基于数字信道化接收机LPI雷达信号参数估计与分选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低截获概率(LPI:Low Probability of Intercept)雷达的出现,对现代被动侦察接收机和反辐射导弹导引头提出了新的挑战。脉冲压缩雷达是一种LPI雷达,该体制雷达可将接收到的长脉冲雷达信号压缩为窄脉冲,在降低了截获概率的同时,提高了雷达的距离分辨率。传统接收机已不能有效截获此类雷达信号,因此,研制具有保存脉冲压缩雷达信号频率以及相位信息功能的宽带数字接收机势在必行。数字信道化接收机作为一种较为成熟的宽带数字接收机体制,可以有效实现对不同体制雷达信号的“盲接收”。
     完整接收到信号后,需要应用一些数字信号处理算法对脉冲压缩雷达信号的调制参数进行提取。脉冲压缩雷达信号最为普遍采用的信号类型包括相位编码(PSK:Phase Shift Keying)信号和调频(FM:Frequency Modulation)信号,PSK信号中最常用的是二相编码(BPSK:Binary Phase Shift Keying)信号和四相编码(QPSK:Quadrature Phase Shift Keying)信号;FM信号包括线性调频(LFM:Linear Frequency Modulation)及非线性调频(NLFM:Non Linear Frequency Modulation)信号。PSK信号的参数估计包括提取信号载频、码元速率以及编码规律;LFM信号参数估计主要完成信号初始、终止频率以及调频斜率的提取;而对NLFM信号的处理,主要完成信号相位多项式系数的估计。
     信号分选部分主要针对从信道化接收机输出的雷达信号参数,首先进行雷达信号预分选,去除不符合要求的雷达信号,对威胁信号进行去交错,达到稀释脉冲信号流的目的;再通过单脉冲的到达时间计算脉冲串的重复间隔,完成主分选。
     论文围绕宽带数字信道化接收机平台截获和识别脉冲压缩雷达信号,对PSK雷达信号和FM雷达信号的参数估计算法进行了深入的研究,对雷达信号分选算法进行了细致的探讨。
     在宽带信道化接收技术方面,推导出了基于多相滤波与快速傅里叶变换(FFT:Fast Fourier Transform)相结合的高速高效数字均匀信道化结构。在信道化后续处理中,采用CORDIC算法实现了对信号瞬时幅度和相位的提取,针对信道化结构第0个信道输出数据为实数,不能正确提取信号相位和幅度的问题,提出基于Hilbert变换的0信道复数化处理方法。
     在雷达信号参数估计方面,首先,应用频谱分析法对雷达信号脉内调制类型进行分类。应用循环自相关法实现对PSK信号的调制类型识别,可区分BPSK信号和QPSK信号,针对此类信号的参数提取,提出了基于积分包络的PSK信号参数估计方法,结合信号载频,可估计信号的子码宽度及编码规律;针对LFM信号参数估计问题,仍可应用积分包络法,可实现对此类信号的调频斜率、初始以及终止频率的估计;采用三次相位函数(CPF:Cubic Phase Function)法可实现对LFM及NLFM雷达信号的参数估计,可提取此类信号相位多项式的各系数,针对该算法计算量大的问题,提出调频斜率搜索范围设定准则,另外,提出双尺度调频斜率搜索法,可减少大量计算量,同时保持了算法精度。
     在信号分选方面,为了解决传统方法不能有效分选高密度复杂雷达信号,以及现有聚类方法达不到实时性要求的问题,提出一种利用雷达脉冲信号特征参数,基于改进的模糊聚类的雷达信号预分选方法。在改进的算法中,提出了距离加权系数的概念,依据信息熵使各参数距离加权系数的设置更加合理化。采用追踪法计算等价模糊矩阵,并提取聚类后的脉冲序号更具有实际意义。在雷达信号主分选方面应用修正的脉冲重复间隔(PRI:Pulse Repetition Interval)算法测量雷达信号的PRI。在硬件实现上提出一种非均匀设定PRI箱宽度的方法,可节省大量的算法时间,提高系统实时性。该方法既解决了以往直方图统计算法中的子谐波问题,又克服了传统PRI算法不能有效分选抖动PRI脉冲序列的缺点。
It presented new challenges to the modern passive investigation receiver and anti-radiation missile seeker with the appearance of low probability of intercept (LPI) radar. Pulse compression radar is a kind of LPI radar. This kind of radar can compress the return long pulse into a short one. The pulse compress technology can reduce the probability of intercept. Also, it can improve radar's range resolution. The traditional receiver can't receive this kind of radar signals, so, the wide-band digital receiver which can store frequency and phase information must be developed. As a mature wide-band digital receiver system, the digital channelized receiver can achieve "blind receiver" to different system radar signals.
