技术是实现引信智能化设计的核心,本文采用膛内电磁感应供能、信息装定作为小口径空炸引信感应装定技术。在该技术支撑下,一方面,能够将战场信息迅速传递给引信,实现引信可编程功能;另一方面,能将电磁能储存作为引信全弹道工作所需能量,使得引信不需要增加额外电源,进一步实现引信小型化设计的目的。
     膛内电磁感应供能、信息装定技术的实施,本质上都是通过交变电磁场实现能量的传递。由于交变电磁场的作用,金属发射管内产生涡流,降低了系统能量传递效率。本文以麦克斯韦尔电磁场基本方程推导出了电磁场在金属发射管中的电磁渗透方程;分别从电磁场时域、频域分析了小口径金属发射管壁电磁场的扩散过程,经过分析得出:钛金属发射管壁外缠绕线圈磁场频率小于2.5KHz,才能保证发射管内部磁场强度约为管外磁场强度的80%;频率越高,衰减越快。根据电流法求解模型,计算、分析了小口径金属发射管壁涡流的损失功率。
     小口径空炸引信电路系统是特种小型机电引信关键所在。本文分析了小口径空炸引信的功能特点及电路设计要求、电路模块组成,并对各模块的选取、设计思路进行了探讨;分析了引信低功耗设计的意义,建立了引信电路功耗模型,从静态功耗和动态功耗两个角度分析了功耗影响因数;分析了电路系统的电磁兼容性,从硬件和软件设计两个角度探讨了空炸引信电路电磁兼容设计方法。
     从电路硬件、软件、低功耗以及电磁兼容角度,设计了某型特种小型机电引信原理样机。经过静、动态模拟试验结果表明,其性能满足某型特种小型机电引信的设计要求。该系统能够实现在膛内1s内完成感应供能和数据装定,样本空间内装定数据完全准确,储存能量能够实现为引信全弹道工作时间不少于8s的时间要求。
In the current situation of modern wars, especially where the terrorist activities are rampant, it has become the emphasis of many nations to research on small-caliber air-burst ammunition, which is perfect for city wars and street wars; To a small-caliber air-burst ammunition, the special type small electro-mechanical fuze is the brain that determines the location and damage power of the explosion. The realization of the smart design of special type small electro-mechanical fuze can improve the combating performance of small-caliber weaponry system greatly.
     Smart designing of special type small electro-mechanical fuze means the fuze that is miniaturized and intelligentized. This essay conducts systematic researches into smart designing of the special type fuze in the application background of a small-caliber weapon adopting air-burst ammunition. The researches include those on:small-caliber air burst fuze design, MEMS fuze technology, technology of electromagnetic inductive power supplying and information setting field in bore, and hardware and software design of fuze circuit.
     For the demands, design requirements, and technical difficulties of small-caliber ammunition fuze, this essay analyzes on the four aspects of fuze in detail:small safe and arming(S&A) device, the action principle of aerial bombardment, programmable setting method and fuze power. Basing on the analyses, a small-caliber grenade fuze design framework is constructed and its key technologies are proposed.
     The safe and arming device is an indispensable part of fuze. The technology of fuze-downsizing, which focuses on the MEMS safe and arming device, is discussed in this essay. Two kinds of MEMS safe and arming devices and theirs parts are analyzed and designed, such as components of energy storage, zigzag setback time delay device, and electromagnetic drive mechanism. Furthermore, with the help of national synchronic radiation laboratory, the micro fabrication technique of the MEMS safe and arming device is in the process on the basis of researches on MEMS fabrication technique.
     Inductive setting technology is the core of the realization of fuze smart designing. In this essay, the technology of electromagnetic inductive setting and inductive power supplying in bore is adopted to construct the small-caliber induction fuze. Equipped with this technology, on one hand, battlefield information can be promptly delivered into fuze to realize the programmable function; on the other hand, electromagnetic energy can be restored for the fuze working in the whole trajectory. Which saves additional power source equipment, and realizs the fuze-downsizing still further.
