被动声目标识别理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以智能雷为应用背景,在深入分析和研究典型声目标信号产生机理和特性的基础上,对被动声目标探测与识别的关键技术进行了研究,给出了相应的理论和算法,研究成果可为被动声识别技术的理论发展和工程化提供参考。
     基于当前技术基础,对典型战场声目标信号特性进行了研究,总结和分析了坦克、直升机、战斗机和装甲车四种典型声目标的信号产生机理和特性。
     信号预处理是提高识别准确率的重要技术途径,主要研究小波变换和EMD两种信号处理方法对于单传声器和多传声器信号的降噪方法,提出一种基于EMD的自适应噪声抵消算法和两种基于时延矢量封闭准则的多传声器信息融合消噪算法:
     1)提供了一种新的参考信号选取方法,鉴于EMD分解特性,采用其高频IMF分量作为自适应噪声抵消器的参考噪声输入,与小波全局阈值和分层阈值降噪信号进行对比,实验结果证明该算法具有更好的降噪效果;
     2)根据多传声器时延估计特性,提出了时延矢量封闭准则,结合多传声器系统小波系数时延估计特性和信息融合理论,提出了多传声器系统的三角时延矢量误差,并用多传声器综合支持度定义时延阈值,对信号进行滤波;发展了EMD对多传声器信号降噪的算法,借鉴对IMF分量进行加权的消噪思想,依据时延矢量封闭准则计算时延矢量误差,用多传声器综合支持度定义IMF分量有效性的判据,得到IMF函数的权重矩阵,最后根据IMF函数及其权重矩阵得到重构后的信号。理论分析和实验结果表明两种降噪方法均表现出良好的多传声器滤波特性。
     声信号的特征提取与选择方法是声识别的关键技术之一,主要研究了信号的五种特征提取方法,对所得特征向量进行类别可分性判别,给出各类特征向量的整体可分性、单类目标特征向量可分性及两两目标之间特征向量可分性。在研究过零点特征、AR模型参数、核Fisher判别分析的特征提取方法基础上,提出了一种特征选择方法和两种特征提取方法:
     1)提出基于距离可分性测度的显著性特征选择方法,首先选择能够反映类别可分性的距离测度对特征向量进行处理,然后构造显著性函数,对可分性测度值进行选择,满足显著性条件的测度对应的特征向量为有效特征向量;
     2)提出基于EMD和能量比的特征提取方法,非平稳、非线性信号经EMD分解得到平稳、线性的IMF分量,对各个IMF分量进行FFT,求得信号的幅值谱,获得各IMF分量相对于原信号的能量比,对其进行归一化,将归一化后的能量比作为新的特征向量,其类别可分性判据和后续分类识别结果均证明这种特征向量的有效
     3)提出基于多尺度分频的特征提取方法,根据多尺度理论提出信号频域的多尺度分频思想,将信号在不同尺度频段上的频率进行归整,组成新的特征向量,实验结果表明该方法提供了一种简单有效并适合工程应用的特征提取方法。
     在声目标识别分类器设计方面,提出一种基于相关性系数的变权模板匹配分类器,选择适于分类识别的相似性系数函数,依据相关性系数通过离线训练获得特征向量的模板及其权重,并设定合适的阈值对目标进行分类;同时将粒子群神经网络和支持向量机两类分类器应用于声目标的分类与识别,并给出最后的分类结果。
     为了验证本文提出的声识别算法的有效性和工程可行性,研究了声目标识别硬件系统的结构,开发了试验样机,并设计了室内和室外的声速检测试验和信号采集试验,为声识别获得大量试验样本,最后选择适于工程应用的简易识别算法采用试验样机对目标类型进行判别,实验结果证明试验样机具有一定的工程应用优势,可为装备武器做准备。
Based on the application background of intelligent mine and analysis of classical acoustic generation mechanism & characteristics, the key technology of passive acoustic target detection and recognition is studied, corresponding theories and algorithms is proposed. The achievements in this paper exist as a theories development and engineering operation reference of passive acoustic recognition.
     On the basis of current technology development, the characteristics of classical acoustic in battlefield are studied, and the signal generation mechanism and characteristics of four classical acoustic targets (tank, helicopter, fighter and armored vehicle) are summarized and analysed.
