催化铁法与生物法耦合中胞内外聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化铁内电解(CIIE)法作为一种全新的污水处理技术,成功地应用于工业废水的生物预处理,初步实现电化学过程与生化过程的协同。胞外聚合物(EPS)和胞内聚合物(IPS)作为两类重要的细胞聚合物,对生物废水处理的影响重大。本文从微生物学角度研究催化铁法与好氧生物处理工艺的耦合技术,探讨耦合过程中EPS和IPS的形成及转化规律,为耦合工艺开发提供微生物学方面的依据,进一步将催化还原过程的特点与生化反应有机结合起来。
     对3种好氧活性污泥样品EPS的提取方法进行了对比,并对阳离子交换树脂法(CER法)进行研究。结果表明:80℃加热法作为一种有效的EPS物理提取方法,提取过程中EPS不受污染,是好氧活性污泥EPS提取的有效方法,本课题的研究均采用加热法进行EPS的提取。
     分别对生物铁法和催化铁法对EPS的影响进行了研究。发现金属离子主要分布在污泥中,其EPS中Fe~(3+)、Cu~(2+)金属离子的含量也比对照反应器的略高一些。催化铁法中,铁离子的产生对微生物的生长和EPS的形成有一定的促进作用(反应器中总铁量小于80mg/gSS);但过量的铁离子(反应器中总铁量大于80mg/gSS)会对EPS的形成造成负面影响。
     采用SEM、zeta电位测定仪和絮体粒径分布测定仪等进行污泥絮体的观察,结果证实耦合工艺对活性污泥的絮凝、沉降和脱水性能都有改善作用,且会对活性污泥的形态结构、污泥密实度产生影响,使污泥变得更加密实些;耦合工艺中,污泥的一些表面特性发生改变,包括zeta电位和污泥粒径分布等。
     研究了生物铁法和催化铁法中胞内聚合物的形成,并考察它们与体系中脱氮除磷之间的关系。发现生物铁法耦合体系中,COD在曝气初期急剧下降,并且IPS的形成和消耗规律都会发生变化;催化铁法中,铁离子的大量产生,对存在最广泛的胞内聚合物—聚羟基-β-羟基丁酸(酯)(PHB)的形成和积累会造成影响,从而间接影响到生物除磷效率。耦合工艺的抗冲击负荷能力比对照反应器的强,铁铜投加量对磷的去除有较大影响。
     考察了生物处理中EPS和IPS的形成。对EPS和IPS的形成关系进行了研究,结果发现IPS中PHB含量远远高于胞内糖原和EPS的含量,PHB是耦合体系中积累能力最强的细胞聚合物。EPS和IPS之间存在竞争关系,尤其是EPS和PHB之间的竞争关系非常明显。金属离子的存在会改变胞内外聚合物的这种竞争关系。
     参与开发了两套耦合工艺:催化铁法与悬浮填料生物膜法耦合和催化铁法与短程硝化反硝化SBR工艺耦合。对这两组耦合工艺中COD、色度、TP、TN等去除情况以及同时脱氮除磷进行研究。结果证实了耦合工艺中,微生物的生长情况优于对照反应器。耦合反应器对各主要污染因子(COD、色度、PO_4~(3-)-p、TP和TN)的去除效果均好于未耦合反应器。在常温25℃状态下,催化铁法与短程硝化反硝化SBR工艺耦合,更易造成短程硝化的产生,且能明显缩短硝化时间。催化铁法与短程硝化反硝化SBR工艺耦合具有良好的除磷效果,耦合工艺对反应器中的磷元素有较大影响,耦合后污泥EPS中的磷含量大大减少。
The catalyzed iron inner electrolysis (CIIE) process is a new developed methodfor wastewater treatment, which was applied to industrial wastewater asbio-pretreatment successfully and combined the process of electro-chemistry with itsof bio-chemistry initially. Extracellular polymeric substances (EPS) and intracellularpolymeric substances (IPS), which are two important kinds of cellular polymericsubstances, play an important role in biological wastewater treatment. In this paper,studies on coupling technology of catalyzed iron method and aerobic bio-treatmentand law of formation and transformation of EPS and IPS, which will provide thebiological basis for developing coupling technology and further organically combinethe process of catalytic reduction with bio-chemistry reaction.