     The pulse compression radar signal modulation parameters can be extracted by using modern signal processing algorithms, once the signals are intercepted. Phase shift keying (PSK) signals and frequency modulation (FM) signals are two kinds of widely used pulse compression signals. The PSK signals include binary phase shift keying (BPSK) signals and quadrature phase shift keying (QPSK) signals. Linear frequency modulation (LFM) and non-linear frequency modulation (NLFM) signals are the kinds of FM signals. To achieve parameters estimation of PSK, the carrier frequency, coding sequence and code rate must be extrated. The LFM signals parameters which need to be extracted include the initial frequency, the end frequency and the chirp rate. For processing to the non-linear FM signal, the phase polynomial coefficients must be estimated.
     In the signals sorting, the steps are that, at first, achieve pre-sorting by using the signal parameters obtained from digital channelized receiver, then, remove the radar signals which don't meet the requirements to achieve the purpose of diluting pulse flow, at last, in the main sorting, the pulse repetition interval of pulse train was calculated by the arrival time of a single pulse.
     The pulse compression radar signals were intercepted and identificated in digital channelized receiver. In the paper, the parameter estimation algorithms of PSK and FM signals were researched in deep, and the signal sorting algorithms were discussed in detail.
     The derivation of high-speed and efficient structure of the uniform digital channelized receiver based on polyphase filter and FFT was given in the paper. For processing of channelized subsequent, CORDIC algorithm was adopted to extract instantaneous amplitude and phase of signals. The output of the zero channel is real, to this question, a method called complex processing to the zero channel based on Hilbert transform was proposed.
     In the terms of signal parameters estimation, at first, the spectral analysis can be used to complete pulse modulation classification. The cyclic autocorrelation can achieve recognition to PSK signals, this method can distinguish between BPSK and QPSK signals, to extract this kind of signal parameters, a method called integral-envelope has been proposed, combined with the carrier frequency, the subcode width and coding rule can be estimated. This algorithm can also estimate the chirp-rate, initial and terminal frequency of LFM signals. The method called cubic phase function (CPF) can be used to achieve parameters estimation of LFM and NLFM signals, this method can extract the phase function coefficients. The computation of this algorithm is very big, for this question, the search range criteria was proposed, in addition, a method called dual-scale search of frequency slope was brought forward to reduce the computation, also, this method can maintain the accuracy of the algorithm.
     In the terms of signals sorting, To solve the problems that the traditional methods can't effectively sort high-density and complex radar-signals, and the existing clustering methods can't achieve real-time requirement. A new method of sorting radar-signals based on modified fuzzy clustering by using radar-pulse parameters has been proposed. In this modified algorithm, the concept of distance weighted coefficient was put forward, it's more reasonable to determine the distance weighted coefficients of the parameters based on information entropy. By using the tracking method to calculate the equivalent fuzzy matrix and get the serial number of the pulses has more practical significance. The modified PRI algorithm can be used to calculate the PRI of signal. In the hardware, a method called non-uniform setting PRI-box width was proposed, it can save much algorithm running time to enhance the system real-time performance. This sorting method solved the sub-harmonic problem in the past histogram statistical method and overcame shortcomings existed in the traditional PRI algorithm which can't effectively sort jitter pulse trains.