     Signal preprocessing is one important technical way to improve the accuracy of recognition rate. The denoising algorithm in this paper is based on wavelet transform and EMD. An adaptive noise cancelling algorithm based on EMD and two denoising algorithms of multi-microphone information fusion based on time delay vector close rule (TDVCR) are proposed:
     1) A new reference signal extraction algorithm is proposed. Whereas the characteri-stics of EMD is adaptive, the higher IMF components are considered as the reference input of adaptive noise canceling implement. The denoising results are compared with the signlas filtered by wavelet global thresholds and layered thresholds, the exprements represent the EMD adaptive noise cancelling algorithm can reach better denoising property;
     2) According to the characteristics of multi-microphone time delay estimation, time delay vector close rule is proposed. Triangular time delay vector errors are put forward combining with information fusion and TDVCR of wavelet coefficients, and are weighted by time delay error thresholds defined by multi-microphone integrated support degree. The denoising signals are reconstructed by above steps. The multi-microphone denoising algorithm based on EMD is developed, using for reference of weighted IMF components. The time delay vector errors are calculated by TDVCR and also weighted by time delay thresholds defined by multi-microphne integrated support degree, and the weighting matrix of IMF function is got. The denoising signal is reconstructed with IMF function and weighting matrix. The theoretical analysis and experiments represent two denoising algorithms here show better filtering properties.
     Feature extraction and feature selection is another key technology of acoustic recognition. Five algorithms of feature extraction are studied, category separability norm of all engivectors are given, then the global separability and single target separability and two-target separability are researched. Based on the zero-crossing theory and AR model parameter and kernel fisher criterion analysis, one feature selection algorithm and two feature extraction algorithms are proposed:
     1) Remarkable feature selection based on distance separability measure is proposed. The engivectors are processed by distance separability measure. The remarkable function is constructed and used for selecting separability value. The engivectors corresponding to the selected separability value are considered as effective feature.
     2) Feature extraction based on EMD and power ratio is proposed. The IMF components of signals are processed by FFT, the spectrum of IMFs are got. Normalized the power ratio of IMF spectrum and original signal spectrum, and making the power ratio as engivector of signals. The category separability norm and recognition rate show that the feature extraction algorithm based on EMD and power_ratio is effective.
     3) Feature extraction based on multiscale frequency division is proposed. The multiscale frequency division is put forward based on multiscale theory. The signals are normalize at different frequency section, and created new engivectors. The experimental results represent the feature extraction algorithm based on multiscale frequency division is simple & effective and can be used for engineering application.
     At the section of classifier design for acoustic recognition, a model matching classifer based on comparability coefficients is proposed. The models of engivectors and corresponding weights are decided by offline traiing corresponding to the proper comparability function selected, and are used for classifying the target by setting thresholds. The particle neural network and SVM are applied to the acoustic target classification and recognition. The experimental results are given in the paper.
     In order to verify the effectivity and engineering feasibility of recognition algorithm, the recognition hardware system is designed and developed. The measurement experiments of sound velocity inside and outside are designed. The signal collecting experiments are carried by multi-microphone array inside and outside, which provide lots of signals for recogniton. The simplicity recognition algorithm is used in this hardware system. The experiements represent the hardware system has advantages of engineering application, which is prepare for arming the weapon.