     Some extraction methods of EPS of three activated sludge were compared andextraction of cation exchange resin method (CER) was investigated here. The resultsshowed that heating to 80℃is very effective extraction method, which is effectivemethod for extrating activated sludge without contaminating EPS during theextraction procedure. Heating to 80℃was used to all experiments of this paper.
     The influence of bio-ferric process and bio-iron filling process on EPS wasstudied. Metal ion mainly distributed in suldge, and the content of Fe~(3+) and Cu~(2+) ishigher in EPS of coupling reactor than in the controlling one. In the catalyzed ironmethod, the production of ferric ion benefit the growth of microorganism and theproduction of EPS when the total content of ferric ion in the reactor was lowed than80mg/gSS. However, superfluous ferric ion, which content exceeded to 80mg/gSS,can inhibit the living activity of microorganism and produce negative effects of EPSformation.
     Furthermore, the results obtained through SEM, zetasizer and particle sizedistribution analyzer confirmed that coupling technology improved flocculation,settlement and dewatering of activated sludge and effected on conformation, frame,and dense of sludge to get compacting activated sludge. Also, the surface character of sludge was changed in coupling technology, such as zeta potential and particledistribution.
     The formation of IPS in bio-ferric process and bio-iron filling process wasinvestigated. The results showed that COD rapidly decreased in the initial aerationstage and the law of formation and consuming of IPS was changed. The production offerric ion in catalyzed iron method had effects on the formation and accumulation ofIPS, which influenced the efficiency of biological denitrification and phosphorusremoval indirectly. The capability of resisting sudden load change of couplingtechnology was stronger than its of controling recator, and the addition of iron andcopper had a great influence on phosphorus removal.
     The formation of EPS and IPS in biological treatment was surveyed. In the result,the content of PHB of IPS was far too higher than its of intraglucogen and EPS. Thecapacity of accumulation of IPS was the strongest among the three polymericsubstances in the coupling system. Competitive growth existed in EPS and IPS,especially in EPS and PHB. The existence of metal ion can change this competitivegrowth of extra-and intra-cellular polymeric substances.
     Take part in developing two coupling technology-catalyzed iron internalelectrolysis coupling with biofilm treatment and nitrogen removal in iron innerelectrolysis-biological coupling process. The removal of COD, chroma, TP and TNand simultaneous removal of nitrogen and phosphorus were investigated. The resultsshowed that the growth of microorganism in coupling reactor was better than incoupoling one. The removal effects of pollution factors in coupling reactors were allsuperior to those in coupling one, such as COD, chroma, TP and TN. At thetemperature of 25℃, the procedure of shortcut nitrification-denitrification producedeasily and the time of shortcut nitrification-denitrification can be decreased innitrogen removal in iron inner electrolysis-biological coupling process. The effect ofphosphorus removal was high in nitrogen removal in iron inner electrolysis-biologicalcoupling process, in which P was influenced greatly and P was reduced enormously insludge in coupling technology.