引文
[1]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,1999:1-8
    [2]胡来招.雷达侦察接收机[M].北京:国防工业出版社,2000.
    [3]Schleher D C. Electronic warfare in the information age[M]. Norwood:Artech house, 1999.
    [4]Schroer R. Electronic warfare[J]. IEEE Aerospace Electronic Systems Magazine,2003, 18(7):49-54P
    [5]Schleher D C. Low probability of intercept radar[C]. Proc.IEEE International Radar Conference,1985:346-349P
    [6]Guosui Liu, Hong Gu, Weimin Su, etc. The analysis and design of modern low probability of intercept radar[C]. CIE International Conference on Radar,2001:120-124P
    [7]Stove, A.G., Hume, A.L., Baker, C.J. Low probability of intercept radar strategies[J]. Radar, Sonar and Navigation, IEE Proceedings,2004,151 (5):249-260P
    [8]司锡才,赵建民.宽频带反辐射导弹导引头技术基础[M].哈尔滨:哈尔滨工程大学出版社,1996:1-24页
    [9]向敬成,张明友.雷达系统[M].北京:电子工业出版社,2001.
    [10]吴欣.海湾战争中的电子战剖析[J].系统工程与电子技术,1991(4):P76-84
    [11](美)Merrill I. Skolnik主编,王军,林强,米慈中,许绍杰,愈志强,武文等译.雷达手册(Radar HandBook Second Edition) [M].北京:电子工业出版社,2003.
    [12]林锋.电子对抗[M].北京:科学出版社,1987.
    [13]J.R.Forest. Technique for low probability of intercept radar [J]. MS AT,1983:496-500P
    [14]G.Schriek, R.G. Wiley. Interception of LPI radar signal [J]. Radar Conference,1990: 108-111P
    [15]赵健民.宽带(2-18GHz)导引头关键技术研究[M].中国船舶工业总公司.1996:1-30页,65-90页
    [16]P E Pace. Detecting and classifying low probability of intercept radar[M]. Norwood, MA: Artech House,2004:80-100P
    [17]张雅婷.低截获概率雷达概述[J].火控雷达技术,1998,27(2):63-67页
    [18]陈振邦.低截获概率雷达技术研究[J].舰船电子对抗,1997(4):7-11页
    [19]董晖,顾善秋.电子战接收机的发展历程及其面临的挑战[J].电子对抗.2006(5):43-47页
    [20]Grajal, Blazquez J, Lopez R, Sanz G, Burgos J M. Analysis and characterization of a monobit receiver for electronic warfare. Aerospace and Electronic Systems, IEEE Transactions on,2003,39(1):244-258P
    [21]George, K.; Chen, C.-I.H.; Tsui, J.B.Y. Extension of Two-Signal Spurious-Free Dynamic Range of Wideband Digital Receivers Using Kaiser Window and Compensation Method, Microwave Theory and Techniques, IEEE Transactions on,2007,55(4): 788-794P
    [22]Deepnarayan Gupta, Timur V. Filippov. Digital Channelizing Radio Frequency Receiver[J]. IEEE Trans, on applied superconductivity,2007,17(2):430-437P
    [23]A. Kirichenko, S. Sarwana, D. Gupta, and D. Yohannes. Superconductor digital receiver components, IEEE Trans. Appl. Supercond., June 2005, vol.15:249-254P
    [24]http//www.transtech.com,2007-12-06
    [25]http//www.lnxcorp.com,2007-12-06
    [26]http//www.pentek.com,2007-12-16
    [27]朱晓.新型宽带数字接收机及脉冲压缩雷达信号参数估计算法研究.哈尔滨:哈尔滨工程大学博士论文,2008
    [28]Park K Y. Performance evaluation of energy detectors[J]. IEEE Trans. AES,1978,14(2): 237-241P
    [29]Chung C D, Polydoros A. Detection and hop-rate estimation of random FH signals via autocorrelation technique[C]. IEEE MILCOM'91,1991,1:345-349P
    [30]隋丹,葛临东,屈丹.一种新的基于能量检测的突发信号存在性检测算法[J].信号处理,2008,24(4):614-617页
    [31]Kwok H K, Jones D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform[J]. IEEE Trans. Signal Processing,2000,48(10): 2964-2972P
    [32]章步云,刘爱芳,朱晓华等.基于Radon-STFT的多分量线性调频信号检测和参数估计[J].探测与控制学报,2003,25(3):30-33页