     The realization of electromagnetic inductive power supplying and information setting field in bore, in essence, is the energy transfer through the medium of alternate electromagnetic field. And because of that, eddy current is generated in the metal barrel, reducing efficiency of energy transfer. Electromagnetic penetration equation is deduced from Maxwell's basic equations of electromagnetic field. Analysis on the diffusion process of the electromagnetic field of small caliber metal launch barrel wall from electromagnetic field time domain and frequency domain respectively leads to the result that:the magnetic field frequency of excitation coil must be less than 2.5kHz to guarantee the internal magnetic field strength of about 80% of the external. The higher the frequency rises, the faster the penetration attenuates. Also, the calculation of eddy current's wasted power in small caliber metal launch barrel wall is discussed from the current solving model.
     The circuit system of small-caliber air burst fuze is the core of special type small electro-mechanical fuze, who's features, design requirements, module composing as well as module selecting and design ideas are analyzed in this essay. About low-power consumption design, its significance is discussed and a fuze circuit power model is constructed to analyze the influence factors from aspects of static power and dynamic power; about EMC (electromagnetic compatibility) design, its design methods are discussed from the aspects of hardware and software.
     A prototype model of special type small electro-mechanical is designed from aspects of hardware, software, low power consumption and EMC of the circuit. The outcomes of both static and dynamic experiments indicate that the special type small electro-mechanical fuze meet the performing requirements. This system realizes the inductive energy supplying and data setting within 1 s with the 100% accuracy, and the restored energy meets the requirement of providing power to work no less than 8s for the fuze in the whole trajectory.
引文
[1]丁立波.小口径空炸引信炸点控制技术研究.南京理工大学博士学位论文,2004
    [2]冯大权.功能奇特的现代引信.现代军事.2000(9):46-47
    [3]高晓敏.新概念信息化弹药的现状与发展.四川兵工学报.2008,29(4):69-72
    [4]马宝华.马宝华教授学术论文集.北京:国防工业出版社,2003
    [5]王雨时.我国引信技术发展刍议.国防技术基础.2005(12),31-34
    [6]张文柱.现代小口径高炮巡航导弹的克星.世界航空航天博览.2005(1):107-109
    [7]王雨时.小口径火炮多功能弹发展述评.国防技术基础.2006(12):34-37,46
    [8]赵广波,刘颖杰,张富顺,等.小口径榴弹触发引信“三化”方案初探.兵工标准化.1998(12):1-3
    [9]李执力,曹宁.小口径高炮及其弹药现状和发展趋势.地空防空武器.2004(1):52-54
    [10]朱森元.小口径速射火炮武器系统发展展望.兵工自动化.2008(6):1-4,8
    [11]柴国君.新世纪轻武器弹药发展走向.国防科技.2001(10):61-62
    [12]周晓东.引信能量和信息非接触传输系统设计理论及其应用研究.南京理工大学博士学位论文,2005
    [13]陈熙,张冠杰,刘腾谊.35mm高炮技术基础.北京:国防工业出版社.2002
    [14]Grant Moule. Susan Franciscus. OICW fire control system.34th Annual Gun & Ammuni-tion Symposium & Exhibition,1999