引文
[1] 王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用.环境污染治理技术与设备,2002,Vol.3(4):69-73
    [2] 杨玉杰,孙剑辉.铁屑法处理活性艳红废水动力学模型.化工环保,1996,Vol.16 (3):137-141
    [3] 曹曼.铁屑固定床及其在废水处理中的应用.上海环境科学,1994,Vol.13(2):39-43
    [4] 陈郁,全燮.零价铁处理污水的机理及应用.环境科学研究,2000,Vol.13(5):24-26
    [5] 汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水治理中的应用.工业水处理,1998,Vol.8(6):4-6
    [6] 韩洪军,刘彦忠,杜冰.铁屑—碳粒法处理纺织印染废水.工业水处理,1997,Vol.17(6):15-17
    [7] 全燮,杨凤林.铁屑(粉)在处理工业废水中的应用.工业水处理,1989,Vol.9(6):73-75
    [8] 全燮.利用铁碳粒料脱出染料废水中的色度.环境工程,1992,Vol.10(6):1-4
    [9] 薛大明,赵雅芝.分散染料废水预处理方法的研究.环境工程,1992,Vol.10(5):1-3
    [10] 肖羽堂,许建华.铁屑强化传统工艺难降解印染废水实践.给水排水,1998,Vol.24(4):37-39
    [11] 祁梦兰.铁屑过滤混凝组合工艺处理印染废水.环境工程,1993,Vol.11(3):3-6
    [12] 郝瑞霞,程水源.铁屑过滤SBR工艺处理棉纺印染废水.上海环境,1998,Vol.17(8):25-28
    [13] 宋召胜,张迎新.铁屑活性炭综合处理电镀废水.电镀与环保,1998,Vol.18(6):31-32
    [14] 欧阳玉祝,王继徽.铁屑微电解共沉淀法处理含钒废水.化工环保,2002,Vol.22(3):165-168
    [15] 雍文彬,孙彦富,陈震华等.铁屑微电解法处理农药废水的研究.环境污染治理技术与设备,2002,Vol.3(3):86-87
    [16] 李再兴,杨景亮,罗人明等.铁碳微电解厌氧好氧工艺处理阿维菌素废水.环境污染治理技术与设备,2002,Vol.3(4):5-8
    [17] 陈水平.铁屑内电解法处理船舶含油废水的研究.水处理技术,1999,Vol.25(5):303-306
    [18] 韩洪军.微电池滤床法处理含油废水.化工环保,2000,Vol.20(5):19-21
    [19] 柴晓利,高旭光,陈洁等.内电解混凝沉淀厌氧好氧工艺处理医药废水.环境科学与技术,2000,Vol.(8)3:33-34
    [20] 吴树珍.电化学法处理煤气洗涤废水.环境工程,1989,Vol.7(2):19-23
    [21] 赵德明,史惠祥,徐根良等.微电解法预处理对硝基苯废水的研究.化工环保,2002,Vol.22(1):15-18
    [22] 赵德明,史惠祥,汪大翠等.Fe-C微电解法+H_2O_2组合工艺处理对氯硝基苯废水.城市环境与城市生态,2002,Vol.15(1):32-34
    [23] Casero I.. Chemical degradation of aromatic amines by Fenton reagent. J. Water Res., 1997, Vol.31 (8): 1985-1995
    [24] Enric Brillas, Eva Mur, Roser Sauleda, et al. Aniline mineraliation by AOP's. J. Applied Catal., 1998, Vol.16(1): 31-42
    [25] 段柏华,钟宏.内电解处理含酚废水.环境与开发,1999,Vol.14(4):19-20
    [26] 徐文英,周荣丰,马鲁铭等.催化铁内电解处理难降解废水的方法,中国专利:CN 1382649A,2002年49期
    [27] 徐文英,周荣丰,高廷耀.催化铁内电解法处理难降解有机废水.上海环境科学,Vol.2003,22(6):402-405
    [28] 徐文英,周荣丰,高廷耀等.混合化工废水处理工艺的研究.给水排水,2003,Vol.29(5):52-55
    [29] 徐根良.微电解处理分散染料废水的研究.水处理技术,1999,Vol.25(4):235-238
    [30] 张天胜,陆海燕,陈欣等.铁屑内电解法处理含酚废水.环境保护,1997,Vol.8 (1):17-20
    [31] 刘剑平,周荣丰,高廷耀.酸性橙Ⅱ的催化铁内电解法处理难降解有机废水.上海环境科学,2003,Vol.22(6):402-405
    [32] 吴德礼.催化铁还原降解水体中氯代有机污染物的试验研究:[博士学位论文].上海:同济大学环境科学与工程学院,2005
    [33] 于文敦,刘晓东,孙秀云等.内电解—混凝—SBR—生物炭组合工艺处理染料废水.污染防治技术,2002,Vol.15(1):18-19
    [34] 佟玉衡.实用废水处理技术.北京:化学工业出版社,1998:196-197
    [35] 迟娟,黄全辉,李敏哲.内电解-MBR工艺处理制药废水的研究.工业水处理,2006,Vol.26(1):27-29
    [36] 曹慧敏,吴新泉,宋爱华.内电解-UASB-生物接触工艺处理糠醛废水.工程论坛,2006,Vol.26(3):122-124
    [37] 左生龙,朱艳芝,刘亚奇.内电解_厌氧_好氧工艺处理垃圾渗沥液的研究.工业水处理,2002,Vol.22(10):35-37
    [38] 何成达,王永广,张键.内电解_厌氧_好氧工艺处理染料化工废水的研究.工业水处理,2001,Vol.21(11):14-16
    [39] 李颖.内电解-厌氧-好氧工艺处理制药废水试验研究.福建化工,2004,Vol.(2):24-27
    [40] 张森林,刘林等.酸化—序列活性污泥工艺处理屠宰污水.湘潭大学自然科学学报,1992,Vol.14(4):132-138
    [41] 佘宗莲,李世美.序列间歇式好氧活性污泥法处理生物制药废水的研究.环境工程,1997,15(6):3-6
    [42] 肖利平,李胜群,周建勇等.微电解—厌氧水解酸化—SBR串联工艺处理制药废水试验研究.工业水处理,2000,Vol.20(11):25-27
    [43] 蔡天明.微电解—水解酸化/接触氧化工艺处理染化废水的研究.环境工程,1999,Vol.17(4):27-29
    [44] 杨瑞民,贾海清,刘翔等.内电解—气浮—水解酸化—SBR工艺在机械加工废水治理中的应用.工业水处理,2005,Vol.25(9):66-67
    [45] 刘玉春.1995~2000年中国松香的生产、消费和发展趋势.林产化工通讯,2001.Vol.35(5):31-33
    [46] 陈芳,陈尚和.简述合成樟脑的发展.林产化工通讯,1997,Vol.3l(2):20-24
    [47] Wingender J, New T R, Flemming H-C, editors. Microbial Extracellular Plymeric Substances: Characterization, Structure and Function. Berlin: Springer, 1999.