    [33]尉宇,孙德宝,郑继刚.基于FrFT优化窗的STFT及非线性调频信号瞬时频率估计[J].宇航学报,2005,26(2):217-222页
    [34]金燕,黄振,陆建华.基于FRFT的线性调频信号多径信号分离算法[J].清华大学学报,2008,48(10):1617-1620页
    [35]Ozaktas H M, Arikan O, Kurtay M A, etc. Digital computation of the fractional Fourier transform[J]. IEEE, Trans. Signal Processing,1996,44(9):2141-2149P
    [36]Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. J. Opt. Soc. Am,1986,3:1277-1238P
    [37]Boashash B, Whitehouse H J. Seismic applications of the Wigner-Ville distribution[C]. Proc. IEEE Int. Conf. System and Circuits,1986:34-37P
    [38]Kay S, Boudreaux-Bartels G F. On the optimality of the Wigner-Ville distribution for detection[C]. Proc. ICASSP'85,1985:1017-1020P
    [39]Franz H. Interference terms in the Wigner distribution[C]. ICASSP'84,1984:363-367P
    [40]Flandrin P. Some features of time-frequency representation of multi-component signals[C]. Proc. IEEE ICASSP'84,1984:41-44P
    [41]Choi H and Williams J. Improved time-frequency representation of multicomponent signals using exponential kernels[J]. IEEE Trans.ASSP,1989,37(6)
    [42]王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1999.
    [43]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [44]Cohen L. Time-frequency distributions-Areview[J]. Proc. of the IEEE,1989,77: 941-981P
    [45]Cohen L. Generalized phase-space distribution functions[J]. J.Math.Phys,1966,7: 781-786P
    [46]唐向宏,龚腰寰.小波变换在雷达信号处理中的应用[J].电子科技大学学报,1995,24(8):192-198页
    [47]Nathalie D, Bernard E, Phillippe G, etc. Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies [J]. IEEE Trans.on Information Theory,1992, 38(2):644-664P
    [48]张磊,潘泉,张洪才等.一种子波域滤波算法的实现[J].电子学报,1999,27(2):19-21P
    [49]Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observation[J]. IEEE transaction on AES,1991,24(4):607-614P
    [50]Peleg S, Porat B. Estimation and classification of polynomial phase signals[J]. IEEE Transaction on Information Theory,1991,37(3):422-430P
    [51]Peleg S, Friedlander B. The discrete polynomial-phase transform [J]. IEEE Transaction on Signal Processing,1995,43(8):1901-1914P
    [52]Peleg S, Friedlander B. Multicomponent signal analysis using polynomial-phase transform[J]. IEEE Trans., AES,1996,32(1)
    [53]Barbarossa S, Scaglione A, Giannakis G B. Product High-order ambiguity function for multicomponent polynomial-phase signal modeling[J]. IEEE Trans, on Signal Processing,1998,46:691-708P
    [54]Barbarossa S, Porchia A, Scaglione A. Multiplicative multilag higher-order ambiguity function[C]. Proc. Int. Conf. Acoust., speech, signal processing, Atlanta, GA,1996,5: 3022-3206P
    [55]Barbarossa S, Petrone V. Analysis of polynomial-phase signals by an integrated generalized ambiguity function[J]. IEEE Trans. Signal Processing,1997,44:316-327P
    [56]O'shea P. A new technique for instantaneous frequency rate estimation[C]. IEEE Signal Processing Letters,2002,9(8):251-252P
    [57]O'shea P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transaction on Signal Processing,2004,52(2):385-393P
    [58]张家树.混沌信号的非线性自适应预测技术及其应用研究[D].成都:电子科技大学,2001.
