锂离子电池电解质盐制备新方法及热稳定性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,我国锂离子电池电解质盐的相关研究及产业化一直未取得突破,国内所需电解质锂盐因无国产能力全部依赖进口。究其原因主要是由于产品纯度要求高、生产危险性大、原材料制备困难、技术垄断度高等。目前,国外普遍采用氟化氢(HF)作原料生产电解质锂盐,在国内防腐工程领域水平较低的前提下,国内按照国外工艺开展产业化瓶颈多、难度极大。本研究论文采用全新方法制备三种常用电解质盐四氟硼酸锂(LiBF4).六氟磷酸锂(LiPF6).双草酸硼酸锂(LiBOB),解决了国外方法中一直沿用腐蚀性、强毒性试剂的致命缺点,为我国自行开发制备方法提供了重要思路,意义重大。
     本文首先研究了重要原材料——氟化锂(LiF)的制备新方法,分为湿法、固相法两种方法制备。湿法采用硝酸溶解锂碳酸锂(Li2CO3),用过量氟化铵(NH4F)沉淀出LiF,实验中采用原子吸收法对制备过程及主要优化条件进行监测,结果表明:最佳沉淀时间控制在3-5 h;最佳pH值在4.4-4.7之间;最佳Li+初始浓度在1.0mol·L-1~2.0 mol·L-1之间;最佳F-/Li+浓度比为1.5-2.5。固相法采用氯化锂(LiCl)和氟化氢铵(NH4HF)为原料,LiCl经萃淋树脂纯化得高纯无水LiCl,后经NH4HF干法合成LiF。实验中采用X射线衍射分析监测过程中控制条件,结果表明:固相法最佳合成温度在150℃-200℃之间;最佳合成时间为5 h-6 h;最佳原材料配比以2:1-3:1为宜。两种制备方法所制得LiF的杂质含量都控制在10 ug·g-1之内,制备产品纯度高。
     LiBF4制备采用的是乙腈(CH3CN)溶剂法。其中中间产物BF3的制备过程采用气相色谱-质谱联用技术(GC-MS-SIM)监测,结果表明最佳条件为:氟硼酸钠在500℃条件下加热3 h。BF3和自制高纯LiF在CH3CN溶剂中直接反应,反应完全后经过滤、溶解、冷却结晶、重结晶、真空干燥得最终产物。产物经傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)进行定性表征,原子吸收法(AAS)、离子色谱法(IC)进行定量分析,并通过了热重、微分热重分析(TG-DTG)(下同)。结果表明:通过乙腈溶剂法制备LiBF4的纯度高,产率达到70%以上,产物主要在103.50℃和300.06℃处有2个强分解峰,整体失重率在75%左右,优于一般商业用的LiBF4。
     本文提出了高纯五氟化磷(PF5)气体的制备新方法,分为纯固相法、六氟磷酸(HPF6)中间产物法两种方法制备。本文提出了四套PF5纯固相制备方法,其中采用GC-MS-SIM法重点研究了P2O5和CaF2固-固加热制备过程的最佳控制条件:P2O5和CaF2固-固相在质量比≥2:1时,于280℃条件下加热3 h。HPF6中间产物法制备PF5采用P2O5和无水HF为原料,实验中采用传统的硝酸灵法对反应过程中的液相进行分析,以及采用GC法对最终所得气体进行气相分析,结果表明:在无水HF过量60%的条件下反应4 h,然后用比理论计算值大35%-40%的发烟硫酸(H2SO4·SO3)对中间产物HPF6进行除水处理,再在150℃条件下加热中间产物40 min-50 min,最后对混合气体进行冷凝除杂,冷却介质为0℃冷却水,最终得到产品PF5。本文提出的两类方法所制备PF5纯度高,优于传统方法。本文还确定无水乙醚是PF5的最佳溶剂。
     LiPF6制备采用的是乙腈溶剂法和乙醚溶剂法。乙腈溶剂法采用自制高纯LiF和PF5在乙腈中直接反应,反应完全后经过滤、溶解、冷却结晶、重结晶、真空干燥得最终产物。乙醚溶剂法采用自制高纯LiF和PF5在乙醚中直接反应,反应完全后经溶解、取清液、常温加热蒸发、真空干燥得最终产物。通过本实验制备的LiPF6纯度高、产率大,在78.33℃和202.15℃处出现两个强分解峰,失重率分别为12.44%和80.38%,整体失重率为84%左右。其热分解性能优于一般商品用LiPF6。
     LiBOB制备采用的是乙腈溶剂法和固相法。乙腈溶剂法以硼酸(H3BO3)、碳酸锂(Li2CO3)、草酸(H2C2O4)为原料,采用P204萃淋树脂预处理锂源,后将反应物置于乙腈溶剂中直接反应,反应完全后经过滤、减压蒸发、乙二醇二甲醚再溶解、重结晶、真空干燥得最终产物。固相法采用Li2CO3、H3BO3、H2C2O4为原料,以XRD实时分析方法重点就固相合成中的关键控制因素——合成温度、合成时间、锂源、提纯溶剂、结晶方式进行了考察。结果表明:原料置于管式炉中于120℃反应4h,再升温至240℃加热4h反应,反应完全后经溶解、过滤、减压蒸发、乙酸乙酯再溶解、重结晶、真空干燥得最终产物。通过本实验制备的LiBOB纯度高、产率大,主要在381.65℃和444.18℃处有2个强分解峰,失重率分别为75%和10%,整体失重率在85%左右,热稳定性能优。
     本研究论文提出的有机溶剂法(包含乙腈溶剂法和乙醚溶剂法)可应用于三种盐的制备中,该方法彻底摒弃使用了传统方法中普遍采用的HF等强毒、强腐蚀性溶剂,反应过程对环境和最终产品无污染。纯固相法因反应过程中无水分干扰,对电解质盐制备有利,优势明显。
In China research and industrialization on lithium-ion battery electrolyte salts has not been received advancement at present, lithium electrolyte salts all depend on import. They can not be made in China nowadays because of the requirements of high purity, the fatalness occurred in manufacturing, the difficulties of preparing raw material, and the highly monopolized techniques.The low level of the corruption-resist capacity of domestic industry, in addition to the highly monopolized core techniques, makes it rather difficult to industrialize this product by applying foreign techniques, which traditionally uses HF method. In this thesis, three frequently-used types of electrolyte salts (LiBF4, LiPF6, LiBOB)are prepared by adopting new preparation methods.As is known, the critical defect of the preparation method adopted by foreign companies is caused by the use of strong corrosive and virulent solvents. Our method will help solve this problem. Therefore, this method will be of great significance to the self-development of its preparation method.