引文
[1]肖锋,李惠昌.武器和测量[M].北京:国防工业出版社,2002
    [2]杨旭.被动声探测技术在新型防坦克地雷系统中的应用与发展[J].红外,2005,(4):5-8
    [3]N. J. Leap. A confidence paradigm for classification systems[R]. ADA485329, 2008:1-167
    [4]李钊.21世纪地雷战装备[J].工兵装备研究,2002,21(1):1-6
    [5]祝龙石.反直升机、反坦克声控智能地雷概述[J].制导与引信,2001,22(4):34-38
    [6]王彪,李世义.浅谈我国反直升机地雷系统的发展[J].华北工学院学报,1996,(3):236-250
    [7]鲍磊,唐坤,王庆栋.基于目标物理场分析的现代智能地雷系统[J].工兵装备研究,2007,26(3):48-51
    [8]李维山.智能雷场位置信息融合及目标识别[T].南京:南京理工大学,2006
    [9]周忠来.战场声目标抗干扰技术研究[D].北京:北京理工大学,1999
    [10]顾晓辉.反直升机智能雷有关总体的理论研究[D].南京:南京理工大学,2001
    [11]米海兵.智能雷中基于数据融合的目标识别技术研究[T].南京:南京理工大学,2004
    [12]庄钊文,黎湘,李彦鹏等.自动目标识别效果评估技术[M].北京:国防工业出版社,2006
    [13]钱祖文.非线性声学[M].北京:科学出版社,2009
    [14]罗珊.智能地雷声传感器单阵列定向与双阵列定距技术研究[T].南京:解放军理工大学,2003
    [15]陈丹.战场被动声多目标识别方法研究[T].西安:西北工业大学,2005
    [16]刘强,王伟策,马光彦.战斗机起飞噪声测试及特性分析[J].解放军理工大学学报(自然科学版),2003,4(2):67-69
    [17]谢毅.地面战场目标声/地震动探测与识别技术研究.[R].北京:北京理工大学,1997
    [18]丁庆海.被动声目标检测与识别技术研究[D].南京:南京理工大学,1998
    [19]王秉义著.枪炮噪声与爆炸声的特性与防治[M],北京:国防工业出版社,2001
    [20]N. E. Huang. S. Zheng, S. R. Long. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society London,1998,454:903-995
    [21]王春,彭东林Hilbert-Huang变换及其在去噪方面的应用[J].仪器仪表学报,2004,25(4):42-45
    [22]N. E. Huang, Z. Shen, S. R. Long. A New View of Nonlinear Water Waves:the Hilbert Spectrum[J]. Annual Review of Fluid Mechanics,1999(31):417-457
    [23]D. G. Duffy. The application of Hilbert-Huang transforms to meteorological datasets[J]. Journal of Atmospheric and Oceanic Technology,2004,21(4):599-611
    [24]Z. H. Wu, N. E. Huang. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41
    [25]C. Damerval, S. Meignen, V. Perrier. A fast algorithm for bidimentional EMD[J]. IEEE Signal Processing Letters,2005,12(10):701-704
    [26]C. Z. Xiong, J. Y. Xu, J. C. Zou, et al. Texture classification based on EMD and FFT[J]. Journal of Zhejiang University Science A,2006,7(9):1516-1521
    [27]Y. F. Zhang, Y. L. Gao, L. Wang, et al. The removal of wall components in doppler ultrasound signals by using the empirical mode decomposition algorithm[J]. IEEE Transactions on Biomedical Engineering,2007,54(9):1631-1642
    [28]N. Bi, Q. Y. Sun, D. R. Huang, et al. Robust image watermarking based on multiband wavelets and empirical mode decomposition[J]. IEEE Transactions on Image Processing,2007,16(8):1956-1966
    [29]M. Khademul, I. Molla, K. Hirose. Single-mixture audio source separation by subspace decompostion of Hilbert spectrum[J]. IEEE Transactions on Audio, Speech, and Language Processing,2007,15(3):893-900
    [30]A.O. Boudraa, J. C. Cenxus and Z. Saidi. EMD-based signal noise reduction[J]. International Journal of Signal Processing,2004, 1(1):33-37
    [31]A.O. Boudraa, J. C. Cexus, Z. Saidi. EMD-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement,2007,56(6):2196-2202
    [32]B. W. Weng, K. E Barner. Optimal and bidirectional optimal empirical mode decomposition[J]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2007,3:1501-1504
    [33]D. Looney, D. P. Mandic. A machine learning enhanced empirical mode decomposition[J]. In Proceeding of the IEEE International Conference on Acoustic, Speech, and Signal Processing,2007,3:1897-1900
