棉铃虫Helicoverpa armigera (Hübner)对有机磷杀虫剂靶标抗性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以棉铃虫为研究对象,系统地研究了棉铃虫有机磷抗性的机制,其重点是对乙酰胆碱酯酶(AChE)生物化学及分子生物学的研究。
     用久效磷对采集于山东聊城抗性地区的棉铃虫进行抗性品系的选育。在16代期间经过10代的室内选育,抗性倍数达到211.88倍,为选育前的6.67倍。同时发现筛选后对氰戊菊酯、氯氰菊酯和灭多威的抗性分别下降了8.13、7.44和13.36倍,对甲基对硫磷和辛硫磷的抗性基本保持不变。这说明久效磷与这5种被试药剂之间没有明显的交互抗性。从久效磷、马拉硫磷、辛硫磷、甲基对硫磷、甲胺磷、灭多威、巴沙和氯氰菊酯8种杀虫剂对棉铃虫XJ-S品系和LC-R品系的毒力测定可以看出,LC-R品系对久效磷的抗性倍数为211.9倍,属高水平抗性,而对其它7种药剂均为低水平抗性或耐药力增加。
     通过构建种群生命表,观察比较了棉铃虫对久效磷的抗性品系和敏感性品系一系列生长发育和繁殖特征。结果表明,两品系的适合度差异显著。相对于敏感品系,抗性品系生长发育上表现为幼虫期和蛹期延长,蛹重减轻,化蛹率和羽化率降低;繁殖上表现为交配率、产卵量和卵孵化率降低。用种群数量趋势指数(I)来确定两个品系的相对适合度,抗性品系对敏感品系的相对适合度仅为0.14。本文认为这是生产上棉铃虫对有机磷的抗性发展较慢的原因之一。
     本研究通过生化方法对抗、感棉铃虫体内AChE进行了研究。研究表明两个品系AChE的动力学参数存在着显著差异。以粗提酶液进行研究,发现久效磷对抗性棉铃虫体内AChE的抑制中浓度(I_(50))是敏感品系的3.18倍。纯化后,抗、感品系的AChE敏感性之间仍存在1.66倍的差异。酶液的纯化使抗、感品系AChE的I_(50)分别下降6.69和3.49倍,说明粗提酶液中存在AChE保护因子,且这种保护在抗性品系中更有效。此外,本文还对两品系的酯酶活力进行了测定,发现两个品系的酯酶活力存在着显著的差异。由此认为AChE敏感性降低与另外一些因子共同组成了棉铃虫对久效磷的抗性机制。
     在比较已发表昆虫的AChE基因氨基酸序列的基础上,我们根据保守序列设计合成了简并引物,利用反转录多聚酶链式反应(RT-PCR)技术扩增了棉铃虫AChE的cDNA片段。所获得的281bp的棉铃虫cDNA片段由94个氨基酸残基组成,通过与GenBank
    
     棉铃虫从eljcoverna arm枉era(nUbner)对有机磷杀虫剂靶标抗性机制的研究
    中其它几种昆虫AChE基因序列的同源性比较,发现所得到的序列与已知几种昆虫和
    动物的北M氨基酸序列具有很高的同源性,由此推断所获得的片段序列是棉铃虫
    ACbB基因的 片段序列。
     利用 CDNA末端快速扩增枝术(RACE)获取了新疆棉铃虫敏感品系 AChE的 CDNA
    序列,由。mA序列推导出来的氨基酸序列包括32个氨基酸的信号肽和615个氨基
    酸的成熟蛋白,分子量为69,059 KDa。5’端非翻译区为315ba,3’端非翻译区为
    324hp。通过与 GenBank 中黑尾叶蝉N勾劝灯。ttix cj。ctjcops、马铃薯甲虫
    Lop ttno拈 rSS WcCmLCmL切ea is、斯氏按④砌山汕打es S拈ph*DS/和黑腹果蝇
    Nosophjla。打。Ogss比。4种昆虫 AChE基困序列的同源性比较,发现彼此均具
    有较高的同源性,其同源性分别为70儿68儿60%和57巩 并且,所推导的氨基酸
    序列具有从M基困的特征性氨基酸残基,其中包括形成催化三联体的三个氨基酸
    残基钻r,Gin和His以及形咸亚基间H硫键的 6个保守的Cys。由此推断所获得
    的CDNA序列为棉铃虫AChE基因的CDNA序列。
     通过比较棉铃虫久效磷抗性品系和敏感品系 AChE的全长 CDNA序列,发现抗性
    品系才对于敏感品系存在9个点突变,分另为Arg一4一GIn,y8117一Met,ASp一170
    -+01y,GIfl-217--+Aflg,Ilfl-433-+mf,AS少435--+Gly,MSt叫68--+VSI,们S-硼7、灯S
    和Ala刁85—Thr。其中,Ala刁85—Thr出现于所有的测试抗性棉铃虫个体中,而敏
    感个体中却不存在这一突变,说明这一点突变可能导致了棉铃虫AChE的不敏感性,
    从而导致了棉铃虫对久效磷的抗性。
     本研究还对棉铃虫辛硫磷抗性品系的AChE基因进行了克隆和序列测定。通过
    比较抗性品系和敏感品系AChE的全长CDNA序列,发现杭性品系相对于敏感品系存
    在6个点突变,分别为Gly-9、Gly,GIU-128—Gly,LyS-291--+GIS,ASP-415-+Gly,
    Ala-555一Val和Ala-585叶Thr。其中,点突变Ala-585-+Thr出现于所有的坝试抗
    性棉铃虫个体中,而敏感个体中却不存在这一突变,说明这一点突变可能导致了棉
    铃虫AChE的不敏感性,从而导致了棉铃虫对辛硫磷的抗性。
     本研究还从棉铃虫抗性品系和敏感品系中克隆TAChE基因组mA片段。序列
    比较表明,抗性品系和敏感品系之间存在着内含子序列上的差异。这些DNA序列上
    的信息在排除地理种群的多态性之后可为棉铃虫抗药性的分子检测提供序列依据。
     本研究选用了敏感性不同的几个田间品系,采用点滴法和浸渍法,室内测定了丙
    涣磷对辛硫磷的增效作用。结果表明:门)所有配比都具有一定的增效作用;随着辛
    梆的比例增大,共毒系数的变化呈抛物线状,以中间比例(1:4和1:5)的共毒系
In this paper, we studied the organophosphorus resistance mechanism in cotton bollworm Helicoverpa armigera (Hubner), one of the serious cotton pests in the world. Our study especially put stress on the biochemical and molecular analysis of acetylcholinesterase (AChE, EC 3.1.1.7), which is the inhibition target enzyme of organophosphate and carbamate insecticides.