     Novel preparation method of LiF is studied in this thesis. The preparation methods are sub-divided into two:the wet method and the solid phase method. As for the wet method, nitric acid is used to dissolve the Li2CO3;LiF is precipitated by using excessive NH4F;the whole preparation process is to be monitored under the atomic absorption method. The results show that the best precipitation time is 3-5h, the best pH value is 4.4~4.7,the best Li+ initial concentration is 1.0 mol·L-1~2.0 mol·L-1,and the best F-/Li+ ratio is 1.5~2.5. As for the solid phase method, LiCl and NH4HF are used as materials; high pure and anhydrous LiCl is obtained from purified LiCl by using extraction resin; and then LiF is synthesized from it through NH4HF.The key controlling condition is monitored by X-ray diffraction analysis. The results show that the best temperature for synthesis is 150℃~200℃,the best time for synthesis is 5 h-6 h and the best raw material ratio is 2:1-3:1.Under the above two preparation methods, the impurity content is below 10 ug·g-1.The purity of the prepared product is high.
     The CH3CN solvent method is adopted in the preparation of LiBF4. The preparation of the intermediate product BF3 is monitored by the GC-MS-SIM technique. The result shows that the best condition is sodium tetra-fluoroborate is to be heated at the temperature of 500℃for 3h. BF3 and the self-made high pure LiF will directly react in CH3CN solvent. The final product is to be obtained after the following process:filtration, dissolution, cooling crystallization, re-crystallization and vacuum drying. FT-IR, XRD are used to the qualitative analysis of final production, AAS,IC are used to quantitative analysis, and TG-DTG is used to thermal analysis.The results show that LiBF4 synthesized under the CH3CN solvent method is of high purity, and the yield rate is over 70%; the product has two strong decomposition peaks at the temperature of 103.50℃and 300.06℃; the overall weight-loss ratio is around 75%,which is better than commercially available LiBF4.
     Novel preparation method of high pure PF5 is initially proposed in this thesis. The new methods can be subdivided into pure solid phase method and HPF6 intermediate product method.4 sets of pure solid phase methods for PF5 are introduced in this thesis.Much attention is given to the research of the best controlling condition of the solid-solid heating preparation for P2O5 and CaF2 by using the GC-MS-SIM method. The best controlling condition is that solid P2O5 and CaF2 with the mass ratio of≥2:1 are heated at the temperature of 280℃for 3 h. As for the preparation of PF5 under the HPF6 intermediate product method, P2O5 and anhydrous HF are used as materials.The reaction process is to be analyzed by adopting the conventional nitron method; the final gas is to be analyzed by adopting the GC method. The results show that the reaction is lasted for 4 h under the condition of excessive anhydrous HF over 60%; dehydrate the HPF6 by using H2SO4·SO3 which should be 35%~40% more than the theoretical value;then heat the intermediate product under the temperature of 150℃for 40 min-50 min; condensate and decontaminate the mixed gas; the cooling medium is water with the temperature of 0℃;then obtain the final product PF5.PF5 prepared under the above two methods has high purity and better than that made under conventional method. We also confirm that ether is the best dissolvent for PF5.
     The CH3CN solvent method and the aether solvent method are adopted in the preparation of LiPF6 in this thesis. As for the CH3CN solvent method, self-made high pure LiF and PF5 will be directly reacted in the CH3CN solvent. After the reaction, the final product is to be obtained through the following process:filtration, dissolution, cooling crystallization, re-crystallization and vacuum drying. As for the aether solvent method, self-made high pure LiF and PF5 will be directly reacted in the aether solvent. After the reaction, the final product is to be obtained trough the following process:dissolution, clear solution absorbing, heating and evaporation under normal pressure, and vacuum drying. LiPF6 synthesized in this thesis has high purity and high yield rate.Two strong decomposition peaks appear at the temperature of 78.33℃and 202.15℃,and the weight-loss ratio are respectively 12.44% and 80.38%, and the overall weight-loss ratio is around 84%.Its thermal decomposition capacity is better than general commercially available LiPF6.