    [48] 孙天华,林少宁,余智梅等.生物铁法处理高浓度难降解印染废水的研究.中国环境科学,1991,Vol.11(2):138-142
    [49] 任芝芸.生物铁法处理焦化污水的研究.炼焦化学,1982,Vol.13(2):9-14
    [50] 李向富,罗兴华,余政哲.粉末活性炭及生物铁复合法在含氰废水处理中的应用.石油化工环境保护,1996(1):1-6
    [51] 裴保安,张慧利,宋同鹤等.生物铁法处理制革污水.河南科技,1997(9):19-21
    [52] 卓世孔,程汉林,白明超.抗生素化学制药高浓度有机废水处理小型试验.广州环境科学,2003,Vol.18(3):4-6
    [53] 程汉林.生物铁法和生物铁填料在难降解有机废水处理中的应用.水处理技术,2004,Vol.22(3):30-33。
    [54] Zita A, Herrnansson M. Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Appl Environ Microbiol, 1994, Vol. 60(9): 3041-3048
    [55] Higgins M, Novak J T. The effect of cations on the settling and dewatering of activated sludges: laboratory results. Wat Environ Res., 1997, Vol. 69(2): 215-224
    [56] Tezuka Y. Cation-dependent flocculation in a Flavobacterium. species predominant in activated sludge. Appl. Microbiol., 1969, Vol. 17(2): 222-226
    [57] Murthy S N, Novak J T, De Haas R D. Monitoring cations to predict and improve activated sludge settling and dewatering properties of industrial wastewaters. Wat. Sci. Tech., 1998, Vol.38(3): 119-126
    [58] Eriksson L, Alm B. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties. Wat. Sci.Tech., 1991, Vol.24 (7): 21-28
    [59] Hang-Sik Shin, Mi-Joo Kim, Se-Yong Nam, et al. Phosphorus removal by hydrotalcite compounds. Wat.Sci. Tech., 1996, Vol.34(1-2): 161-168
    [60] Morgan J W, Forster C F, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Wat. Res., 1990, Vol.24(6): 743-750
    [61] Binet R, Letoffe S, Ghigo JM, et al. Protein secretion by Gram-negative bacterial ABC exporters-a review. Gene, 1997, Vol. 19(2): 7-11
    [62] Sutherland I W. Biotechnology of microbial exopolysaccharides. Cambridge University press, Cambridge, 1990
    [63] Lorenz M G, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev., 1994, Vol.58(3): 563-602
    [64] Hsieh K M, Murgel G A, Lion L W, et al. Interactions of microbial biofilms with toxic trace metals 1. Observation and modeling of cell growth, attachment, and production of esracellularpolymer. Biotechnol. Bioeng., 1994, Vol.44(2): 219-231
    [65] Cescutti P., Toffanin R., Pollesello P., et al. Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp. Strain 1.15. Carbohydrate Res., 1999 Vol.315(1/2): 159-168
    [66] Dignac M. F., Urbain V., Rybacki, D., et al. Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci. Technol., 1998, Vol.38(8/9): 45-53
    [67] Frφlund B., Griebe, T., and Nielsen, P., Enzymatic activity in the activated sludge floc matrix. Appl. Microbiol. Biotechnol., 1995, Vol. 43(4): 755-761