    [59]王民胜.时频分析在信号处理中的应用[D].西安:西安电子科技大学,1994.
    [60]Yang Shaoquan, Chen Weidong. Classification of MPSK signals using cumulant invariants[J]. Journal of Electronics,2002,19(1):100-103P
    [61]邱剑锋,谢娟,汪继文等.Chirplet变换及其推广[J].合肥工业大学学报,2007,30(12):1575-1579页
    [62]朱明,金炜东,普运伟等.基于Chirplet原子的雷达辐射源信号特征提取[J].红外与毫米波学报,2007,26(4):302-306页
    [63]张洪涛.基于神经网络和滤波理论的信息融合算法研究[D].哈尔滨:哈尔滨工业大学,2007.
    [64]林象平.雷达对抗原理[M].西安:西北电讯工程学院出版社,1985.
    [65]Robert H. Walden. Analog-to-digital converters[J]. IEEE signal processing magazine, 2005,22(12):69-77P
    [66]Zheng Shenghua, Xu Dazhuang, Jin Xueming. ADC limitations on dynamic range of a digital receiver. IEEE symposium on Microwave, Antenna, Propagation and EMC Technologies,2005:79-83P
    [67]A. Montijo, K. Rush. Accuracy in interleaved ADC systems[J]. Hewlett- Packard J., Oct. 1993:36-42P
    [68]Y C Jenq. Perfect reconstruction of digital spectrum from non-uniformly sampled signals, IEEE Instrumentation and Measurement Technology Conference,1997,46 (3): 649-650P
    [69]Mark Looney. Advanced digital post-processing techniques enhance performance in time-interleaved ADC systems, Analog Dialogue, August 2003,37(8):1-5P
    [70]何伟.新型宽带数字接收机.成都:电子科技大学博士论文,2004:14-15页
    [71]J.Lillington. Comparison of wideband channelization architectures. International signal processing conference, Dallas,2003:1-6P
    [72]Fields T W, Sharpin D L, Tsui J B. Digital channelized IFM receiver[J].IEEE MTT-S International,1994,3(1):667-670P
    [73]Zahirniak D R, Sharpin D L, Fields T W. A hardware-efficient, multirate, digital channelized receiver architecture [J]. IEEE Transactions on aerospace and electronic systems,1998,34(1):137-147P
    [74]杨小牛.《软件无线电原理与应用》.电子工业出版社,2001.
    [75]张嵘.《宽带高灵敏度数字接收机》.电子科技大学博士论文,2002.
    [76]陈永其,黄爱苹,严文忠.一种宽带中频数字信道化侦察接收机方案.电子对抗技,2003,33(8):34-35页
    [77]吕幼新,郑立岗,王丽华.基于多相滤波的宽带接收机技术.电子科技大学学报,2003,32(2):113-139页
    [78]J.E.volder. The CORDIC Trigonometrie ComPuting Teehnique[J]. IRE Transactions on Computers,1959,8:330-334P
    [79]李全,李晓欢,陈石平.基于CORDIC算法的高精度浮点超越函数的FPGA实现[J].电子技术应用,2009,5:166-170页
    [80]Sung T.Y, Hsin H.C. Design and simulation of reusable IP CORDIC core for special-purpose processors [J]. Computers&Digital Techniques, IET.2007,1(5): 581-589P
    [81]宋云朝,万群,毛祺等.一种稳健的基于解卷叠的相位差分瞬时测频方法[J].电子信息对抗技术,2008,23(4):12-15页
    [82]Rezeanu S C, Ziemer R E, Wicker MA. Joint maximum likelihood parameter estimation for burst DS spread spectrum transmission [J]. IEEE trans. Com,1997,45(2):227-238页
    [83]黄知涛,周一宇.一种有效的BPSK/QPSK信号调制识别方法[J].电子对抗技术,2005,20(2):10-13页
    [84]黄知涛,周一宇,姜文利.一种相位编码序列恢复方法[J].信号处理,2002,18(2):141-146页
    [85]R.J.Mammone, R.J.ROthaker, C.I.Podilehuk. Estimation of carrier frequency, modulation type and bit rate of an unknown modulated signal [J]. Proe. ICC'87, 1987,2:1006-1012P
    [86]Xu Jun, Wang Fu-ping, Wang Zan-ji. The improvement of symbol rate estimation by the wavelet transform[C].2005 International Conference on Communications, Circuits and Systems, Piscataway:IEEE,2005,1(1):100-103P
    [87]He MH, Mao Y, Ha JN. A method of extracting radar inpulse characteristics in low SNR [A].8th International Conference on Signal Processing, ICSP,2006.