    Monocrotophos resistance was selected in laboratory with the field resistant cotton bollworm collected from Liaocheng County (LC-R), Shandong Province. After ten-generation selections with monocrotophos during sixteen generations, the resistance increased 6.67-fold and was as high as 211.88-fold when compared with a susceptible strain collected from Xinjiang (XJ-S). But the resistance of the selected strain to fenvalerate, cypermethrin and methomyl decreased by 8.13-, 7.44- and 13.36-fold, respectively, during the selection. Methylparathion and phoxim resistance was basically unchanged as compared with that of FQ. These indicated there was no significant cross-resistance between monocrotophos and the other 5 insecticides tested. Toxicity of 8 insecticides to resistant and susceptible H. armigera showed that the LC-R strain has developed high resistance to monocrotophos (RR=211.9) and low resistance or high insecticide-proof ability to the other 7 insecticides.
    By constructing life table of resistant strain and susceptible strain, the effects of monocrotophos resistance on fitness in the cotton bollworm were evaluated in terms of developmental and reproductive characteristics. The results indicated that the LC-R strain possessed developmental disadvantages including prolonged larva and pupa duration, lighter pupae weight, lower pupation and emergence rate, and reproductive disadvantages including lower copulation rate, fecundity and hatchability when compared with the XJ-S strain. Relative fitness was determined by population number tendency index (I). The LC-R strain was calculated to have a fitness value of 0.14
    
    
    relative to the XJ-S strain, which could be contributed to the slow development of organophosphate resistance in cotton bollworm in fields.
    Acetylcholinesterase (AChE) in the resistant and susceptible H. armigera was also studied. The results showed that AChE in resistant strain was much less sensitive to monocrotophos. The I50 value for resistant AChE was 3.18-fold higher than that for susceptible. Partial purification of AChE to remove esterase and some other proteins increased the sensitivity dramatically. The I50 reduced by 6.69-fold and 3.49-fold for resistant and susceptible strain, respectively. This indicated that there might be some factors protecting AChE, which was more powerful in resistant strain. Even so, there was still 1.66-fold difference in the I50 value of purified AChEs from resistant and susceptible strains. Kinetic parameters of AChE also showed significant difference between these two strains. Esterase activity was 5-fold higher in resistant larvae than in the susceptible strain. So, it is concluded that the decreased sensitivity of AChE together with some other factors in the resistant strain contributes to monocrotophos resistance.
    With the degenerate primers we have amplified a 281bp cDNA fragment of AChE gene in cotton bollworm by reverse transcription-polymerase chain reaction (RT-PCR) method using total RNA extracted from 4th larva as the template. The cDNA fragment was inserted into pGEM-T vector and then cloned. The deduced amino acid sequence of AChE was consisted of 94 residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with AChE gene from other published insects and animals. The acquired sequence had 84%, 79%, 74%, 70%, 70%, 72%, 68%, 61%, 55% and 57% of amino acid residues identical to those of Leptinotarsa decemlineata (L.d.), Nephotettix cincticeps (N.c.), Anopheles stephensi (A.s.), Aedes aegypti (A.a.), Lucilia cuprina (L.c.\ Drosophila melanogaster (D.m.), Musca domestica (M.d.), Meloidogyne incognita (M. i.), Torpedo californica
引文
1.李腾武,高希武,郑炳宗.小菜蛾对阿维菌素的抗性遗传分析及交互抗性研究.植物保护,1999,25(6):12~14.
    2.刘瑾,陈长琨,韩召军,王荫长.不同龄期棉铃虫用氰戊菊酯汰选对其抗性发展的影响。昆虫学报,2000,43(4):337~344.