    [34]Y. Kopsinis. S. McLanghlin. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing,2009, 57:1351-1362
    [35]P. Flandrin, P. Goncalves, G. Rilling. EMD equivalent filter banks, from interpretation to applications[J]. In:Huang N. E., Shen S.(Eds.), Hilbert-Huang Transform and Its Applications, World Scientific, Singapore,2005:67-87
    [36]徐国栋,周锡元,郭明珠等.典型振动信号时频分析方法研究[J].世界地震工程,2007,23(2):26-36
    [37]李弼程,邵美珍,黄洁.模式识别原理与应用[M].西安:西安电子科技大学出版社,2008
    [38]张中民,李贵涛,李科杰.战场目标声/震侦察与识别[J].火力与指挥控制,2001,26(2):48-51
    [39]朱志松.战场声目标特征提取研究[J].探测与控制学报,2006,38(3):9-11
    [40]周忠来,施聚生,栗萍等.基于SVD-TLS的AR谱估计方法在声目标识别中的应用[J].探测与控制学报,2000,22(1):56-60
    [41]郁发新,金仲和.基于AR模型估计的抗冲击干扰算法.传感技术学报,2006,19(3):858-861
    [42]李霆,李世中,胡晓东等.坦克声双谱谱峰特征模糊识别分析[J].探测与控制学报,2001,23(2):57-61
    [43]李建美,路长厚,李国平.基于Gabor变换的凹凸字符图像特征抽取新方法[J].系统仿真学报,2008,20(8):2133-2136
    [44]C. Roger, D. Geoffrey, S. Wim, et al. Nonlinear wavelet transforms for image coding[R]. ADA487318,1997:1-11
    [45]吕金飞,袁嗣杰,范少龙等.基于时频分析的高动态多目标识别与仿真[J].系统仿真学报,19(20):4840-4843
    [46]施建礼,蔡新举,朱平云.基于子波变换和神经网络的舰船目标识别[J].系统工程与电子技术,2004,26(7):893-895
    [47]K. Huang, S. Aviyente. Wavelet feature extraction for image classification[J]. IEEE Transactions on Image Processing,17(9):1709-1720
    [48]李京华,许家栋,魏丽萍.直升机声信号谐波集及小波子空间能量特征提取与识别[J].探测与控制学报,2004,26(4):1-4
    [49]熊雷.基于小波变换的ARPA目标机动识别及轨迹预测[J].武汉理工大学学报(交通科学与工程版),2006,30(5):856-858
    [50]徐红梅,郝志勇,郭磊等.基于小波变换技术的内燃机燃烧噪声特征提取[J]. 农业机械学报,2008,39(3):167-170
    [51]丁庆海.混沌、分形和小波理论在被动声信号特征提取中的应用[J].声学学报,1999,24(2):197-203
    [52]林嘉宇,王跃科,黄芝平等.一种新的基于混沌的语音、噪声判别方法[J].通信学报,2001,22(2):123-128
    [53]刘树勇,朱石坚,俞翔.基于小波变换的混沌信号特征研究[J].武汉理工大学学报(交通科学与工程版),2007,31(4):603-606
    [54]于德介,张嵬,程军圣等.基于EMD的时频熵在齿轮故障诊断中的应用[J].振动与冲击,2005,24(5):26-29
    [55]康海英,栾军英,郑海起等.基于阶次跟踪和HHT边际谱的轴承故障诊断研究[J].振动与冲击,2007,26(6):1-3
    [56]宋立新,王祈,王玉静.基于Hilbert-Huang变换的ECG信号降噪方法[J].传感技术学报,2006,19(6):2578-2581
    [57]Y. Xu, J. Y. Yang, Z. Jin. Theory analysis on FSLDA and ULDA[J]. Pattern Recognition,2003,36(12):3031-3033
    [58]Y. Xu, J.Y. Yang, Zhong Jin. A novel method for fisher discriminant analysis[J]. Pattern Recognition,2004,37:381-384
    [59]胡金海,谢寿生,骆广琦等.基于核函数的Fisher鉴别分析的特征提取方法[J].振动、测试与诊断,2008,28(4):322-326
    [60]高秀梅,杨静宇,杨健.一种最优的核Fisher鉴别分析与人脸识别[J].系统仿真学报,2004,16(12):2864-2868
    [61]F. Glover, S. Hanafi. Tabu search and Finite Convergence[J]. Discrete Applied Mathematics,2002,119(3):3-36
    [62]贾克兵.基于改进禁忌搜索算法的两相奠基设计及变频电源的研制[D].沈阳:沈阳工业大学,2003
    [63]张晓辉.禁忌搜索算法研究及其在电磁场优化问题中的应用[D].天津:河北工业大学,2003
    [64]叶玉玲,伞冶.基于遗传算法的粗糙集混合数据属性约简[J].哈尔滨工业大学学报,2008,40(5):683-687
    [65]曹西征,张爱丽,张久成.基于遗传算法的智能作曲技术研究[J].计算机工程与应用,2008,44(32):206-209
    [66]吴进文,赵晓翠,陈苗苗.基于遗传算法的高维特征选择的研究[J].郑州轻工业学院学报(自然科学版),2010,25(2):75-78
    [67]王世卿,曹彦.基于遗传算法和支持向量机的特征选择研究[J].计算机工程与 设计,2010,31(18):4088-4092
    [68]M. Metropolis, A. Rosenbluth, M. Rosenbluth, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics,1953,21:1087-1092
    [69]S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing[J]. Science,1983,220(4598):671-680