    [15]J. Q. Schmidt. An automatic velocity dependant delay system for use within and beyond the muzzle blast region of a gun. AD-A121260,1982
    [16]Einefors Ulf.40mm insensitive munitions for combat vehicle armament.34th Annual Gun & Ammunition Symposium & Exhibition,1999
    [17]于新峰,高敏.美军引信技术最新发展动态.第十三届引信学术年会论文集,2003
    [18]洪元军.引信技术发展现状和趋势分析.第十三届引信学术年会论文集,2003
    [19]Allan Buckley. Air bursting munition for 40mmx53 automatic grenade launchers. The 47th fuze conference.2003
    [20]Anon. USA accelerates plan for aerial strike on Iraq. Jane's Defense Weekly.1998(4)
    [21]John Pike.XM1019 High Explosive Air Bursting. http://www.global security.Org /military/systems/munitions/m 1019.htm
    [22]谭麒麟.金属管武器感应装定系统能量和信息传输通道研究与设计.南京理工大学硕士学位论文,2008
    [23]美国军用手册引信分册,MIL-HDBK-757,1994
    [24]A. R. Cumming and C. O. Peterson. Remote settable fuze information link. US. Patent 4144815,1979
    [25]C.L. Eickerman. Muzzle velocity compensating apparatus and method for remote set fuze. US. Patent 4267776,1981
    [26]郑文荣.引信遥控装定方法研究.海军工程大学学报.2001(5):100-103
    [27]Redmond. Aircraft to weapon fuze communication link. US. Patent 4091734,1978
    [28]Chandler. Ammunition with surface-mounted light-settable pickup arrangement for digital memory storage. US. Patent 4318342,1982
    [29]O. Malley. Optically set fuze system. US. Patent 5247866,1993
    [30]张峰,李杰.一种用于引信装定的自适应匹配信号与能量传输方法.探测与控制学报.2002(4):58-61
    [31]张比升,张河.信息化下的小口径高炮近程防空反导体制中引信发展对策研究,探测与控制学报.2006(4):1-5
    [32]陈力,张晓炜,潘宗仁.分体式磁电源和膛口感应装定的兼容性研究.探测与控制学报.2004,26(2):47-50
    [33]王秋生,李新,徐听.引信炮口感应供电技术研究.探测与控制学报.2005,27(3):44-51
    [34]郑传军.电子时间引信炮口感应装定技术及实验研究.南京理工大学博士论文,1999
    [35]翟性泉.引信作用时间修正方法与炮口快速装定技术.南京理工大学博士论文,1999
    [36]翟性泉,郑传军,何振才等.电子时间引信装定的数据编码与压缩方法.南京理工大学学报.1999(1):69-72
    [37]陈荷娟,黄学功,赖百坛等.炮口感应装定技术研究.南京理工大学资料,2003
    [38]郑传军,翟性泉,何振才.引信作用时间炮口快速装定系统中火炮涡流损耗特性的探讨.兵工自动化.1999(3):24-25
    [39]郑传军,翟性泉,何振才.炮口电磁感应快速装定引信作用时间装定窗口特性分析.弹道学报.1999(1):38-43
    [40]黄学功,王利,赖百坛.炮口感应装定系统电磁场特性分析.弹道学报.2003(6):68-72
    [41]Y.kouya. Contactless power supply. Japan patent 1184108,1983
    [42]Shin-ichi Adachi,F. Sato, S. Kikuchi. Consideration of contactless power station with selective excitation to moving robot. IEEE Transactions on Magnetics. 1999(5):3583-3585
    [43]J. Hirai,Tae-Woong Kim,A. Kawamura. Practical study on wirelesss transmission of power and information for autonomous decentralized manufacturing system. IEEE Transaction on Industrial Electronics.1999(2):349-359
    [44]A.Esser, H. C. Skudelny, A new approach to power supplies for robots, IEEE Transaction Industral Application.1991(5):872-875
    [45]R. L. Steigerwald,C. F. Saj,G. A. Croff. Analysis and design of a contactless rotary power transfer system. Proceedings of IEEE Annual Power Electronics Specialists conference. 2001 Vol(4):2125-2130