     The CH3CN solvent method and the solid phase method are adopted in the preparation of LiBOB in this thesis. As for the CH3CN solvent method, H3BO3, Li2CO3, H2C2O4 are used as materials. Firstly, lithium source is pre-processed by using P204 extraction resin; then put the reactants in the CH3CN solvent; after the reaction, the final product is to be obtained through the following processes:filtration, vaporization under low pressure, EGME re-dissolution, re-crystallization and vacuum drying. As for the solid phase method, Li2CO3、H3BC3、H2C2O4 are used as materials. Under the XRD on-time analysis method, such key controlling factors are to be investigated as synthesis temperature, synthesis time, lithium materials, purification solvents, and crystallization forms. The results show that materials are to be put into the pipe furnace and reacted under the temperature of 120℃for 4 h; and then elevate the temperature to 240℃and reacted in this condition for 4 h; after the reaction, the final product is to be obtained through the following processses:filtration, vaporization under low pressure, re-dissolution, re-crystallization and vacuum drying. LiBOB synthesized in this thesis has high purity and high yield rate. Two strong decomposition peaks appear at the temperature of 381.65℃and 444.18℃,and the weight-loss ratio are respectively 75% and 10% and the overall weight-loss ratio is around 85%.Its thermal decomposition capacity is good.
     Organic solvent method (including CH3CN solvent and aether solvent) proposed in this thesis can be applied in the preparation of three salts.This method abandons the conventionally-used strong corrosive and virulent solvents. The reaction process has no pollution to the environment and the final product. What's more, the reaction process of the pure solid phase method is free from the disturbing of water. Therefore, it benefits much the preparation of electrolyte salt and has obvious advantages.
引文
[2]Gabano J P. Lithium ion batteries. New York:Academic Press,1983.112~118
    [3]Whittingham M S.New system of Li/LiS2 used in lithium ion battery. Science, 1976,192(17):1126~1133
    [4]Nagaura. Significant progress in lithium ion battery. Florida:4th International Rechargeable Batt. Seminar,1990.88~91
    [5]Eftekhari A. Fabrication of 5V lithium rechargeable micro-battery. Journal of Power Sources,2004,25(132):240~243
    [6]吴宇平,万荣春,姜民印.锂离子二次电池.北京:化学工业出版社,2002.151-154
    [7]郭炳琨,徐徽,王先友等.锂离子电池.长沙:中南大学出版社,2000.68-73
    [8]温兆银.锂二次电池的现状与发展.新材料产业,2003,19(4):45-49
    [10]Armand M. Materials for Advanced Batteries. New York:Plenum Press,1980. 145~147
    [11]管从胜,杜爱玲,杨玉国.高能化学电源(第1版).北京:化学工业出版社,2005.133-136
    [12]陈军,陶占良,苟兴龙.高能化学学电源——原理、技术与应用(第1版).北京:化学工业出版社,2006.15-21
    [13]吴宇平,方世壁.锂离子电池正极材料氧化钴锂的进展.电源技术,1997,21(5):208-209
    [14]李普良,徐舜,习小明,等.锂离子电池正极材料LiCoO2合成方法及其掺杂研究进展.矿冶工程,2004,24(1):84-88
    [15]Jang Y, Chiang Y M. Stability of the monoclinic and orthorhombic, phases of LiMnO2 with temperature, oxygen partial pressure, and Al doping. Solid State Ionics,2000,130(17):53~59
    [16]Store C, Kargina I, Grincourt Y, et al. Electrochemical characterization of a new high capacity cathode. Journal of Power Sources,2001,97~98 (7):541~544
    [17]许名飞,李新海,张云河,等.层状锰酸锂的制备与改性.电源技术,2003,27(4):366-369
    [18]Amine K, Liu J, Belharouak I, et al.Advanced cathode materials for high-power applications. Journal of Power Sources,2005,146(8):111~115
    [19]任俊霞,阎杰,王小建,等.锂离子电池正极材料LiFePO4的研究进展.电池,2004,34(1):53-55
    [20]于超,支红军.锂离子电池的研究与发展.新疆有色金属,2004,28(9):193-194
    [21]艾护民,赵海鹏,李江伟.锂离子二次电池负极材料的研究综述.化工新型材料,2007,35(7):77-81
    [22]颜剑,苏玉长,苏继桃等.锂离子电池负极材料的研究进展.电池工业,2006,11(4):277-281
    [23]Kohs W, Santner H J, Hofer F, et al.A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase, J Power Sources,2003,119(121):528~537
    [24]王金才,李锋,刘畅等.锂离子电池碳负极材料的研究现状与发展,腐蚀科学与防护,2004,6(5):300-303
    [25]Kuribayashi I. Battery characteristics with various carbonaceous materials. J Power Sources,1995,54(1):1~5
    [26]Ein-Eli Y. A route to enhance capacity in Li-ion battery graphite anode. J Electrochem Soc,1997,144 (9):1968~2973
    [27]Menachem C, Peled E. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J Power Sources,1997,68 (2): 277~282
    [28]Brooks J D, Taylor G H. The formation of graphitizing carbons from the liquid phase. Carbon,1965,3 (2):185~193
    [29]Imamura T. Formation of carbonaceous mesophase at lower temperature. Carbon, 1978,16 (6):487~490