    [70]边肇祺,张学工等.模式识别[M].北京:清华大学出版社,1999
    [71]李义峰,刘毅慧.基于模拟退火算法的高分辨率蛋白质质谱数据特征选择[J].生物信息学,2009,7(2):85-90
    [72]张永波,游录金,陈杰新.基于模拟退火的多标记数据特征选择[J].计算机工程与设计,2011,32(7):2494-2496
    [73]史岳鹏,朱颢东.基于类别相关性和优化的ID3特征选择[J].数据采集与处理,2011,26(2):230-234
    [74]朱颢东,钟勇.基于类别相关性和交叉熵的特征选择方法[J].郑州大学学报(理学版),2010,42(2):61-65
    [75]林明秀,刘伟佳,徐心和.基于模板匹配的多模式车辆跟踪算法[J].系统仿真学报,2007,19(7):1519-1522
    [76]牛轶峰,沈林成.基于变形模板的多目标识别与定位[J].电子与信息学报,2006,28(6):1026-1030
    [77]段俊峰.基于神经网络的战场被动声/地震动目标识别方法[J].探测与控制学报,2001,23(3):25-27
    [78]贺文斌,陶建锋,叶震.基于BP神经网络的雷达目标识别算法研究[J].弹箭与制导学报,2006,26(2):650-652
    [79]郑林,韩崇昭,左东广等.基于多特征融合的运动目标识别[J].系统仿真学报,2004,1081-1084
    [80]吴琼,罗红英.基于模糊神经网络的目标识别研究[J].弹箭与制导学报,2006,26(1):965-967
    [81]罗瑜,李涛,何大为等.基于部件和支持向量机的人脸分类.计算机工程.2008.34(4):198-200
    [82]胡凯,费耀平.基于自举算法和支持向量机的人脸检测系统[J].计算机工程与应用,2008,44(12):199-203
    [83]亓晓旭,姜威,张乐.基于小波分析和SVM的人脸表情识别[J].光学技术,2008,34(2):207-210
    [84]张斌,李夕海,苏娟等.基于SVM的核爆地震模式识别[J].核电子学与探测技术,2005,25(1):79-81
    [85]O. Faroop, S. Datta. Wavelet-based denoising for robust feature extraction for speech recognition[J]. Electronics Letters,2003,39(1):163-165
    [86]李如玮,鲍长春,窦慧晶.基于小波变换的语音增强算法综述[J].数据采集与处理,2009,24(3):362-368
    [87]D Giaouris, J. W. Finch, O. C. Ferreira, et al. Wavelet denoising for electric drives[J]. IEEE Transactions on Industrial Electronics,2008,55(2):543-550
    [88]刘志刚,曾怡达,钱清泉.多小波在电力系统信号消噪中的应用[J].中国电机工程学报,2004,24(1):30-34
    [89]李肃义,林君.一种综合小波变换的心电信号消噪算法[J].仪器仪表学报,2009,30(4):689-693
    [90]张通,张骏,张怡.基于改进小波阈值的激光陀螺漂移信号降噪[J].仪器仪表学报,2011,32(2):258-263
    [91]董长虹,高志,余啸海Matlab小波分析工具箱原理与应用[M].北京;国防工业出版社,2004
    [92]黄晓瑞,崔平远.一种基于信息融合的滤波算法及其应用[J].电子学报,2001,29(9):1225-1227
    [93]王耀南,李树涛.多传声器信息融合及其应用综述[J].控制与决策,2001,16(5):518-522
    [94]唐海峰,张合,李豪杰.D-S证据理论在多传感器目标识别中的应用[J].传感器技术,2002,21(12):32-34
    [95]王听,张合.一致性多传感器数据融合技术在引信信息融合中的应用[J].兵工学报,2005,26(5):706-708
    [96]周鸣争,汪军.基于SVM的多传感器信息融合算法[J].仪器仪表学报,2005,26(4):407-410
    [97]孙书学.智能子弹药的运动声阵列对声目标定向理论研究[D].南京:南京理工大学,2009
    [98]彭冬亮,文成林,薛安克.多传感器多源信息融合理论及应用[M].北京:科学出版社,2010
    [99]W. Huang, Z. Shen, N. E. Huang, et al. Engineering analysis of intrinsic mode and indicial response in biology [J]. The Transient Response of Pulmonary Blood Pressure to Step Hypoxia and Step Recovery [J]. Proceedings of the National Academy of Science, USA,1998(95):12766-12771
    [100]陈忠,郑时雄.EMD信号分析方法边缘效应的分析[J].数据采集与处理,2003,18(1):114-118
    [101]程军圣,于德介,杨宇Hilbert-Huang变换端点效应问题的探讨[J].振动与冲击,2005,24(6):40-42
    [102]张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展,2003,13(10):1054-1059
    [103]B. Widrow, J. R. Glover, J.M. McCool, et al. Adaptive noise cancelling:principles and applications[J]. Proceeding of the IEEE,1975,63(12):1692-1716
    [104]何振亚.自适应信号处理[M].北京:科学出版社,2002
    [105]陈卫东,孙海全.基于多重小波变换的自适应脉搏信号去噪[J].电子测量技术,2008,31(8):120-122
    [106]P. Flandrin, G. Rilling, P. Goncalves. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters,2004,11:112-114,
    [107]Z. H. Wu, N. E Huang. A study of the characteristic of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society, London,2004,460:1597-1611