    [88]李利,司锡才,柴娟芳.基于双尺度连续小波变换的二相编码信号识别[J].系统工程与电子技术,2007,29(9):1432-1435页
    [89]Ho K C, Prokopiw W, Chan Y T. Modulation identification of digital signals by the wavelet transform[J].Radar, Sonar and Navigation, IEEE Proceedings,2000,147(4): 169-176P
    [90]郁春来,何明浩.脉内相位编码雷达信号识别的小波变换方法[J].空军雷达学院学报,2003,17(4):1-3页
    [91]Chan Y T, Piews J W, Ho K C. Symbol rate estimation by the wavelet transform[C]//Proc IEEE International Symp on Circuits and Systems. New York: IEEE,1997, Part 1:177-180P
    [92]Ho K C, Prokopiw W, Chan Y T. Modulation identification of digital signals by the wavelet transform [J]. Radar, Sonar and Navigation, IEE Proceedings,2000,147(4): 169-176P
    [93]Akay O, Boudreaux-Bartels G F. Fractional convolution and correlation via operator methods and application to detect linear FM signals[J]. IEEE Trans.on Signal Processing,2001,49(5):979-993P
    [94]安伟刚,程少云.基于DMFT的LFM信号参数估计[J].现代电子技术,2009,1:1-3
    [95]司锡才,朱晓.基于频谱细化的线性调频信号参数估计[J].系统工程与电子技术,2009,31(3):507-510页
    [96]李利,司锡才‘,柴娟芳等.基于重排小波-radon变换的LFM雷达信号参数估计[J].系统工程与电子技术,2009,31(1):74-77
    [97]孙泓波,顾红.基于互Wigner-Ville分布的SAR运动目标检测[J].电子学报,2002,30(3):347-350页
    [98]Barbarossa S, Scaglione A, Giannakis G B. Product high-order ambiguity function for multicomponent polynomial phase signal modeling[J]. IEEE Trans Signal Processing, 1998,46(3):691-708P
    [99]钱斌.分布式信号波达方向-时延联合估计算法研究[D].成都:电子科技大学,2008.
    [100]肖慧.LFMCW雷达高速/加速目标参数估计及测距范围扩展技术研究[D].长沙:国防科技大学,2008页
    [101]徐海源.雷达/通信侦察中相位编码信号分析处理技术研究[D].长沙:国防科技大学,2007.
    [102]池庆玺.脉压雷达脉内特征分析与处理技术研究[D].哈尔滨:哈尔滨工程大学,2007.
    [103]李文臣.高速机动目标雷达信号参数估计与成像处理[D].长沙:国防科技大学,2009.
    [104]沈海华.复合调制雷达信号识别和处理方法的研究[D].南京:南京航空航天大学,2008.
    [105]文海.雷达脉压信号脉内特征分析研究[D].哈尔滨:哈尔滨工程大学,2006.