    [30]Auguie D, Oberlin. M. Microtexture of meso-phase spheres as studied by high resolution conventional transmission electron microscopy. Carbon,1980,18 (5): 337~346
    [31]Mochida I, Korai Y.Chemistry of synthesis, structure, preparation and application of aromatic-derived meso-phase pitch. Carbon,2000,38 (2):325~328
    [32]Korai Y, Ishida S, Yoon H, et al. Efficient preparation of meso-carbon micro-beads from synthetic isotropic pitch derived from naphthalene. Carbon, 1996,34(12):1596~1576
    [33]Wang Y G, Chang C. Stabilization and carbonization properties of meso-carbon micro-beads prepared from a synthetic naphthalene isotropic pitch. Carbon,1999, 37 (6):969~976
    [34]Idota Y, Kubota T, Masufuji A, et al.Tin-Based Amorphous Oxide:A High-Capacity Lithium-ion-Storage Material. Science,1997,276 (5317): 1395~1397
    [35]Poizot P,Laruelle S, Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407(6803): 496~499
    [36]Nazar L F, Goward G, Leroux F, et al. Nano-structured materials for energy storage. J Inorg Mater,2001,3 (1):191~200
    [37]Li N C, Martin C R. Sn-based anode prepared using sol-gel template synthesis.J Electrochem Soc,2007,148 (2):164~170
    [38]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液相容性研究进展.电源技术,2000,24(3):171-177
    [39]Munichandraiah N, Scanlon G, Marsh R A. Surface films of lithium:an overview of electrochemical studies. J Power Sources,1998,72(2):203~210
    [40]Yang C R. Impedance spectroscopic study for the initiation of passive film on carbon electrode in lithium in batteries. Journal of Applied Electrochemistry, 2000,30(1):29~34
    [41]Matsumura Y. Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J Electrochem Soc,1995,142 (9):2914~2918
    [42]Aurbach D, Zinigard E, Cohen Y, et al.A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics,2002,148(3):405~416
    [43]Yang C R, Wang Y Y, Wan C C. Composition analysis of the passive film on the carbon electrode of a lithium ion battery with an EC-based electrolyte. J Power Sources,1998,72(2):66~70
    [44]Peled E, Tow D B, Merson A, et al. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources,2001,97-98(6):52~57
    [45]Shamatava G A. Calorimetric study of thermal decomposition of lithium hexafluorophosphate. Journal of Thermal Analysis and Calorimetry,2003,73 (1): 71~83
    [46]Matyukha V A. Application of thermo-gravimetric studies for optimization of Lithium hexafluorophosphate production. J Power Sources,1997,68 (8): 326~327
    [47]Howlett P C,Macfarlane D R,Hollenkamp A F. A sealed optical cell for the study of lithium electrode and electrolyte interfaces. Journal of Power Sources, 2003,114 (4):277~284
    [48]Changes A,Carreb B,Willmann P,et al.Modeling viscosity and conductivity of lithium salts in y-2butyrolactone. Journal of Power Sources,2002,109(13): 203~213
    [49]Kiston L. Manufacturing method for lithium hexafluorophosphate using red phosphorous. US Patent, US3380803,1966-05-10
    [50]Kemmitt R D, Russell D R, Sharp D W. The structural chemistry of complex fluorides of general formular A1BVF6. Jounal of Chemical Society,1963 (4): 4408~4413
    [51]Tatlow A, Sharp S.Innovation method for preparation of lithium hexafluorophosphate. Journal of Chemical Society,1965(5):208~215
    [52]KANTO DENKA KOVGO Co.,Ltd. Method for production of high purity lithium hexafluorophosphate. US Patent, JP200122605,2001-05-08
    [53]Yazaki H. Method of purifying lithium hexafluorophosphate. US Patent, EP1055640,2000-11-29
    [54]Bonnet, Philipe, Steven G. Process for manufacture of lithium hexafluorophosphate. US Patent, US 5935541,1999-8-10
    [56]ULSAN Chemical Co.,Ltd Korea Republics. Manufacturing method for lithium hexafluorophosphate. US Patent, US6387340,2002-05-14
    [57]Dennis J, Salmon H, Gastonia A. New method for preparation of lithium hexafluorophosphate. US Patent, US5378445,1999-06-12
    [59]Taru B. Preparation of lithium hexafluorophosphate using phosphorous trichloride. US Patent, JP171518,2000-10-10
    [60]Sakir A. Method of purifying lithium hexafluorophosphate using ion exchange resin. US Patent, JP5987774,1990-03-28
    [61]Salmon, Dennis J, Barnette.Preparation of lithium hexafluorophosphate solutions. US Patent,US5378445,1995-01-03
    [62]ATOFINA(FK).Method for making lithiumhexafluorophosphate. US Patent, US6500399,2002-12-31
    [63]Simmons J H. Practice of fluorine science in lithium hexafluorophosphate. Fluorine Chemistry,1950,9(1):154~165