    [108]Z. H. Wu, N. E. Huang. Statistical significance test of intrinsic mode functions[J]. In:Huang N. E., Shen S.(Eds.), Hilbert-Huang Transform and Its Applications, World Scientific, Singapore,2005:107-127
    [109]朱洪,相敬林.信号过零检测及其在引信技术中的应用[J].声学学报,1995,20(3):218-220
    [110]杨亦春,程翔,陈庆生.过零率分析在智能雷弹引信中的应用研究[J].探测与控制学报,1999,21(4):15-18
    [111]曲存让,苏登美,陆文奇.地声信号的过零点分析[J].声学学报,1983,8(2):107-116
    [112]聂伟荣.地面运动目标震动信号探测与识别[D].南京理工大学,2001
    [113]付彬.地面运动目标地震动信号的模拟技术研究[D].南京理工大学,2004
    [114]李合生,赵明生,毛剑琴等.基于小波包变换与RBF网络的大地目标辨识[J].信息与电子工程.2003,Vol.1,No.1:12-19
    [115]聂伟荣,朱继南,夏虹.地面运动目标分类的模式特征与评价[J].探测与控制学报,2002,24(3):25-29
    [116]D. Han, S. N. Zhang. Comparison between Windowed FFT and Hilbert-Huang Transform for Analyzing Time Series with Poissonian Fluctuations:A Case Study.Chin.J.Astron. Astrophys,2006,6(4):503-512
    [117]张彦梅,于敬波.基于Zoom-FFT变换域的坦克被动式毫米波探测识别方法[J].南京理工大学学报,2007,31(3):346-349
    [118]S. H. He, J. Zhong. Identification of linear continuous-time system using wavelet modulating filters [J]. Journal of Systems Engineering and Electronics,2004,15(3): 270-277
    [119]李媛.反潜直升机目标特性探测与识别方法的研究[J].系统仿真学报,2004,16(5):1071-1073
    [120]王锋,尹力,朱明洪.基于Hilbert-Huang变换的水声信号特征提取及分类技术[J].应用声学,2007,26(4):223-230
    [121]文成林.多尺度动态建模理论及其应用[M]。北京:科学出版社,2007
    [122]K. R. Muller, S. Mika, G. Ratsch, et al. An introduction to kernel-based learning algorithm[J]. IEEE Trans. on Neural Network,2001,12(2):181-201
    [123]J. S. Taylor, N Cristianini. Kernel methods for pattern analysis[M]. London: Cambridge University Press,2004
    [124]S. Mika, A. J. Smola, B. Scholkopf. An improved traning algorithm for kernel fisher discriminants[J]. Proceedings of AISTATS 2001. San Fransisco:Morgan Kaufmann, 2001:98-104
    [125]Y. Xu, D. Zhang, F. X. Song, et al. A method for speeding u pfeature extraction based on KPCA[J]. Neurocomputing,2007:1056-1061
    [126]Y. Xu, D. Zhang, J. Zhang, et al. A fast kernel-based nonlinear discriminant analysis for multi-class problems[J]. Pattern Recognition,2006,39:1026-1033
    [127]Y. Xu, L. Yao, D. Zhang. Improving the Internet operator for face recognition [J]. Expert aystem with applications,2009,36(6):9719-9728
    [128]X. Q. Wu, K. Q. Wang, Y. Xu, et al. Differential feature analysis for palmprint authentication[C].13th International Conference on Computer Analysis of Images and Patterns,2009
    [129]B. Scholkopf, A. Smola. Learning with Kernels[M]. Boston:MIT Press,2002
    [130]H. Lodhi, C. Saunders, J. S. Taylor, et al. Text classification using string kernels[J]. Journal of Machine Learing Research,2002, (2):419-444
    [131]W. S. Chen, P. C.Yue, J. Huang, et al. Wavelet kernel construction for kernel discriminant analysis on face recognition[C]. Proceeding of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), June,2006:47-52
    [132]S. Ali, K. A. Smith. Automatic parameter selection for polynomial kernel[J]. IRI, 2003:243-249
    [133]T. P. Centeno, N. D. Lawrence. Optimising kernel parameters and regularization coefficients for non-linear discriminant analysis[J]. The Journal of Machine Learning Research,2006:455-491