    3.刘润玺,程桂林,杜学林,姜延超,胡明江.棉铃虫对灭多威与菊酯、久效磷抗性关系评述.农药,1990,29(3):10~13.
    4.慕立义,王开运.我国北方棉区棉铃虫抗药性现状.农药,1988,27(5):5~6.
    5.慕立义.棉铃虫大暴发原因及其防治对策.农药,1994,33(2):3~7.
    6.任晓霞,韩召军,王荫长.棉铃虫对久效磷抗性品系的选育及其乙酰胆碱酯酶的研究.南京农业大学学报,2001,24(1):47~50.
    7.沈晋良,韩召军,尤子平.南方棉蚜抗药性监测.南京农业大学学报.1987,4(增):1~12.
    8.沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社,1997.
    9.孙洪武,韩召军,王荫长,柏立新.江苏省主要棉区棉铃虫对有机磷杀虫剂的抗性.江苏农业学报,1999,15(4):206-210.
    10.孙洪武,韩召军,王荫长.丙溴磷防治棉铃虫的抗性风险与混配的增效作用.南京农业大学学报,2000,23(3):29-32.
    11.孙耘芹.害虫的抗药性Ⅰ:侦测棉铃虫抗药性的方法.昆虫知识,1982,19(2):46~47.
    12.谭福杰.农业害虫抗药性测定方法.南京农业大学学报,1987(增刊).4:105~122.
    13.谭维嘉,梁革梅,郭予元.棉铃虫对拟除虫菊酯杀虫剂敏感性的修复及其乙酰胆碱酯酶的变化.昆虫学报,1997,40(suppl);35~42.
    14.唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响.昆虫学报,1990,33(4):385~392.
    15.唐振华.昆虫抗药性及其治理.北京:农业出版社,1993.277~278.
    16.王荷,曹煜,李世友,谭维嘉.棉铃虫对拟除虫菊酯抗药性研究.植物保护,1988,14(2):5~7.
    17.王开运,慕立义,刘峰,仪美芹,慕卫,棉铃虫对氰戊菊酯等杀虫剂抗性选育及其生化机理.昆虫学报,1997,40(1):23-31.
    18.王沫.河南省棉铃虫抗药性监测及机理研究.南京农业大学硕士学位论文,1991.
    19.魏岑,茹李军,范贤林,赵永巧,孟香清,刘安西,赵勇.增效混剂延缓棉铃虫对菊酯农药抗性机制的研究.植物保护学报,1996,23(2):152~156.
    
    
    20.吴孔明,刘芹轩.棉蚜抗杀灭菊酯品系的某些生物学特性.昆虫学报,1994,37(2):137~144.
    21.吴坤君,陈玉平,李明辉.不同温度下的棉铃虫实验种群生命表.昆虫学报,1978,21(4):385~392.
    22.吴坤君,陈玉平,李明辉.温度对棉铃虫实验种群生长的影响.昆虫学报,1980,23(4):358~363.
    23.吴益东,沈晋良,谭福杰,尤子平.棉铃虫对氰戊菊酯抗性机理研究.南京农业大学学报.1995a,18(2):63~458.
    24.吴益东,沈晋良,谭福杰,尤子平.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度.昆虫学报,1996,39(3):233~237.
    25.吴益东,沈晋良,谭福杰,尤子平.山东省阳谷县棉铃虫抗药性监测.南京农业大学学报,1995b,18(3):48~53.
    26.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯抗性遗传分析.昆虫学报,1995c,38(1):20~24.
    27.吴益东.棉铃虫对氰戊菊酯抗药性研究.南京农业大学博士学位论文,1994.
    28.许雄山,韩召军,王荫长.羧酸酯酶与棉铃虫对有机磷杀虫剂抗性的关系.南京农业大学学报,1999,22(4):41~44.
    29.杨亦桦,沈晋良,吴益东,谭福杰.棉铃虫抗溴氰菊酯品系选育、生化机理及遗传方式研究.植物保护学报,1996,23(2):163~169.
    30.杨亦桦.棉铃虫对溴氰菊酯抗药性研究.南京农业大学硕士学位论文,1994.
    31.张文吉,张友军,韩熹莱.棉铃虫不同龄期幼虫羧酸酯酶、谷胱甘肽转移酶、乙酰胆碱酯酶研究.植物保护学报,1996,23(2):157~162.
    32.张友军,韩熹莱,张文吉,李学峰.棉铃虫对拟除虫菊酯杀虫剂的抗性机制研究.植物保护研究进展.科技出版社.1995,321~325.
    33.张友军,韩熹莱,张文吉,罗林儿,周培爱.棉铃虫对除虫菊酯杀虫剂抗药性的神经电生理的研究.昆虫学报,1997,42(2):113~121.
    34.赵勇,刘安西,茹李军,范贤林,魏岑.神经敏感性的降低是棉铃虫对拟除虫菊酯抗药性的重要机制.昆虫学报,1996,39(4):347~353.
    35.朱道明,张敦阳,谭福杰,沈晋良.农业害虫抗药性研究Ⅰ:棉铃虫抗药性调查及其抗药性机制的初步探讨.南京农业大学学报,1982,5(2):34~40.