    [65]Conte I, Gambaretto G, Caporiccio G, et al. Perfluoroalkanesulfonylimides and their lithium salts:synthesis and characterization of intermediates and target compounds. Journal of Fluorine Chemistry,2004,125 (25):243~252
    [66]Wang X M, Yasukawa E, Mori S.Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochimica Acta,2000,45 (5):2677~2684
    [67]Nakajima T, Mori M, Gupta V, et al.Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sciences,2002,66 (4): 1385~1394
    [68]Belil W K, Plichta E J. Stability of aluminum substrates in lithium-ion battery electrolytes. Journal of Power Sources,1998,72(16):132~135
    [69]Kita F, Sakata H, Sinomoto S, et al. Characteristics of the electrolyte with fluoro-organic lithium salts.Journal of Power Sources,2000,90 (9):27~32
    [70]Krause L J, Lamanna W,Sununerfield J, et al. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources,1997,68(3): 320~325
    [71]Sasaki Y, Handa M, Sekiya S,et al. Application to lithium-ion battery electrolytes of lithium chelate compound with boron. Journal of Power Sources, 2001,97~98 (5):561~565
    [72]Sasaki Y, Handa M, Sekiya S, et al.Chelate complexes with boron as lithium salts for lithium-ion battery electrolytes. Journal of Power Sources,1999,79 (19):91~96
    [73]巴特茨尔J,斯特里克R,凡乌尔M.硼酸锂配合物的制备方法.中国专利,CN1227561A,1999-09-01
    [74]Barthel J, Schmid A, Gores H J. A new class of electrochemically and thermally stable lithium salts for lithium-ion battery electrolytes. Journal of The Electrochemical Society,2000,147 (1):21~24
    [75]Xu W, Angell C A. A fusible orthoborate lithium salt with high conductivity in solutions. Electrochemical and Solid-State Letters,2000,3(8):366~368
    [76]海德U,施米特M,库纳A,等.用于电化学电池的烷基硼酸盐.中国专利,CN1304937A,2001-07-25
    [77]Xu W, Shustemran A. J, Marzke R, et al.LiMOB, an unsymmetrical nonaromatic orthoborate salt for lithium-ion battery electrolytes. Journal of The Electrochemical Society,2004,151 (4):632~638
    [78]Arai J, Katayama H, Kobayashi M, et al. New organic borate compounds and the nonaqueous electrolytes and lithium secondary batteries using the compounds. US Patent, US2002/0160273 Al,2002-10-31
    [79]Tsujioka S, Takase H, Takahashi M, et al. Process for synthesizing ionic metal complex. US Patent, US2003/0100761A1,2003-05-29
    [80]Leonow A, Meijere A. D, Schmidt M. Method of preparing lithium complex salts for use in electrochemical cells. US Patent, US6441216 B1,2002-08-27
    [81]Schmidt M. Borate salts for use in electrochemical cells. US Patent, US 2002/0160261A1,2002-10-31
    [82]Handa M, Suzuki M, Sujuki J, et al. A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. Electrochemical and Solid-State Letters,1999,2(2):60~62
    [83]萨托瑞P,伊格纳采夫N.氟磷酸锂和其作为导电盐的用途.中国专利,CN1232465A,1999-10-20
    [84]黑得尔U,库尼尔A,司彻米迪特M,等.氟代烷基磷酸锂及其作为电解质盐的应用.中国专利,CN1311188A,2001-09-05
    [85]Heider U, Schmidt M, Kuhner A. Lithium Salt and a Process of Preparing Thereof. US Patent,US2002/0001755 Al,2002-01-03
    [86]Schmidt M, Heider U, Kuehna. A, et al. Lithium fluoroalkylphosphates:a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources,2001,97-98(7):557~560
    [87]Oesten R, Heider U, Schmidt M. Advanced electrolytes. Solid State Ionics,2002, 148(18):391~397
    [88]Hayashi K, Nemoto Y, Tobishima S, et al. Electrolyte for high voltage Li cells. Journal of Power Sources,1997,68 (3):316~319
    [89]Hayashi K, Nemoto Y, Tobishima S,et al. Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta,1999,44 (14): 2337~2344
    [90]Bruno S.Recent advances in lithium ion battery materials. Electrochimica Acta, 2000,45(15~16):2461~2466
    [91]Herreyre S,Huchet O, Barusseau S,et al.Proceedings of the 10th International Meeting on Lithium Batteries, Lithium 2000, Como, May 2000, Abstract no.282. 265~268
    [92]Moller K C, Hodal T, Appel W K, et al. Fluorinated organic solvents in electrolytes for lithium ion cells. Journal of Power Sources,2001,97-98 (7): 595~597
    [93]Plichta E J, Behl W K. A low-temperature electrolyte for lithium and lithium-ion batteries. Journal of Power Sources,2000,88(2):192~196
    [94]Wang X M, Eiki Y, Shigeaki K, et al.Electrochemical properties of tetra-hydropyran-based ternary electrolytes for 4 V lithium metal rechargeable batteries. Electrochimica Acta,2001,46(6):813~819
    [95]Herreyre S, Huchet. O, Barusseau. S,et al.New Li-ion electrolytes for low temperature applications. Journal of Power Sources,2001,97-98(3):576~580