    [46]A.Kawamura, K.Ishioka and J.Hirai, Wireless transmission of power and information through one high-frequency resonant AC link inverter for robot manipulator applications, IEEE Transactions on Industry Applications.1996(3):503-508
    [47]A. Kawamura,J. Hirai,Y. Aoyama. Autonomous decentralized manufacturing system using high-speed network with inductive transmission of data and power. Proceedings of IEEE Industrial Electroncs Conference,1996 Vol(2):940-945
    [48]J. Hirai,Tae-Woong Kim,A. Kawamura. Integral motor with driver and wirelesss transmission of power and information for autonomous subspindle drive. IEEE Transactions on Power Electronics.2000(1):13-20
    [49]J. Hirai,Tae-Woong Kim, A. Kawamura. Wireless transmission of power and information and information for cableless linear motor drive. IEEE Transactions on Power Electronics.2000(1)21-27
    [50]K. W. Klontz,D. M. Divan,D. W. Novotny,etc. Contactless power delivery system for mining applications. IEEE Transaction on Industry applications.1995(1):27-35
    [51]G RobertS,P. Hadfield. Design and evaluation of the power and data contactless transfer device. Proceedings of IEEE Aerospace Applications Conference,1997 Vol(3):523-533
    [52]C. A. Bleijs,O. Normand. A fully automatic station using inductive charging techniques. Proceedings of the 13th international electric vehicle symposium,1998
    [53]H. Sakamoto,K. Harada,S. Washimiya,K. Takehara. Large air-gap coupler for inductive charger. IEEE Transaction on Magnetics.1995(5):3526-3528
    [54]M. D. Feezor,F. Y. Sorrell,P. R. Blankinship. An interface system for autonomous undersea vehicles. IEEE Jounal of Oceanic Engineering.2001(4):522-525
    [55]G. A. Covic,G. Elliott,O. H. Sttielau. The design of a contat-less energy transferr system for a people mover system. Proceedings of IEEE international conference on Power System technology.2000 Vol(1):79-84
    [56]J. Hirai,Tae-Woong Kim,A. Kawamura. Study on intelligent battery charging using inductive transmission pf power and information. IEEE Transactions on Power Electronics.2000(2)335-344
    [57]Y. Jang,M. M. Jovanovic. A contactless electrical energy transmission system for portable-telephone battery chargers. IEEE Transaction on Industrial Electronics. 2003(3):520-526
    [58]C. G Kim,D. H. Seo. Design of a contactless battery for cellular phone. IEEE Transactions on Industrial Electronics.2001(6):1238-1247
    [59]G. B. Joung, B. H. Cho,An energy transmission system for an artificial heart using 1 eakage inductance compensation of transcutaneous transformer. IEEE Transactions on Power Electronics.1998(6):1013-1022