    [68] Jorand F., Guicherd P., Urbain V., et al. Hydrophobicity of activated sludge flocs and laboratory-growth bacteria. Water Sci. Technol., 1994, Vol. 30(11): 211-218
    [69] Nielsen P. H., Frφlund B., Keiding, K. Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl. Microbiol. Biotechnol., 1996, Vol. 44(6): 823-830
    [70] Liu H., Fang H. H. P. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol., 2002, Vol. 95(3): 249-256
    [71] Higgins, M. J., Novak J. T. Characterization of exocellular protein and its role in bioflocculation. J. Environ. Eng. Am. Soc. Civil Eng., 1997, Vol. 123(5): 479-485
    [72] Wuertz S., Spaeth R., Hinderberger, A., et al. A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Water Sci. Technol., 2001, Vol. 43(6): 25-31
    [73] Durmaz B. and Sanin, F. D., Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge. Water Sci. Technol., 2001, Vol. 44(10): 221-229
    [74] Chen Y. G., Yang H. Z., Gu G. W., Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Res., 2001, Vol. 35 (11): 2615-2620
    [75] 联邦(德国)H.G.施莱杰,陆卫平等译,普通微生物学,上海:复旦大学出版社,1989:63-68
    [76] Lafferty R M, Heinzle E. Extraction of a thermoplastic from bacteria. Chem. Rundsch., 1977, Vol. 30(1): 14-16
    [77] Richards S R, Turner R J. A comparative study of techniques for the examination of biofilms by scanning electro microscopy. Wat. Res., 1984, Vol. 18(6): 767-773
    [78] Fang H H P, Yeong C L Y. Book KM and Chiu CM. Removal of COD and nitrogen in wastewater using sequencing batch reactor with fibrous packing. Wat. Sci. Tech., 1993, Vol.28(7): 125-131
    [79] 冯生华,刘延华.活性污泥糖类物质代谢对其除磷能力的影响.天津城市建设学院学报,1998,Vol.4(1):20-23
    [80] 苏涛,周河治,梁静娟.微生物合成可降解塑料聚羟基烷酸酯(PHA).工业微生物,1997,Vol.27(3):37-44
    [81] Akiyama M, Taima Y, Doi Y. Production ofpoly (3-hydryoxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotechnol. 1992, Vol. 37(2): 698-701
    [82] Linko S, Vaheri H, Seppl J. Production of poly-β-hydryoxybutyrate on lactic acid by Alcaligenes eutrophus H16 in a 3-L bioreactor. Enzyme Microbiol Technol. 1993, Vol. 15 (1):401-406
    [83] Doi Y, Tamaki A, Kunioka M, et al. Production of copolyesters of 3- hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric acid and pentanoic acids.Microbiol Biotechnol. 1988, Vol.28:330-334
    [84] Daniels L, Hanson, R S, and Philips, J A. Chemical analysis. In: Methods for General and Molecular Bacteriology [M], Gerhardt, P., Murry, R. G E., Wood, W. A., and Kfieg, N. R., American Society for Microbiology, Library of Congress Cataloging-in-PublicationData. 1994.