    36. Ahmad M & McCaffery A R. Elucidation of detoxication mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of Helicoverpa armigera with the use of synergists. Pestic Biochem Physiol, 1991, 41: 41~52.
    37. Ahmad M & McCaffery A R. Resistance to insecticides in a Thailand strain of Heliothis
    
     armigera (Hubner) (Lepidoptera: Noctuidae). J Econ Entomol, 1988, 81(1) : 45-48.
    38. Ahmad M, Gladwell R T, McCaffery A R. Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistant strain of Heliothis armigera from Thailand. Pestic Biochem Physiol, 1989,35: 165-171.
    39. Anthony N, Rocheleau T, Mocelin G, et al. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Letts. 1995, 368:461-465.
    40. Argentine J A, Zhu K Y, Lee S H, Clark, et al. Biochemical mechanisms of azinphosmethyl resistance in isohenic strains of Colorado potato beetle. Pestic Biochem Physiol. 1994, 48: 63-78.
    41. Armes N J, Jadhav D R, et al. Insecticide resistance in Helicoverpa armigera in South India. Pestic Science, 1992, 34: 355-364.
    42. Asperen K V, A study of housefly esterase by means of a sensitive colorimetric method. J Ins Physiol, 1962,8:401-416.
    43. Banks C J, Needham P H. Comparison of the biology of Myzus persicac (Sulz.) resistant and srsceptible to dimethoate. Ann Appl Biol, 1970, 66: 465-468.
    44. Harden G P, Rose H A and Gunning R V. Cytochrome P-450 content and aldrin epoxidase activity in larve of susceptible and a pyrethroid-resistant strain of Helivoverpa armigera (Hu bner) (Lepidoptera: Noctuidae). J Aust Ent Soc, 1992, 31: 350.
    45. Baxter G D and Barker S C. Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterization and role in organosphosphate resistance. Insect Biochem Mol Biol, 1998, 28: 581.
    46. Binder T, Berg T, Siegert W and Schmidt C. PCR-SSCP: Nonradioisotopec detection with biotinylated primers and streptavidin-alkaline phosphatase conjugate. BioTechniques, 1995, 18: 780.
    47. Bonning B C, Hemingway J, Romi R and Majori G. Interaction of insecticide resistance genes in field populations of Culex pipiens (Diptera: Culicidae) from Italy in response to changing insecticide selection pressure. Bull Entomol Res, 1991, 81: 5-10.
    48. Bonning B C, Malcolm C A and Hemingway J. Purification and characterization of acetylcholinesterase from Culex pipiens Say. Pestic Sci, 1988, 24: 278-280.
    49. Brown T M, Bryson P K. Selective inhibitors of methyl parathion--resistant acetylcholinesterase from Heliothis virescens. Pestic Biochem Physiol, 1992, 44: 155-164.
    50. Bull D L and Whitten. Factors influencing organophosphorus resistance in tobacco bud worm. J
    
     Agr Food Chem, 1972, 20: 561.
    51. Busvine J R. FAO Plant Production and Protection Paper 21:Recommended methods for measurement of pest resistance to pesticides. Rome, 1981: 119-122.
    52. Byrne F J and Divonshire A L. Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly Bemisia tabaci (Genn). Pestic Biochem Physiol, 1993, 45: 34-42.
    53. Campanhola C. Resistance to pyrethroids insecticides in the tobacco budworm (Lepidoptera: Noctuidae). Ph.D. thesis., Texas A & M University, College Station, 1988.
    54. Chomezynski P, Brar A K, Frohman L A. Solvent contaning guandinium and phenol and method for isolating RNA from tissue samples. Anal Biochem. 1987, 162: 156
    55. Corstau C and ffrench-Constant R Detection of cyclodiene insecticide resistance-associated mutations by single-stranded conformation polymorphism analysis. Pestic Sci. 1995, 43: 267.
    56. Daly J C and Fisk J H. Expression of pyrethroid resistance in adult Helicoverpa armigera (Lepidoptera: Noctuidae) and selective mortality in field populations. Bull Entomol Res, 1993, 83:23-28.
    57. Daly J C and Fisk J H. Inheritance of metabolic resistance to the synthetic pyrethroids in Australian Helicoverpa armigera (Lepidoptera: Noctuidae). Bull Entomol Res, 1992, 82: 5-12.
    58. Devonshire A L and Moores G D. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic Biochem Physiol, 1982, 18: 235-246.
    59. Devonshire A L and Moores G D. Characterization of insecticide-insensitive acetylcholinesterase: Microcomputer-based analysis of enzyme inhibition in homogenates of individual house fly (Musca domesticd) heads. Pestic Biochem Physiol, 1984b, 21: 341-348.
    60. Devonshire A L and Moores G D. Different forms of insensitive acetylcholinesterase in insecticide--resistant house flies (Musca domesticd). Pestic Biochem Physiol, 1984a, 21: 336-340.
    61. Dittrich V, Ernst G H Ruesh O and Uk S. Resistance mechanisms in sweetpotato white fly (Homoptera: Aleyrodidae) populations from Sudan, Turkey, Guatemala and Nicaragua. J Econ Ent, 1990, 83: 1665-1670.