    [60]P. R. Troyk,M. A. Schwan. Class E driver for transcutaneous power and data link for implanted electronic devices. Medical & Biological Engineering & Computing. 1992(1):69-75
    [61]Z. Hamici,R. Itti,J. Champier. High-efficiency power and data transmission system for biomedical implanted electronic devices. Measurement Science & Technology. 1996(2):192-201
    [62]H. Sakamoto,S. Washimiya. Magnetic coupled power and data transferring system with a detachable transformer. IEEE Transactions on Magnetics.1996(5):4983-4985
    [63]H. Abe,H. Sakamoto,K. oosuke Harada,A noncontact charger using a resonant converter with parallel capacitor of the secondary coil. IEEE Transactions on Industrial Electronics. 2000(2):444-451
    [64]A.Esser, H. C. Skudelny, A new approach to power supplies for robots, IEEE Transaction Industral Application.1991(5):872-875
    [65]Y. Hiraga,J. Hirai,A. Kawamura. Decentralized control of machines with the use of inductive transmission of power and signal, the Conference Recording of IEEE Industrial Applications Society Meeting.1994 Vol(2):875-881
    [66]J. Hirai,Tae-Woong Kim,A. Kawamura. Study on crosstalk in inductive transmission of power and information. IEEE Transactions on Industrial Electronics.1999(6):1174-1182
    [67]H. Sakamoto,K. Harada. A novel converter for non-contact charging through electro-magnetic coupling. IEEE Transactions on Magnetics.1993(6):3228-3230
    [68]H. Sakamoto,K. Harada. A novel circuit for non-contact charging through electro-magnetic coupling. IEEE Transactions on Magnetics.1994(6):4755-4757
    [69]H. Sakamoto,K. Harada. A magnetic coupled charger with no-load protection. IEEE Transactions on Magnetics.1998(4):2057-2059
    [70]C. M. Zierhofer,High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Transactions on Biomedical Engineering. 1990(7):716-722
    [71]C. M. Zierhofer,A class-E tuned power oscillator for inductive transmission of digital data and power. Proceedings of the 6th Mediterranean Electrotechnical Conference,1991 Vol(1):789-792
    [72]J. Murakami,F. Sato,T. Watanabe. Consideration on cordless power station-contactless power transmission system. IEEE Transactions on Magnetics.1996(5):5037-5039
    [73]F. Sato,H. Matsuki,S. Kikuchi. A new meander type contactless power transmission system-active excitation with a characteristics of coil shape. IEEE Transactions on Magnetics.1998(4):2069-2070
    [74]C. M. Zierhofer,E. S. Hochmair. Coil Design for improved power transfer effieciency in inductive links. Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1996 Vol(4):1538-1539
    [75]C. M. Zierhofer,E. S. Hochmair. Geometric approach for coupling enhancement of magnetically coupled coils. IEEE Transactions on Biomedical Engineering.1996(7): 708-714