    [96]Wilkes S,LeviskJ Ay,Wilson R A,et al.Di-alkylimidazolium chlooraluminate melts:a new class of room-temperature ionic liquids for electro-chemistry, spectroscopy and synthesis. J. of Inorg Chem,1982,21 (3):1263~1264
    [97]Wilkes J S,Zaworotko M J. Air and water stable 1-Ethyl-3-methylimidazoilum Based Ionic Liquids. Chemical Communications,1992,13 (10):965~967
    [98]石家华,孙逊,杨春和,等.离子液体研究进展.化学通,2002,21(4):243-250
    [99]张静.室温离子液体的研究进展.北京服装学院学报(自然科学版),2002,22(1):27-31
    [100]McEwen A B, Ngo H L, Goldman J L, et al. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. Jounral of the Electrochemical Society,1999,146 (5):1687~1695
    [101]Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-methy-limidazolium tetrafluoroborate:Electro-chemical couples and physical properties. J. Electro-chem.Soc.,1997,144 (11):3881~3886
    [102]Hikari S, Hajime M. N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide(PP13-TFSI)-novel electrolyte base for Li-battery.Electrochemistry Communications,2003,5 (7):594~598
    [103]McEwen A B, Koch V R. Non-flammable Electrolytes.US Patent, US01107 9A1,2002-08-15
    [104]郑洪河,秦建华,等.锂离子电池电解液添加剂的发展与展望.化学通报,2004,38(7):56-59
    [105]Mao H Y, Reimers J N. Use of B2O3 additive in non-aqueous rechargeable lithium batteries. US Patent,US5964902,1999-10-12
    [106]左晓希,刘建生,李伟善.含硼化合物在锂离子电池电解质中的应用.电池,2002,32(6):358-360
    [107]Wang Y, Zhang M J, Sacker U V, et al. Additives for improving cycle life of non-aqueous rechargeable lithium batteries. US Patent, US6045948,2000-04-04
    [108]Yang Y, Inoue T, Fujinami T, et al. Blended lithium ion conducting polymer electrolytes based on boroxine polymers. Solid State Ionics,2001,140(10): 353~359
    [109]Ota H, Sato T, Suzuki H, et al.TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries. Journal of Power Sources,2001,97-98 (1):107~113
    [110]Wrodnigg G H, Wrodnigg T M, Besenhard J O.Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications,1999,16(1):148~150
    [111]禹筱元,胡国荣,刘业翔.锂离子电池非水电解液的研究.电池,2003,33(3):177-188
    [112]周震涛,严燕.锂二次电池过充电保护办法.中国专利,CN1274962A,2000-11-29
    [113]Lain M J, Neat R J. Electrolyte for a rechargeable cell. US Patent, US6387571131,2001-05-14
    [114]Abraham K M, Rohan J F, Foo. C. C, et al. Chemical overcharge protection of lithium and lithium-ion secondary batteries. US Patent, US5858573,1999-01-12
    [115]Shimizu R. Non-aqueous electrolyte secondary battery. US Patent, US5709968, 1998-01-20.
    [116]Mao. H. Y, Sacken U V. Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge. US Patent, US5776627, 1998-07-07
    [117]Reimers. J. N, Way B M. Additives for overcharge protection in non-aqueous rechargeable lithium batteries. US Patent,US6074777,2000-06-13
    [118]Mao H Y, Wainwright D S.Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge. US Patent, US6074776, 2000-06-13
    [119]郑洪河,秦建华,等.锂离子电池阻燃添加剂研究.电池,2004,11(6):112-115
    [120]Wang X M, Yaukawa E, Kasuya S. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries:Fundamental Properties. Journal of The Electrochemical Society,2001,148(12):1058~1065
    [121]Xu K, Ding M S, Zhang S, et al. Evaluation of fluorinated alkylphosphates as flame retardants in electrolytes for Li-ion batteries. Journal of The Electrochemical Society,2003,150 (2):161~169
    [122]Xu K, Ding M S,Zhang S, et al. Effects of tris(2,2,2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in EC-PC-EMC of 3:3:4 weight ratios. Journal of The Electrochemical Society,2002,149 (19):263~266
    [123]Zhang S S,Xu K, Jow T R. Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. Journal of Power Sources,2003,113(1):166~172
    [124]Yoo E H, Donald R V, Khalil.A. Flame-retardant additives for lithium-ion batteries. Journal of Power Sources,2003,119-121 (11):383~387
    [125]Mandal B K, Filler R. Thermal runaway inhibitors. US Patent, US2003/0003358A1,2003-01-02
    [126]Zheng H H. Lithium Ion Battery Electrolyte. Beijing:Chemical Industry Press, 2007.157-165
    [127]Wu Y P. Lithium Ion Secondary Battery. Beijing:Chemical Industry Press, 2002.351~355
    [128]Kitson F G, Larsen B S.Gas Chromatography and Mass Spectrometry:A practical guide. New York:Academic Press,1998.123~126
    [129]Li X R, Zhao O J, Liang Y Z, et al. Analysis of volatile oil in herbal pair Chuanxiong Rhizome-Notopterygium Root by gas chromatography-mass spectrometry and chemometric resolution methods. J. Cent. South Univ(Science and Technology),2007,38 (4):681~685