    62. El-Abidin Salam A Z and Pinsker W. Effects of selection for resistance to organophosphorus insecticides on two esterase loci in Drosophila melanogaster. Genetica, 1981, 55: 11-14.
    63. Eldefrawi A T. Acetylcholinesterases and anticholinesterase. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut G A.and Gilbert L I.). New
    
     York: Pergamon Press, 1985. Vol 12, 115-130.
    64. Ellman G L, Courtney K D, Andres V and Featherstone R M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 1961, 7: 88-95.
    65. Feyereisen R, Molecular biology of insecticide resistance. Toxicology Letters, 1995, 82/83, 83-90.
    66. ffrench-Constant R H, Rocheleau T A, Steichen J C and Chalmers A E. A poin mutation in a Drosophila GABA receptor confers insecticide resistance. Nature (London), 1993, 363: 449-451.
    67. ffrench-Constant R H, Steichen J C and Brun L O. A molecular diagnostic for endosulfan insecticide resistance in the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae). Bull Entomol Res, 1994, 84: 11-16.
    68. ffrench-Constant R H, Steichen J C, Rocheleau T A, Aronstein K and Rorsh R T. A single-amino acid substitution in a-aminobutyric acid subtype A recepor locus associated with cyclodiene insecticide resistance in Drosophila populations. Proc Natl Acad Sci USA, 1993, 90: 1957-1961.
    69. Forrester N W, Cahill M, Bird L J, et al. Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera-. Noctuidae) in Australia. Bull Entomol Res Sup, 1993, 1: 36-43.
    70. Fournier D, Bride J-M, Hoffmann F and Karch F. Acetylcholinesterase, two types of modifications confer resistance to insecticide. J Boil Chem, 1992a, 267: 14270-14274.
    71. Fournier D, Bride J-M, Karch F and Berge J B. Acetylcholinesterase from Drosophila melanogaster, identification of two subunits encoded by the same gene. FEBS Lett, 1988, 238: 333-337.
    72. Fournier D, Karch F, Bride J-M, Hall L M C, Berge J B and Spierer P. Drosophila melanogaster acetylcholinesterase gene: Structure, evolution and mutation. J Molec Biol, 1989, 210: 15-22.
    73. Fournier D, Mutero A and Rungger D. Drosophila acetylcholinesterase, expression of a functional precursor in Xenopus oocytes. Eur J Biochem, 1992b, 203: 513-519.
    74. Fournier D, Mutero A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol, 1994, 108C: 19-31.
    75. Georghiou G P. Management of resistance in arthropods. In: Georghiou G P, Saito T, eds. Pest Resistance to Pesticides. New York: Plenum Press, 1983. 769-792
    76. Gerschenfeld H M. Chemical transmission in invertebrate central nervous system and
    
     neuromuscular junctions. Physiol Rev, 1973, 53: 1-119.
    77. Gnagey A L, Forte M, Rosenberry T L. Isolation and characterization of acetylcholinesterase from Drosophila. J Biol Chem, 1987, 262: 13290-13298.
    78. Greenspan R J, Finn J A and Hall J C. Acetylcholinesterasemutants in Drosophila and their effects on the structure and function of the central nervous system. J comp Neurol, 1980, 189: 741-774.
    79. Guedes R N C, Kambhampati S, Dover B A, et al. Biochemical mechanisms of organophos phate resistance in Rhyzopertha dominica [Coleoptera: Bostrichidae] populations from the United States and Brazil. Bulletin of Entomological Research, 1997, 87: 581-586.
    80. Guning R V, Easton C S, Balfe M E and Ferris I G. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pestic Sci 1991, 33: 473-490.
    81. Guning R V, Easton C S. Inheritance of resistance to fenvalenrate in Heliothis armigera Hu bner (Lepikoptera: Noctuidae). J Aust Ent Soc, 1987, 26: 249-250.
    82. Guning R V, et al. Metabolism of esfenvalerate by pyrethoid-susceptible and resistant Australian Helicoverpa armigera (Lepikoptera: Noctuidae). Pestic Biochem Physio, 1995, 51: 205-213.
    83. Guning R V. Pyrethroid resistance mechanisms in Australia Helicoverpa armigera. Pestici Sci, 1991,33:473-490.
    84. Gunning R V, Moores G D, Devonshire A L. Insensitive acetylcholinesterase and resistance to thiocarb in Australian Heliocoverpa armigera Hubner (Lepikoptera: Noctuidae). Pest Biochem Physiol, 1996, 55: 21-28.
    85. Gunning R V, Moores G D, Devonshire A L. Insensitive acetylcholinesterase and resistance to organophosphates in Australian Heliocoverpa armigera. Pest Biochem.Physiol, 1998, 62: 147-151.
    86. Hall L M C and Spierer P. The Ace locus of Drosophila melanogaster. structural gene for acetylcholinesterase with an unusual 5' leader. EMBO J. 1986, 5: 2949-2954.
    87. Hall L M C, Malcolm C A. The acetylcholinesterase gene of Anopheles stephensi. Cell. Molec Neurlbiol, 1991, 11: 131-141.