    [85] 薛林贵,王维国.我国聚β-羟基丁酸的研究进展与展望.微生物学杂志,1999,Vol.(2):52-55
    [86] 陈银广,陈坚,堵国成.生物可降解塑料PHB提取的研究进展.化工进展,1998,Vol.(1):41-45
    [87] 李礼尧,陈玲,王武.次氯酸钠应用于聚β-羟基丁酸酯的提取.无锡轻工大学学报,1997,Vol.16(1):33-37
    [88] Braunegg G, Sonnleitner B, Lafferty RM. A rapid gas chromatographic method fro the determination of poly-β-hydroxybutyric acid in microbial biomass. European Appl. J. Microbiol. Biotechnol., 1978, Vol.6(1): 29-37
    [89] Urbain V., Block J. C., Manem, J. Bioflocculation in activated sludge: an analytical approach. Water Res., 1993, Vol.27(5): 829-838
    [90] Frφlund B., Palmgren R., Keiding K., et al. Extraction of extracellular polymers fromactivated sludge using a cation ion exchange resin. Water Res., 1996, Vol.30(8), 1749-1758
    [91] Jorand E, Boue-Bigne E, Block J. C., et al. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci. Technol., 1998, Vol. 37(4/5): 307-315
    [92] Liao B. Q., Allen D. G, Droppo I. G, et al. Surface properties of sludge and their role in bioflocculation and settleability. Water Res., 2001, Vol. 35(2): 339-350
    [93] Leppard G G Evaluation of electron microscopic techniques for the description of aquatic colliods.In Environmental Particles, Vol. 1, Buffie, J. and van Leeuwen, H. P., Eds., Lewis Publishers, Boca Raton, 1992:231-289
    [94] Jorand E, Zartarian E, Thomas E, et al. Chemical and structural (2D) linkage between bacteria within activated sludge flocs. Water Res., 1995, Vol.29(7): 1639-1647
    [95] Li D. H., Ganczarczyk J. J. Structure of activated sludge flocs. Biotechnol. Bioeng., 1990, Vol.35(1): 57-65
    [96] Costerton J. W., Cheng K. J., Geesey G G, et al. Bacterial biofilms in nature and disease, Annu. Rev. Microbiol., 1987, Vol.41:435-464
    [97] Finlayson J. C., Liao B., Droppo T. G, et al. The relationship between the structure of activated sludge flocs and the sorption of hydrophobic pollutants. Water Sci. Technol., 1998, Vol. 37(4/5): 353-357
    [98] Liu Y., Lam M. C, Fang H. H. P. Adsorption of heavy metals by EPS of activated sludge. Water Sci. Technol., 2001, Vol.43(6): 59 - 66.
    
    [99] Antonio Domingues Benetti. Composition,fate and transformation of extracellular polymers in wastewater and sludge treatment processes. A Dissertation presented to the Faculty of the Graduate School of Cornell University for the Degree of Doctor of Philosophy,2000
    
    [100] Verstraete, W., and van Vaerenbergh, E., Aerobic activated sludge. In Biotechnology, Vol. 8, Rehm, H. J., and Reed, G, Eds., VCH Verlagsgesellschaft, Weinheim, Germany, 1986: 44-102
    [101] van Limbergen H., Top E. M., Verstraete W., Bioaugmentation in activated sludge: current features and future perspectives. Appl. Microbiol. Biotechnol., 1998, Vol.50(1): 16-23
    [102] Fang H. H. P., Chan K. Y., Xu L. C. Quantification of bacterial adhesion force using atomic force microscopy (AFM), J. Microbiol. Meth., 2000, Vol. 40(1): 89 - 97
    [103] Li D. H., Ganczarczyk J. J. Physical characteristics of activated-sludge flocs. CRC Crit. Rev. Env. Contr., 1986, Vol.17(1): 53 - 87
    [104] Derjaugin B. W., Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. ACTA Physiochim. URSS, 1941, Vol.14: 633 - 662
    [105] Verwey E. J. W., Overbeek J. G, Eds., Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam, The Netherlands, 1948
    [106] Bruus J. H., Nielsen P. H., Keiding K. On the stability of activated sludge flocs with implications to dewatering. Water Res., 1992, Vol.26(12): 1597 - 1604
    [107] Caccavo F., Fr(?)lund B., van Ommen K. F., et al. Deflocculation of activated sludge by the dissimilatory Fe(III)-reduction bacterium Shewanella Alga BrY. Appl. Environ.Microbiol., 1996, Vol. 62(4): 1487- 1490
    [108] Keiding K., Nielsen P. H. Desorption of organic macromolecules from activated sludge flocs: effects of ionic composition. Water Res., 1997, Vol.31(7): 1665 - 1672
    [109] Jenkins D., Richard M. G, Daigger G T., Eds., Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd ed., Lewis Publishers, Boca Raton, London, Tokyo, 1993: 11 -13
    
    [110] Martinez F., Favela-Torres E., Gomez, J., Oscillations of exopolymeric composition and sludge volume index in nitrifying floes. Appl. Biochem. Biotechnol., 2000, Vol.87(3): 177 -188
    [111] Marshall K. C, Stout R., Mitchell, R. Mechanism of the initial event in the sorption of marine bacteria to solid surfaces. J. Gen. Microbiol., 1971, Vol. 68: 337 - 348
    [112] van Loosdrecht, M. C. M., Lyklema J., et al. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol., 1987, Vol. 53(8), 1898-1901,.