    [130]Li Y W, Huang L F, Liang C, et al. Analysis of the volatile components of Agrimonla Pilosa Ledeb by gas chromatography-mass spectrometry. J. Cent. South Univ (Science and Technology),2007,38 (3):502~506
    [131]宁延生.中国无机盐工业发展动态(Ⅰ).无机盐工业,2003,35(1):1-5
    [132]李世友,滕详国,沙顺萍,等.高纯氟化锂的制备与分析方法评述.化工矿物与加工,2006,35(3):34-37
    [133]METALL GESELLSCHAFT. A Method of Producing Lithium Fluoride. US Patent,GB1040661,1966-09-01
    [134]Robert D, Goodenough S, Vernon A. Recovery of Lithium from lithium bearing ores. US Patent,US2980499,1961-04-18
    [135]Robert. D, Goodenough. S.Lithium Fluoride Production. US Patent, US3179495,1965-04-20
    [136]Robert. D, Goodenough. S.Lithium Fluoride Production. US Patent, US3241914,1966-03-22
    [137]Robert. D, Goodenough. S, Thomas. G. C.Lithium Fluoride Production. US Patent,US3132922,1964-05-12
    [138]小林健二,藤浦和夫,高志郎.高纯金属フッ化物の制造方法.Japan Patent,JP404280,1988-07-16
    [139]小林健二.金属フッ化物の制造方法.Japan Patent, JP1028203,1989-01-30
    [140]小林健二,金森照寿.高纯金属フッ化物の制造方法.Japan Patent,JP5004801,1993-01-14
    [141]Deng B, Zhang Z Y. Research progress on preparation of PF5. Comments on chemical engineering,2002,35(12):17~20
    [142]Montgometry M, Crai D. Methods of improve semiconductor.Research of
    semiconductor,1994,48(32):105~107
    [143]Standard supervision bureau. GB804777. Fluorinated organic dithiophosphates and their use as anti-wear agent in lubricating oil composition. Beijing:Standard press,1992-02-24
    [144]Standard supervision bureau. GB879265.Manufacture highly polymeric polymethylene terephthalates. Beijing:Standard press,1991-12-08
    [145]Standard supervision bureau. GB1118079. Elastomer treatment process. Beijing: Standard press,1994-07-20
    [146]Wiesboeck J H. Practice of fluorine science in lithium hexafluorophosphate. Fluorine Chemistry,1950,22 (1):164~166
    [147]Jesin L, Zernva A, Yugoslavia S.Preparation of phosphorus pentafluoride. Kem Drus,1986,33(1):25~28
    [149]Tatlow H, Sharp A. Innovation method for preparation of lithium hexafluorophosphate.Fluorine Chemistry,1965,65(5):208~215
    [150]Dennis J, Salmon M. Preparation of phosphorus pentafluoride. US Pantent, US6322764.1963-04-14
    [151]Howlett T. Preparation of phosphorus pentafluoride, US Pantent, US2001041158,2001-05-10
    [152]Xu K, Zhang S S, Lee U, et al.Novel study of Lithium bis(oxalate)borate.J. Power Sources,2005,146(1-2):79~85
    [153]Xu K, Zhang S S,Jow T R, et al. Innovation of lithium ion battery electrolyte salts. Electrochem Solid-State Lett,2002,5(1):26~29
    [154]Xu K, Lee U, Zhang S S,et al. Lithium bis(oxalate)borate-a potential salt. Electrochem Solid-State Lett,2003,6(7):144~148
    [155]Xu K, Angell C A. on the study of preparation of Lithium bis(oxalate)borate Electrochem Solid-State Lett,2001,4(1):1~4
    [156]Xu K, Zhang S S, Poese B A, et al. Preparation amd characterization of Lithium bis(oxalate)borate.Electrochem Solid-State Lett,2002,5(11):259~262
    [157]Zavaij P Y, Yang S F.Lithium bis(oxalate)borate production and its use as a lithium salt.Acta Cryst,2003,B59(6):753~759
    [158]Wieteuann U, Lisch U, Wegnar M. Lithium bis(oxalate)borate, the production thereof and its use as a conducting salt. US Pantent,US6506516,2003-08-10
    [159]Yu B T, Qiu W H, et al.On the thernal capability of Lithium bis(oxalate)borate. Electrochem Solid-State Lett.2006,9(1):11~14
    [160]Yu B T, Qiu W H, et al. Preparation of Lithium bis(oxalate)borate by solid-solid state method. J. Power Sources,2007,174(4):1012~1014
    [161]王宗明,何欣翔,孙殿卿.实用红外光谱学.北京:石油化工出版社,1978.13-18
    [162]柯以侃,董慧茹.分析化学手册第三分册.北京:化工出版社,1998.114-118
    [163]王汝琳,王咏涛.红外检测技术.北京:化学工业出版社,2006.251-255
    [164]黄继武.X射线衍射实验操作指导.长沙:中南大学出版社,2006.111-113
    [165]刘粤平,刘平安.X射线衍射分析原理与应用.北京:化学工业出版社,2003. 44-49
    [166]刘虎威.气相色谱方法及应用.北京:化学工业出版社,2007.147-149
    [167]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术.北京:化学工业出版社,2006.434-437
    [168]Kitson F G, Larsen B S,McEwen C N. Gas Chromatography and Mass Sectrometry:A Practical guide. New York:Academic Press,1998.123~126
    [169]Wang L, Wang Z F, Mou S F, et al. Sample Pre-treatment in Gas-chromatography. Beijing:Chemical Industry Press,2004.77~85
    [170]张扬祖.原子吸收光谱分析应用基础.上海:华东理工大学出版社,2007.117-125
    [171]牟世芬,刘克纳,丁晓静.离子色谱方法及应用.北京:化工出版社,2005.18-25
    [172]坡普.龙德.王世华等.差热分析:DTA技术及应用.北京:北京师范大学出版社,1982.11-16