    88. Hama H, Iwata T. Insencitive cholinesterase in the Nakagawara strain of the green rice leafhoppers, Nephotettix cincticeps, Uhler (Hemiptera: Cicadellidae), as a cause of resistance to carbamate insecticides. Appl Entmol Zool, 1971, 6: 183-191.
    89. Hama H. Resistance to insecticides due to reduced sensitivity of acetylchoiinesterase. Pest Resistance to Pesticides. New York: Plenum. Press, 1983. 299-331.
    
    
    90. Han Z J, Wang Y C, Zhang Q S, Li X C and Li G Q. Dynamics of pyrethroid resistance in a field population of Helicoverpa armigera (Hubner) in China. Pesticide Science, 1999, 55: 462-466.
    91. Harel M, Sussman J L, Krejci E, Bon S, Chanal P, Massoulie J and Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proc Natl Acad Sci USA, 1992,89: 10827-10831.
    92. Hemingway J and Georghiou G P. Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides. Pestic Biochem Physiol, 1983, 19: 167-171.
    93. Hemingway J, Small G J, Monro A, Sawyer B V and Kasap H. Insecticide resistance gene frequencies in Anopheles sacharovipopulations of the Cukurova plain, Adana Province, Turkey. Med Veterin Entomol, 1992, 6: 342-348.
    94. Heymann E. Carboxylesterase and amidases. In: Jakoby W B ed. Enzyme Basis of Detoxication. New York: Academic Press, 1980. 291-323.
    95. Hoffmann F, Fournier D and Spierer P. Minigene rescues acetylcholinesterase lethal mutations in Drosophila melanogaster. J Molec Biol, 1992, 223: 17-22.
    96. Hongyo T, Buzark G S, Calvert R J and Weghorst C M. 'Cold SSCP':A simple.rapid and non-radioactive methld for optimized single-strand conformation polymorphism analyses. Nucleic Acids Resistance, 1993, 21: 3637.
    97. Iwata T, Hama H. Insensitivity of cholinesterase in Nephotettix cincticeps resistant to carbamate and organophosphorus insecticides. J. Ecom. Ent, 1972,65:643-644.
    98. Jensen M P, Crowder L A, Watson T F. Selection for Permethrin resistance in the todacco budworm (Lepidoptera-. Noctuidae). J Econ Entomol, 1984, 77: 1409-1411.
    99. Kallio A. Detection of point mutations using the minisequencing method. Am Biotech Lab Appl Note, 15, 1997. 106.
    100. Kranthi K R, et al. Seasonal dynamics of metabolic mechanisms mediating pyrethroid resistance in Helicoverpa armigera in Central India. Pestic Sci, 1997, 50: 91-98.
    101. Lee R M, Batham P. The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks (Acari). Ent Exp Appl, 1966, 9: 13-24.
    102. Lee S S T, et al. Microsomal cytochrome P450 monoxygenases in the house fly (Musca domestica L.) strains. Pestic Biochem Physiol, 1989, 35: 1-10.
    103. Malcolm C A and Hall L M C. Cloning and characterization of a mosquito acetylcholinesterase gene. Molecular Insect Science (Hagedorn H. H., Hildebrand J. G., Kidwell M. G. and Law J.
    
     H.,des). New York: Plenum Press, 1990. 57-65.
    104. Malcolm C A, Bourguet D, Ascolillo A, et al. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide in Culex pipiens. Insect Mol Biol, 1998, 7: 107-120.
    105. Malcolm C A, Rooker S, Edwards A, Heckel D and Hall L M C. PCR generated homologous DNA probes and sequence for acetylcholinesterase genes in insect pests. In Multidisciplinary Approaches to Cholinesterase Functions (Edited by Shafferman A. and Vilan B.), New York: Plenum Press, 1992. 87-90.
    106. Matsumura F. "Toxicology of Insecticedes", 2nd ed. New York: Plenum Press, 1985. 598.
    107. McCaffery A R, Walker A J. Insecticide resistance in the bollworm, Helicoverpa armigera from Indonesia. Pestici Sci, 1991, 32: 85-90.
    108. Miyata T, Saito T, Hama H, Iwata T and Ozaki K. A new and simple detection method for carbamate resistance in the green riceleafhopper, Nephotettix cincticeps Uhler. Applent Zool, 1980, 15:351-352.
    109. Moores G D, Devonshire A L and Denholm I. A microplate assay for characterizing insensitive acetylcholinesterase genotypes of insecticide-resistant insects. Bull Entomol Res, 1988, 78: 537.
    110. Motoyama N, Hayaoka T, Nomura K and Dauterman W C. Multiple factors for organophosphate resistance in the housefly, Musca domestica (L.). J Pestic Sci, 1980, 5: 393.
    111. Mutero A, Pralavorio M, Bride J M, et al. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci USA, 1994, 91: 5922-5926.
    112. Nolan J and Schnitzerling H J. Characterization of acetylcholinesterase of acaricide-resistant and susceptible strains of the cattle tick Boophilus microplus (Can.). I . Extraction of the critical component and comparison with enzyme from other sources. Pestic Biochem Physiol, 1975,5: 178-188.
    113. Nolan J and Schnitzerling H J. Characterization of acetylcholinesterase of acaricide-resistant and susceptible strains of the cattle tick Boophilus microplus (Can.). II. The substrate specificity and catalytic efficiency of the critical enzyme component. Pestic Biochem Physiol, 1976,6: 142-147.