    [113] Tatulian S. A., Gordeliy V. I., Soklova A. E., et al. A neutron diffraction study of the influence on phospholipid membrane interactions. ACTA Biochim. Biophys., 1991, Vol.1070(1): 143 - 151
    [114] Endo T., Nakamura K., Takahashi J. Pronase-susceptible floc forming bacteria: Relationship between flocculation and calcium ion. Agric. Biol. Chem., 1976, Vol.40(11): 2289 - 2295
    [115] Shimizu, N. and Odawara, Y., Floc-forming bacteria isolated from activated sludge in high-BOD loading treatment. J. Ferment. Technol., 1985, Vol.63(1): 67 - 71
    [116] Angelbeck D. I., Kirsch E. J. Influence of pH and metal cations on aggregative growth of nonslime- forming strains of Zoogloea ramigera. Appl. Microbiol., Vol.17,435, 1969.
    [117] Mikkelsen L. H., Gotfredsen A. K., Agerbk M. L., et al. Effect of colloidal stability on clarification and dewatering of activated sludge. Water Sci. Technol., 1996, Vol.34(3/4): 449 - 457
    [118] McKinney R.E. Biological flocculation. In: Biological Treatment of Sewage and Industrial Wastes, Vol. 1, Rheinhold Publishing Co., New York, 1956: 84 - 82
    [119] Pavoni J. L., Echelber W. F., Tenney M. W, Bacterial exocellular polymers and biological flocculation. J. Water Pollut. Control Fed., 1972, Vol.44(3): 414-431
    [120] Ries H. E. J., Meyers B. L., Flocculation mechanism: charge neutralization and bridging. Science, 1968, Vol.160: 1449 - 1450
    [121] Magnusson K. E. The hydrophobic effect and how it can be measured with relevance to cell-cell interactions. Scand. J. Infect. Dis., 1980, Vol.24: 131 - 134
    [122] Zita A., Hermansson M., Effect of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl. Environ. Microbiol., 1997, Vol.63(3): 1168 - 1170
    [123] Yun Z., Jo W., Yi Y., et al. Effects of sludge settling characteristics in the BNR system. Water Sci. Technol., 2000, Vol.42(3/4): 283 - 288
    [124] Harris R. H., Mitchell R. The role of polymers in microbial aggregation. Annu. Rev. Microbiol., 1973, Vol.27(1): 27 - 50
    [125] Paul J. H., Jeffrey W. H. Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Appl. Environ. Microbiol., 1985, Vol.50(2): 431 -437
    [126] EPA, Process Design Manual for Sludge Treatment and Disposal, EPA-625/1 - 79 - 011, Munic. Environ. Res. Lab., Office Res. Dev., Cincinnati, Ohio, USA, 1979.
    [127] APHA, American Public Health Association, American Water Works Association, Water Pollution Control Federation, 20th Eds., Standard Methods — for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., USA, 1999: 2-83 to 2-85
    [128] Scheminski A., Krull R., Hempel D. C. Oxidative treatment of digested sewage sludge with ozone. Water Sci. Technol., 2000, Vol.42(9): 151-158
    [129] Kwon J. H., Ryu S. H., Park K. Y, et al. Enhancement of sludge dewaterability by ozone treatment. J. Chinese Institute Chem. Engineers, 2001, Vol.32(6): 555 - 558
    [130] Liu J. C, Lee C. H., Lai J. Y, et al. Extracellular polymers of ozonized waste activated sludge. Water Sci. Technol, 2001, Vol.44(10): 137 - 142
    [131] Vesilind P. A., Tsang K. R. Moisture distribution in sludge. Proc. IAWPRC Specialty Conf. on Sludge Management, Los Angeles, USA, 1990.