    [173]Gavritchey K S,Shamatava G A,Smagin A A. Calorimetric study of thermal decomposition of lithium hexafluorophosphate. Journal of Thermal Analysis and Calorimetry,2003,73(1):71~83
    [174]Smagin A A, Matyukha V A, Korobtsev V P. Application of thermo-gravimetric studies for optimization of Lithium hexafluorophosphate production. J Power Sources,1997,68 (12):326~327
    [175]曹晓燕,薛泰安,熊俊威等.锂离子电池电解液中氟化氢的测定方法.中国专利,200410075717.9,2004-12-31
    [176]卡尔费休测试技术.中南大学内部资料,2004
    [177]王茂涵,刘妙根.高纯氟化锂的分析.光谱实验室,1999,16(3):320-323
    [179]刘妙根,王茂涵,唐书凯.高纯氟化锂的制备与分析.中国核科技报告,1999
    [180]Jaganathan J, Aggarewal L. Determination of Iron, Cobalt, Nickel and Copper in Lithium Fluoride by GF-AAS.Appl. Spectrosc.,1993,47(2):190~191
    [181]Schr W, Detcheva A, DreBler B, et al. Determination of copper, lead, cadmium, zinc and ion in calcium fluoride and other fluoride containing samples by means of direct solid sampling GF-AAS.Fresenius Anal Chem,1998,36 (1):106~109
    [182]Waddington T C.Lattice Energies and their Significance in Inorganic Chemistry Advances. Inorganic Chemistry,1929,14(1):157~221
    [183]孙福楠.瓶装三氟化硼的大规模生产.低温与特气,2004,22(1):24-27
    [184]Wang L, Wang Z F, Mou S F, et al.Sample Pretreatment of Chromatography Analysis. Beijing:Chemical Industry Press,2004.33~38
    [185]Xin M, Hu W H. Group Theory and Chemistry. Beijing:High EducationPress, 1984.44~49
    [186]Pranic Z, Translated by Zhao Z Q. Practice in Molecule Vibration of Group Theory. Beijing:High EducationPress,1983.55~58
    [187]KMatsumoto A, Hagiwara R, Mazej Z, et al.Practice of lithium salt in battery. J. Phys. Chem. B,2006,110(5):2138~2141
    [188]Zhang S S, Xu K, Jow T R. Preparation of lithium salt by solid state method. Journal of Solid State Electrochemistry,2003,7 (3):147~151
    [189]Song S W, Richardson T J, Zhuang G V, et al. On the study of related lithium ion battery. Electrochimica Acta,2004,49(10):1483~1490
    [190]天津大学物理化学教研室编,物理化学.高等教育出版社,1994.11-25
    [191]邓波.五氟化磷的制备及其在乙醚中溶解度的研究.成都:四川大学,2003
    [192]Teng X G, Dai J C, Ma P H. Preparation and characterization of LiPF6. Journal of inorganic chemistry,2004,17(20):1109~1111
    [193]Aroca R, Nazri M, Nazri G A. Practice of lithium ion battery electrolyte solution. Journal of solution,2000,79 (29):833~837
    [194]Mohamed K S.Practice of HF in lithium hexafluorophosphate preparation. J Fluorine Chem.,1983,46 (23):509~511
    [195]Mohamed K S.Spectral determination of lithium hexafluorophosphate Spectrochim Acta.,1985,112 (41):725-730.
    [196]湖南杉杉科技内部资料.湖南长沙,2008
    [197]黄力.LiBF4,LiAsF6和LiPF6的合成及光谱分析[博士论文].西安:西安核技术研究所,1994
    [198]中华人民共和国国家技术监督局.GB/T19282-2003.六氟磷酸锂的产品分析方法.北京:中国标准出版社,2003-11-01
    [199]Gavritchey K S.Calorimetric study of lithium hexafluorophosphate. Journal of Thermal Analysis and Calorimetry,2000,42 (4):71~83
    [200]Smagin A A. Thermo-gravimetric studies for Lithium hexafluorophosphate production. J Power Sources,1998,108 (69):1126~1127
    [201]庄全超,武山,刘文元等.六氟磷酸锂生产工艺研究,电池工业,2005,10(3): 169-172
    [202]薛照明,陈春华.锂离子电池非水电解质锂盐的研究进展.化学进展,2005,17(3):399-405
    [203]Xue Z M,Chen C H.Innovation of Lithium hexafluorophosphate in lithium ion battery. Electrochimica Acta,2004,49 (7):5167~5175
    [204]Hayashi K,Nemoto Y,Tobishima S,et al.Preparation of Lithium hexa fluoro-phosphate by HF method.Electrochimica Acta,1999,255 (44): 2337~2344
    [205]Barthel J,Buestrich R,Cores H J,et al.Preparation and purification of Lithium hexafluorophosphate by chemical method.Electrochem.Soc.,1997,112 (14): 3866-3870
    [206]Ue M,Murakami A,Nakmura S.Practice of lithium ion battery electrolyte salt in solutions.Journal of the Electrochemical Society,2002,149 (10): A1385-A1388
    [207]Yu B T,Qiu W H,Li F S.Kinetic study on solid state reaction for synthesis of LiBOB.Journal of Power Sources,2007,174(2):1012-1014
    [208]江苏来恩研究所内部资料,江苏常州,2008
    [209]轩小朋,赵扬,王键吉.锂离子电池电解质盐的研究进展.电源技术,2006,30(11):943-946
    [210]蒲薇华,何向明,王莉,等.锂离子电池电解质盐的研究综述.化学进展,2006,18(12):1703-1706
    [211]Yu B T,Qiu W H,Li F S,et al. Preparation and characterization of Lithium bis(oxalate)borate.Electrochem Solid-State Lett.2006,9 (1):A1-A4
    [212]Yu B T,Qiu W H,Li F S,et al.Kinetic study for synthesis of LiBOB. Journal of Power Sources,2007,174(5):808~812
    [213]Ella Z,Liraz L A,Larush A,et al.Spectral determination of Lithium bis(oxalate)borate.Thermochimica acta,2007,457 (4):64~69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700