    114. Nolan J, Schnitzerling H J, Schuntner C A. Multiple forms of acetylcholinesterase from resistant and susceptible strains of the cattle tick, Boophilus microplus (Can.). Pestic. Biochem. Physiol., 1972,2:85-94.
    115. Oi M, Dauterman W C and Motoyama N. Biochemical factors responsible for an extremely high level of diazinon resistance in housefly strain. J Pestic Sci, 1990, 15: 217-224.
    
    
    116. Oppenoorth F J, Smissaert H R, Welling W, van der Pas L J T and Hitman K T. Insensitive acetylcholinesterase, high glutathione-S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of house fly. Pestic Biochem Physiol, 1977, 7: 34-47.
    117. Oppenoorth F J. Biochemistry and genetics of insecticide resistance. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology [Edited by Kerkut G. A. and L. I. Gibert]. New York: Pergamon Press, 1985, 12: 731-773.
    118. Oppenoorth F J. Two different paraoxon-resistant acetylcholinesterase mutants in the house fly. Pestic Biochem Physiol, 1982, 18: 26-27.
    119. Plapp F W Jr, Frisbie R E, McCutchen B F. Monitoring for pyrethroid resistance in Heliothis spp. In Texas in 1988. Proc. Of the Beltwide Cotton Production and Research Conference, Nashville, Tenn, Jan, 1989. 347-348.
    120. Plapp F W Jr, Tripathi R K. Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the housefly. Biochem Genet, 1978, 16:1-12.
    121. Pralavorio M, Fournier D. Drosophila acetylcholinesterase: characterization of different mutants resistant to insecticides. Biochem Genet, 1992, 30: 77-83.
    122. Price N R. Insecticide-insensitive acetylcholinesterase from a laboratory selected and a field strain of housefly (Mitsca domedtica L.). Comp Biochem Physiol, 1988, 90C: 221-224.
    123. Raymond M, Fournier D, Bride J M, Cuany A, Berge J B, Magnin M and Pasteur N. Identification of resistance mechanisms in Culex pipiens ( Diptera: Culcidae ) from Southern France: insensitive acetylcholinesterase and detoxifying oxidases. J Econ Ent, 1986, 79: 1452-1458.
    124. Raymond M, Pasteur N, Fournier D, Cuany A, Berge J B and Magnin M. A gene acetylcholinesterase insensible to propoxur determine of resistance in Culex pipiens L. insecticide. C. r. Sci. Ser, 3, 1985, 300: 509-512.
    125. Reed W, Pawar C S. Heliothis: A global problem. Proceedings of the International Workshop on Heliothis Management. 15-20 Nov. 1981 ICRISAT, Center, Palancheru, A P India, 1982.
    126. Ren X X, Han Z J and Wang Y C. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner). Archives of Insect Biochem Physiol (in press).
    127. Roush R T, McKenzie J A. Ecological genetics of insecticide and acaricide resistance. Ann Rev Entomol, 1987, 32: 361-380.
    128. Sambrook J, Fritsch E F, Maniatis T. Molecular Clone. Laboratory Manual, 2nd Ed, New York: Cold Spring Harbor Laborary. Cold Spring Harbor, 1989. 1-74.
    
    
    129. Sarkar G and Sommer S S. The "megaprimer" method of site-directed mutagenesis. BioTechniques, 1990, 8: 404-407.
    130. Sarkar G, Cassady J, Bottema D K and Sommer S S. Characterization of polymerase dhain reaction amplification of specific alleles. Anal Biochem, 1990, 186: 64.
    131. Schuntner C A, Roulston W J. A resistance mechanism in organophosphate-resistant strains of sheep blowfly (Lucilia cuprina). Aust. J. Biol. Sci., 1968,21:173-176.
    132. Scott J G and Geoghiou G P. Mechanisms responsible for high levels of permethrin resistance in the house-fly. Pestic Sci, 1986, 17(3) : 195-206.
    133. Smissaert H R. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science, 1964,143:129-131.
    134. Smith P K, Krohn R I, Hermanson G T, Mallia A K, Gartner F H, Provenzano M D, Fijimoto E K, Goeke N M, Olson B J and Klenk D C. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150: 76.
    135. Soderlund D M and Bloomquist J R. Molecular mechanisms of insecticide resistance, in "Pesticide Resistance in Arthropods" (R. T. Roush and B. E. Tabashnik, Eds.). Chapman & Hall, New York, 1990, pp. 58-96.
    136. Sommer S S, Cassady J D, Sobell J L and Bottema C D K. A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin Proc, 1989, 64: 1361-1372.
    137. Stone B F, Wilson J T and Youlton N J. Linkage and dominance characteristics of genes for resistance to organophosphorus acaricides and alleleic inheritance of decreased brain cholesterase activity in the three strains of the cattle tick, Boophilus microplus. Aust J Biol Sci, 1976,29:251-263.
    138. Sun Y P, Johnson E R. Synergistic and antagonistic action of insecticide-synergist combinations and their mode of action. J Agric Food Chem, 1960, 8: 261-266.