    [106]郑文秀.数字通信信号的参数估计与干扰技术研究[D].西安:西安电子科技大学,2008.
    [107]周违.空间信号检测与参数估计算法研究[D].西安:西安电子科技大学,2006
    [108]邓振淼.雷达信号脉内分析与处理理论及算法研究[D].南京:南京航空航天大学,2007
    [109]Gardner W A, Spooner C M. Signal Interception:Performance Advances of Cyclic-feature Detectors [J]. IEEE Trans on Com,1992,40(1):149-159P
    [110]黄知涛,周一宇,姜文利.基于信号一阶循环平稳特性的源信号方向估计方法[J].信号处理,2001,17(5):412-417页
    [111]金艳,姬红兵.基于循环自相关的PSK信号盲参数估计新方法[J].西安电子科技大学学报(自然科学版),2006,33(6):892-895,901页
    [112]刘旭波,司锡才,陆满君.基于积分包络的LPI雷达信号快速参数估计[J].系统工程与电子技术,2010,32(10):2031-2035
    [113]Kohonen T. The self-organizing map[J]. IEEE,1990,78(9):1464-1480P
    [114]Wang Wei, Yang Jiong, Muntz R.STING. A Statistical Information Grid Approach to Spatial Data Mining[C]//Proc.of the 23rd International Conference on very Large Data Bases,1997.
    [115]Agrawal R, Gehrke J, Gunopulcs D. Automatic Subspace Clustering of High Dimensional Data for Data Mining Application[C]//Proc.of ACM SIGMOD Intconfon Management on Data, Seattle, WA,1998:94-205P
    [116]Guha S, Rastogi R, Shim K.Cure. An Eficient Clustering Algorithm for Large Database[C]//Proc.of ACM-SIGMOND Int.Conf, Management on Data, Seattle, Washington,1998:73-84P
    [117]Mardia H. K. New techniques for the deinterleaving of repetitive sequences [J]. IEEE Proceedings of Radar and Signal Processing,1989,136 (4) 149-154P
    [118]Milojevic D.J. Improved algorithm for the deinterleaving of radar pulses [J]. IEEE Proceedings of Radar and Signal Processing,1992,139(1):98-104P
    [119]Nishiguchi K. A new method for estimation of pulse repetition intervals [J]. National Convention Record of IECE of Japan, Information and Systems Section,1983.
    [120]Nishiguchi K, Kobayashi M.Improved Algorithm for Estimating Pulse Repetition Intervals [J]. IEEE Transactionson Aerospace and Electronic Systems,2000,36 (2) 407-421P
    [121]赵长虹.重频分选与跟踪算法研究[D].西安:西安电子科技大学电子工程学院,2003:15-18页
    [122]安振,李运祯.PRI变换对脉冲雷达信号PRI检测的性能分析[J].现代雷达,2007,29(2):35-37页
    [123]李杨寰,初翠强,徐辉等.一种新的脉冲重复频率估计方法[J].电子信息对抗技术,2007,22(2):18-22页
    [124]姜勤波,马红光,杨利峰.脉冲重复间隔估计与去交织的方正弦波插值算法[J].电子与信息学报,2007,29(2):350-354页
    [125]Hassan H E. Joint deinterleaving//recognition of radar pulses, radar conference [C]//Pro. of the International,2003:177-181P
    [126]刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998:15-30页
    [127]王耀南.智能信息处理技术[M].北京:高等教育出版社,2003:23-52页
    [128]张兴华.模糊聚类分析的新算法[J].数学的实践与认识,2005.
    [129]李世中.熵值分析法在特征提取中的应用研究[J].华北工学院学报,1999.
    [130]刘旭波,司锡才.基于改进的模糊聚类的雷达信号分选[J].弹箭与制导学报,2009,29(5):278-281页
    [131]刘旭波,司锡才.雷达信号分选实现的新方法[J].系统工程与电子技术,2010,32(1):53-56页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700