    [134]杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2004
    [135]J. Kennedy, R. C. Eberhart. Particle swarm optimization[J]. IEEE International Conference on Neural Networks,1995:1942-1948
    [136]M. Clerc. Particle swarm optimization[J]. London:ISTE Publishing Company,2006
    [137]曾建潮,介婧,崔志华.粒子群优化算法[M].北京:科学出版社,2004
    [138]R. Poli. Analysis of the publications on the application of particle swarm optimization[J]. Journal of Artificial Evolution and Applications,2008.8(2):4
    [139]J. Robinson, S. Y. Rahmat. Particle swarm optimization in electronmagnetics[J]. IEEE Transctions on Antennas and Propagation,2004,52(2):397-407
    [140]张丽平.粒子群算法的理论与实践[D].杭州:浙江大学,2005
    [141]Y. L. Zheng, L. H. Ma, L. Y. Zhang, et al. On the convergence analysis and parameter selection in particle swarm optimization[C]. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an,2003:1802-1807
    [142]C. Lin. Q. Y. Feng. The standard particle swarm optimization convergence analysis and parameter selection[C]. Proceeding of Third International Conference on Natural Computation,2007
    [143]Y. Shi, R. C. Eberhart. A modified particle swarm optimizer[C]. Proceeding of the IEEE Conference on Evolutionary Computation,1998,69-73
    [144]田雨波,朱人杰,薛权祥.粒子群优化算法中惯性权重的研究紧张[J].计算机工程与应用,2008,44(23):39-41
    [145]I. Trelea. The particle swarm optimization algorithm:Convergence analysis and parameter selection[J]. Information Processing Letters,2003,85(6):317-325
    [146]R. Eberhart, Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization[J]. IEEE Congress on Evolutionary Computation,200:84-88
    [147]Y. Shi, R. Eberhart. Empirical study of particle swarm optimization[J]. Proceedings of the 1999 Congress on Evolutionary Computation,1999:1945-1950
    [148]Y. L. Zheng, L. H. Ma, L. Y. Zhang, et al. On the convergence analysis and parameter selection in particle swarm optimization[C]. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an.2003:1802-1807
    [149]崔红梅,朱庆保.粒子群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(4):47-48
    [150]张静茹.数值优化技术编码的PSO混合算法及其在前馈神经网络训练中的应用研究[T].合肥:中国科学技术大学,2007
    [151]高海冰,高亮,周驰等.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574
    [152]M. Carvalho, T. B. Ludermir. Particle swarm optimization of neural network architectures and weights[C].7th International Conference on Hybrid Intelligent Systems 2007, Kaiserslautern,2007:336-339
    [153]J. R. Zhang, J. Zhang, T. M. Lok, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathmatics and Computation,2007,1026-1037
    [154]G. C. Chen, J. S. Yu. Particle swarm optimization neural network and its application in soft-sensing modeling[J]. Lecture Notes in Computer Science,2005, (3611):610-617
    [155]田雨波.混合神经网络技术[M].北京:科学出版社,2009
    [156]V. N. Vapnik. The nature of statistical learning theory[J]. New York:Springer-Verlag,1995
    [157]徐勇,张大鹏,杨健.模式识别中的核方法及其应用[M].北京:国防工业出版社,2010
    [158]张学工.关于统计学习理论与支撑向量机[J].自动化学报,2000,26(1):32-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700