    139. Sussman J L, Harel M, Frolow F, Oefner C, Goldman A, Toker L and Silman I. Atomic structure of acetylcholinesterase from: Torpedo californica: A prototypic acetylcholine-binding protein. Science, 1991, 253: 872.
    140. Takashi T, Osamu H, oshiaki K Y. Absence of protein polymorphism attributable to insecticide--insensitivity of acetylcholinesterase in the green rice leafhopper,Nephotettix cincticeps. Insect Biochem Mol Biol, 2000, 30: 325-333.
    141. Tang Z H, Wood R J and Cammak S L. Acetylcholinesterase activity in organophosphorus and carbamate resistant and susceptible strains of the Culex pipiens complex. Pestic Biochem
    
     Physiol, 1990, 37: 192-199.
    142. Thompson M, Steichen J C and ffrench-Constant R H. Conservation of cyclodiene insecticide resistance-associated mutations in insects. Ins Mol Biol, 1993, 2: 149-154.
    143. Toutant J-P, Insect acetylcholinesterase: Catalytic properties. Tissue distribution and molecular forms, Prog. Neurobiol, 1989, 32, 423.
    144. Tripathi P K. Relation of acetylcholinesterase sensitivity to cross-resistance of a resistant house fly strain to organophosphates and carbamates. Pestic Biochem Physiol, 1976, 6: 30-34.
    145. Vellom D C, Radie Z, Li Y, Pickering N A, Camp S and Taylor P. Amino acids residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 1992, 32: 12-20.
    146. Voss G. Cholinesterase autoanalysis: a rapid method for biochemical studies on susceptible and resistant insects. J Econ Entomol, 1980, 73: 189.
    147. Wierenga J M and Hollingworth R M. Inhibition of altered acetylcholinesterases from insecticide resistant Colorado potato beetles (Coleoptera: Chrysomelidae). J. Econ. Entomol., 1993,86:673-679.
    148. Williamson M S, Moores G D, Devonshire A L. Altered forms of acetylcholinesterase in insecticide resistance house flies [Mitsca domestica]. In: Multidisciplinary Approaches to Cholinesterase Functions [Edited by Shafferman A. and Velan B.J. New York: Plenum Press, 1992: 83-86.
    149. Wilson A G. Resistance of Heliothis armigera to Insecticides in the Ord irrigation area, North Western Australia. J Econ Entomol, 1974, 66: 523-524.
    150. Xu G and Bull D L. Acetylcholinesterase from the horn fly (Diptera: Muscidae): distribution and purification. J Econ Entomol, 1994, 87: 20-26.
    151. Yeoh C L, Kuwano E and Eto M. Studies on mechanism of organophosphate resistance in oriental houseflies Musca domestica vicina Macquart (Diptera: Muscidae). Appl Ent Zool, 1981, 16: 247-257.
    152. York C, Birschbach D and Navarro S. Large-scale gel purification of DNA fragments using Wizard PCR Preps Resin. Promega Notes, 1993, 43: 14.
    153. Zahavi M and Tahori A S. Differences in acetylcholinesterase sensitivity to phosphamidon in Mediterranean fruit fly strains. Israel J Entomol V, 1970, 185-191.
    154. Zhang A G, Dunn J B, Clark J M. An efficient strategy for validation of a point mutation associated with acetylcholinesterase sensitivity to azinphosmethyl in Colorado potato beetle. Pestic Biochem Physiol, 1999, 65: 25-35.
    
    
    155. Zhou M-Y, Clark S E and Gomez-Sanchez C E. Universal cloning method by TA strategy. BioTechniques, 1995, 19: 34.
    156. Zhu K Y and Brindley W A. Acetylcholinesterase and its reduced sensitivity to inhibition by paraoxon in organophosphate-resistant Lygus Hesperus Knight (Hemiptera: Miridae). Pestic Biochem Physiol, 1990, 36: 22-28.
    157. Zhu K Y and Brindley W A. Molecular properties of acetylcholinesterase purified from Lygus Hesperus Knight (Hemiptera: Miridae). J Econ Entomol, 1992, 84: 790-794.
    158. Zhu K Y and Clark J M. Comparison of kinetic properties of acetylcholinesterase purified from azinphosmethyl-susceptible and resistant strains of Colorado potato beetle. Pestic Biochem Physiol, 1995a, 51: 57-67.
    159. Zhu K Y and Clark J M. Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata [Say]. Insect Biochem Mol Biol, 1994, 24: 453-461.
    160. Zhu K Y and Clark J M. Addition of a competitive primer can dramatically improve the specificity of PCR amplification of specific alleles (PASA). BioTechniques, 1996, 21: 586-594.
    161. Zhu K Y and Clark J M. Cloning and sequencing of a cDNA encoding acetylcholinesterase in Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol, 1995b, 25: 1129-1138.
    162. Zhu K Y and Clark J M. Validation of a point mutation of acetylcholinesterase in Colorado potato beetle by polymerase chain reaction coupled to enzyme inhibition assay. Pestic Biochem Physiol, 1997, 57: 28-35.
    163. Zhu K Y, Lee H-L and Clark J M. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pestic Biochem Physiol, 1996, 55: 100-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700