    [76]F. Nakao,Y. Matsuo,M. Kitaoka,H. Sakamoto. Ferrite core couplers for inductive chargers. Proceedings of IEEE Power Conversion Conference.2002:850-854
    [77]T. Bieler,M. Perrottet,V. Nguyen,Y. Perriard. Contactless power and information transmission. IEEE Transactions on Industry Applications.2002(5):1266-1272
    [78]董慧芬.感应电能传输技术的研究.河北工业大学硕士学位论文.2002
    [79]季颖.非接触IC卡的研究和设计.中国科学院硕士学位论文,2000
    [80]沈广鸿.非接触IC卡系统研究与设计.安徽大学硕士学位论文,2002
    [81]孙军,于宗文,赵媛清.一种旋转部件非接触供电方法.应用科技.1998(5):12-23
    [82]陈仁文.旋转件非接触信号传输中的通道特性研究.传感器技术.2003(10):9-12
    [83]武瑛.新型无接触供电系统的研究.中国科学院电工研究所,2004
    [84]Farace, Louis Pasqual, Kaslow, etc. Electronic turns-counting fuze and method therefore. U.S. Patent 5,705,766,1998
    [85]Reisman, Elias, Wilson, etc. Roll reference sensor. US Patent 4,328,938,1982
    [86]Farace,Louis P. Electronic turns counting safety and arming mechanism. US Patent 4,470,351,1984
    [87]Masako Tanaka. An industrial and applied review of new MEMS devices features. Microelectronic Engineering.2007,5-8(84):1341-1344
    [88]格雷戈里.微传感器与微执行器全书.北京:科学出版社,2003
    [89]Y.S. Jeong. Micro-optical waveguide on micro-actuating platform and its application in variable optical attenuator. Optical Fiber Technology.2006,1(12):38-47
    [90]Janusz B. Impact of MEMS technology on society. Sensors and Actuators.1996,56:1-9
    [91]牛兰杰.微机电技术在引信中的应用.中国兵工学会十五届引信年会论文集,2007
    [92]李枚.微马达在微机械密码锁中的应用.压电与声光.2001(23):488-490.
    [93]高杨.LIGA工艺在工程中的两类应用.核技术.2002,10(25):883-888
    [94]陈光焱.一种高g值微冲击开关的研制.爆炸与冲击.2007,2(27):190-192
    [95]席占稳.MEMS传感器及在引信中的应用研究.南京理工大学博士学位论文,2003
    [96]石庚辰.引信用微机电传感器.探测与控制学报.2000,12,4(22):31-35
    [97]石庚辰.微机械加速度传感器及应用.测控技术.2003,3(22):5-8
    [98]李华.MEMS平面微弹簧弹性系数的研究.探测与控制学报.2005,10,4(27):41-43
    [99]王士伟.基于MEMS的引信保险机构综合分析.探测与控制学报.2006,6(28):55-58
    [100]郝永平.基于MEMS惯性延时机构的动态特性分析与仿真.探测与控制学报.2007,4,2(29):38-41
    [101]牛兰杰.基于有限元法的MEMS后坐保险机构运动特性研究.探测与控制学报.2006,4(28):15-18
    [102]刘小岗.有限元法在MEMS安全系统仿真中的应用.探测与控制学报.2006,1(28):14-16
    [103]高建忠.微型引信MEMS安保装置及其关键技术研究.西安交通大学博士学位论文,2006
    [104]Robinson. Miniature, Planar, Inertially-Damped, Inertially-Actuated Delay Slider Actuator. U.S:Patent No.5705767,1998
    [105]Robinson. Ultra-miniature, monolithic, mechanical safety-and-arming (S&A) device for projected munitions. U S:Patent No.6,167,809,2001
    [106]Robinson. MEMS-BASED ARCHITECTURE TO IMPROVE SUBMUNITION FUZE SAFETY AND RELIABILITY, http://www. Storming media, us/12/1272/ A127234.html,2007
    [107]Sandia National Laboratories. Sandia National Laboratories Annual Report 2004-2005. http://developcarlsbad.org/v2/images/stori es/2004-2005_cdod_annual_report.pdf,2005
    [108]David R.Koehler. Microelectromechanical Safing And Arming Apparatus. U.S:Patent No.7051656B 1,2006
    [109]H.Last. Nano-to-Millimeter Scale Integrated Systems. IEEE/Tansactions on Compo-nents and Packaging Technologies,1999,2(22):153-158
    [110]Maurerl. Method For Utilizing A MEMS Safe Arm Device For Microdetonation. U.S:PatentNo.7007606B1,2006
    [111]黄峥.重视顶层设计和基础研究努力推进我国引信技术的发展.中国兵工学会十五届引信论文集,2007
    [112]孔祥东,张玉林,宋会英.LIGA工艺的发展及应用.MEMS器件与技术,2004(5):13-18
    [113]徐泰然.MEMS和微系统——设计和制造.北京:机械工业出版社,2004
    [114]张树明.某枪榴弹引信研究.南京理工大学硕士学位论文,2006
    [115]沈显模.一种小口径旋转弹引信用安全和解除保险机构设计.南京理工大学硕士学位论文,2008
    [116]王雨时.炮弹引信炮口保险性能指标分析.探测与控制学报.2000,22(3):11-18
    [117]王雨时.对GJB373A《引信安全性设计准则》的探讨.军用标准化标准探讨.2001(2):28-31
    [118]王雨时.轻武器弹药爆炸化的发展趋势及其引信的发展问题.国防技术基础.2004(2):23-24
    [119]王雨时.引信安全系统及安全性现状与发展对策.探测与控制学报.2008,30(6):1-7
    [120]王雨时,王尔林,何莹台.冗余保险要求及其在小口径炮弹引信中的实现途径评价.现代引信.1993(4):52-58
    [121]马宝华.现代引信设计哲学.现代引信.1993(4):6-14
    [122]马少杰,杜建根,张河.小口径弹引信机电安全保险机构的润滑设计.润滑与密封.2005(5):145-147
    [123]李豪杰,张河.引信安全系统及其功能范畴探讨.探测与控制学报.2006,28(5):4-7
    [124]石庚辰,王翠珍,瞿性泉,等.引信安全系统冗余设计方法研究.兵工学报.1996,17(2):111-115
    [125]崔占忠.引信发展若干问题.探测与控制学报.2008,30(2):1-4
    [126]王雨时.引信安全性设计指南.南京:南京理工大学出版社,2005
    [127]常娟.引信磁流变液延期解除保险结构研究.南京理工大学硕士学位论文,2007
    [128]石庚辰.关于开展引信机电一体化安全系统研究的一些看法.现代引信.1994(1):18-21
    [129]何振才.引信空炸炸点精确控制技术研究.南京理工大学博士学位论文,2006
    [130]曹成茂,丁立波.基于计转数定距的小口径炮空炸引信设计研究.弹道学报.2004,16(4):82-86
    [131]周晓东,张河.用于引信的能量和信息非接触同步传输技术.兵工学报.2003,24(3):424-426
    [132]郑传军,张可佳,翟性泉,等.引信作用时间炮口电磁感应快速装定方法.南京理工大学学报.1999,23(3):212-215
    [133]程翔,黄文良,陆静.自动榴弹发射器引信及其计转数方法.探测与控制学报.2001.23(2):1-4
    [134]黄涛.弹丸转速的传感器测量方法.弹箭与制导学报.2002,22(4):69-74
    [135]L. D. Flippen. Improving Fuze Range Sensing in Small/Medium Caliber Munitions.30 April 2002. Presentation at NDIA 46th Annual Fuze Conference
    [136]王颖翌.基于金属管壳的引信信息交联技术研究.南京理工大学硕士学位论文,2007
    [137]马少杰,张合,李长生,等.小口径火炮引信弹链电磁感应装定仿真分析.兵工学报.2009,30(4):419-424
    [138]崔占忠,宋世和,徐立新.近炸引信原理(第二版).北京:北京理工大学出版社,2005
    [139]何振才.高精度电子时间引信方案研究.南京理工大学硕士学位论文,1998
    [140]陈力,潘宗仁,马君.一种新型膛内供电电磁感应物理电源.探测与控制学报.2003,25(4):39-41
    [141]程顺,刘飘楚,崔占忠.适合电子时间引信用新型电源.探测与控制学报.2004,26(2):21-23
    [142]路荣先.引信“灵巧化”设计的几个技术问题.电子技术参考.1994(4):1-8
    [143]孙全意,丁立波,张河.小口径空炸引信地磁计转数原理研究.探测与控制学报.2001,23(4):14-17
    [144]王康谊,黄江,李世中.电子时间引信在小口径弹药中应用的关键技术.四川兵工学报.2008,29(2):87-88
    [145]孙加存,陈荷娟.小口径机电引信压电电源研究.探测与控制学报.2005,27(5):34-36
    [146]吴志亮,常娟,冯鹏洲,等.引信用MEMS平面微弹簧弹性系数分析.南京理工大学学报.2008,32(2):140-144
    [147]冯鹏洲.微机电安全与解除保险装置关键技术研究.南京理工大学硕士学位论文,2008
    [148]石磊,李建华,陈迪等.S型MEMS平面微弹簧的制备和表征研究.机械加工及自动化.2004(1):19-21
    [149]刘鸿文.材料力学(Ⅱ).北京:高等教育出版社,1992
    [150]李海军,杨拥军.大位移低电压驱动MEMS静电梳齿驱动器的设计与研究.微纳电子技术.2002(7):27-30
    [151]谌贵辉,张万里,彭斌等.微执行器驱动机理研究.微电机.2005,38(9):61-63
    [152]雷银照.电磁场.北京:高等教育出版社,2008
    [153]李启磊.MEMS引信安全与解除保险装置的结构设计.南京理工大学硕士学位论文,2009
    [154]毕珊.MEMS引信安全系统的微驱动器研究.南京理工大学硕士学位论文,2008
    [155]张晓鹏,戴旭涵,苗小丹,丁桂甫,赵小林.一种新型MEMS双稳态微电磁驱动器的研究.传感器与微系统.2009,28(6):117-120
    [156]苏宇锋,段智勇,郑鹏,等.内嵌永磁体阵列的柔性振动膜微型电磁驱动器的设计与制作工艺.仪表技术与传感器.2009(4):58-61
    [157]李德胜,王东红,孙金玮.MEMS技术及其应用.哈尔滨:哈尔滨工业大学出版社,2003
    [158]伊福廷.LIGA技术研究.中国科学院高能物理研究所博士学位论文,2000
    [159]黄新龙.若干微电子机械系统研制及相关LIGA工艺研究.中国科学技术大学博士学位论文,2009
    [160]傅建中,胡旭晓.微系统原理与技术.北京:机械工业出版社,2005
    [161]郭育华.LIGA技术制作高性能微电子机械模具及其脱模性能的研究.中国科学技术大学博士学位论文,2007
    [162]隋丽,石庚辰,穆斌.引信MEMS机构微装配研究.探测与控制学报.2008,30(3):64-71
    [163]C.H.Robinson, T.Q.Hoang, M.R.Gelak et al. Materials, Fabrication, And Assembly Tech-nologies For Advanced MEMS-Based Safety And Arming Mechanism For P-rojectile Munitions. J.F.Rasmussen Axsun Technologies.2006
    [164]吴志亮,朱继南,张合.MEMS引信部件LIGA制作工艺及其问题分析.探测与控制学报.2008,30(5):48-51
    [165]冯慈璋,马西奎.工程电磁场导论.北京:高等教育出版社,2000
    [166]邓海,胡先权,蒋明宇,等.似稳条件下导体圆柱面内的涡电流分布研究.重庆师范大学学报.2004,21(3):28-30
    [167]冯慈璋.电磁场(第二版).北京:高等教育出版社,2000
    [168]叶其孝,沈永欢.实用数学手册.北京:科学出版社,2006
    [169]何秀,颜国正,马官营.互感系数的影响因素及其对无线能量传输系统效率的影响.测控技术.2007,26(11):57-60
    [170]李建贵.无接触电能传输系统可分离变压器性能研究.河北工业大学硕士论文,2006
    [171]闫卓.无接触能量传输系统初级变换器的设计.河北工业大学硕士论文,2007
    [172]傅文珍,张波,丘东元,等.自谐振线圈耦合式电能无线传输的最大效率分析与设计.中国电机工程学报.2009,29(18):21-26
    [173]G.Vandevoorde. R.Puers.Wireless energy transfer for stand-alone systems:a comparis-on between low and high power applicability.Sensors & Actuators.2001(92):305-311
    [174]Xiuquan, Liu Ping Huang, Zhaorui Zeng. Study on Techniques of Outside Energy Supply for the Wireless Capsule Endoscope.2007(3):203-205
    [175]M. Jufer, N. Macabrey, M. Perrottet.Modeling and test of contactless inductive energy transmission.Mathematics and Computers in Simulation.1998(46):197-211.
    [176]Shao-Kang Hu, Tse-Chuan Chou, etc. Effect of cathode structure on cell performance in wirelesscharging process. Journal of Power Sources.2005(146):606-610
    [177]王利.电引信设计及其应用.北京:国防工业出版社,2006
    [178]张合.引信机构学.北京:北京理工大学出版社,2007
    [179]孙全意,江小华,张河.引信用振荡器使用准则及性能实验研究.弹道学报.2002(3):37-40
    [180]陈静华.SOC芯片低功耗设计.湖南大学硕士学位论文,2005
    [181]孙世鹏.MCU低功耗设计技术及其功耗分析.天津大学硕士学位论文.2006,1
    [182]何艳.低功耗芯片技术的研究及其RFID中的应用.复旦大学博士学位论文.2008,4
    [183]黄学功,陈荷娟.炮口感应装定引信电路低功耗设计.南京理工大学学报.2007,31(5):550-553
    [184]靳孝峰.单片机原理与应用.北京:北京航空航天大学出版社,2009
    [185]何祥.基于时钟控制的高性能微处理器低功耗设计技术研究.国防科学技术大学工程硕士学位论文.2006
    [186]张杰.基于硬件的动态低功耗自适应技术研究.国防科学技术大学硕士学位论文.2004
    [187]羊性滋.CMOS电路的低功耗设计技术.半导体技术.1996(6):45-50
    [188]马洪涛,沙占友,王彦朋.LDO与VLDO的设计原理及性能测试.电源技术应用.2006,9(17):26-29
    [189]路宏敏.工程电磁兼容.西安:西安电子科技大学出版社,2003
    [190]周旭.电子设备防干扰原理与技术.北京:国防工业出版社,2005
    [191]大卫A.韦斯顿.电磁兼容原理与应用.北京:机械工业出版社,2006
    [192]杨克俊.电磁兼容原理与设计技术.北京:人民邮电出版社,2004
    [193]邱众等.电磁兼容标准与认证.北京:北京邮电大学出版社,2001
    [194]电磁兼容标准汇编(基础、通用卷).北京:中国标准出版社,2002
    [195]电磁兼容标准汇编(电工、电子产品类卷).北京:中国标准出版社,2002
    [196]杨克俊.电磁兼容原理与设计技术.北京:人民邮电出版社,2004
    [197]黄学功.炮口感应装定引信技术及试验研究.南京理工大学博士学位论文,2005
    [198]杨会军.多管火箭弹引信感应装定技术.南京理工大学博士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700