    [132] Kopp J., Dichtl N. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution. Water Sci. Technol., 2001, Vol.43(11): 135 - 143
    [133] Robinson J., Knocke W. R. Use of dilatometric and drying techniques for assessing sludge dewatering characteristics. Water Environ. Res., 1992, Vol.64(1): 60 - 68
    [134] Smith J. K., Vesilind P. A. Dilatometric measurement of bound water in wastewater sludge. Water Res., 1995, Vol.29(12): 2621 - 2626
    [135] Vogt M., Flemming H-C, Veeman W. S. Diffusion in Pseudomonas aeruginosa Biofilms: a pulsed field gradient-NMR study. J. Biotechnol. Vol.77(1): 137-146
    [136] Vesilind P. A., Sludge dewatering: why the water wins every time. Proc. Sludge Management Entering the 3rd Millenium- Industrial, Combined, Water and Wastewater Residues, Taipei, Taiwan, 2001:252 - 257
    [137] Pere J., Alen R., Viikari L., et al. Characterization and dewatering of activated sludge from the pulp and paper industry. Water Sci. Technol., 1993, Vol.28(1): 193-201
    [138] Houghton J. I., Quarmby J., Stephenson T. Impact of digestion on sludge dewaterability. Trans. IchemE. Part B., Proc. Sage Env. Prot, 2000, Vol.78(2): 153-159
    [139] Houghton J. I., Quarmby J., Stephenson T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer. Water Sci. Technol., 2001, Vol. 44(2/3): 373 - 379
    [140] Kim J. S., Lee C. H., Chun H. D. Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Res., 1998, Vol. 32(11): 3443 - 3451
    [141] Murthy S. N., Novak J. T. Factors affecting floc properties during aerobic digestion: implications for dewatering. Water Environ. Res., 1999, Vol.71(2): 197 - 202
    [142] Novak J. T., Muller C. D., Murthy S. N. Floc structure and the role of cations, Proc. Sludge Management Entering the 3rd Millenium — Industrial, Combined, Water and Wastewater Residues, Taipei, Taiwan, 2001: 354 - 359
    [143] Wu Y. C, Smith E. D., Novak R. Filterability of activated sludge in response to growth conditions. J. Water Pollut. Control Fed., 1982, Vol.54 (5): 444 - 456
    [144] Van Loosdrecht MCM, Pot M and Heijnen JJ. Importance of bacteria storage polymers in activated sludge process. Wat.Sci.Technol., 1997, Vol.35(1): 41-48
    [145] Kuba T, van Loosdrecht M C M, Heijnen J J . A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnol Bioeng ,1996, Vol.52(6): 685-695
    [146] Chudoba J, Grau P, Ottava V. Control of activated sludge filamentous bulking. -II. Selection of microorganisms by means of a selector. Wat. Res., 1973, Vol.7: 1389-1406
    [147] Van den Eynde E, Geerts J, Maes B, et al. Influence of the feeding pattern on the glucose metabolism of Arthrobacter sp. And Sphaerotilus natans growing in chemostat culture, simulating activated sludge bulking. European J. Appl. Microbiol. Biotechnol. 1983, Vol. 17(1): 35-43
    [148] Van den Eynde E, Vriens L, Wynants M, et al. Transient behabior and time aspects of I ntermittently and continuously fed bacterial cultures with regard to filamentous bulking of activated sludge. Appl. Microbiol. Biotechnol., 1984, Vol. 19(1): 44-52
    [149] Van den Eynde E, Vriens L, Cuyper PD, et al. Plug flow simulating and completely mixed reactors with a premixing tank in the control of filamentous bulking. Appl. Microbiol. Biotechnol., 1984, Vol. 19(4): 288-295
    [150] Chiesa S C, Irine R C. Growth and control of filamentous microbes in activated sludge: an integrated hypothesis. Wat. Res. 1985, Vol. 19(4): 471-479
    [151] Tavemier P., et al. Exopolysaccharide and Poly-β-hydroxybutyrate coproduction in two Rhizobium maliloti strains. Appl Environ Microbiol., 1997, Vol.63(1): 21-26
    [152] Javirer C., Quagliano, Silvia S., Miyazaki. Biosynthesis of Poly-β-hydroxybutyrate and Exopolysaccharides on Azotobacter Chroococcum Stain 6B utilizing simple and complex source. Appli Bioche Biotech., 1999, Vol.82: 199-208
    [153] Olubayi O., Caudales R., Atkinson A., et al. Differences in chemical composition between nonflocculated and flocculated Azospirillum brasilense Cd. Can J Microbiol., 1998, Vol.44(4): 386-390
    [154] Del Gallo M., Negi M., Neyra C. A., Calcofluorand lectin-binding execullar polysaccharides of Azospirillum brasilense and Azospirillum lipoferum., J Bacterial., 1989, Vol.171(6): 3504-3510
    [155] APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, American Water Works Association, Water Environmental Federation, Washington. 1992.
    [156] Rudd T., Sterritt R. M., Lester, J. N. Complexation of heavy metals by extracellular polymers in the activated sludge process. J. Water Pollut. Control Fed., 1984, Vol.56(12): 1260-1268
    [157] Andreadakis A D. Physical and Chemical properties of activated sludge floc. Wat Res, 1993, Vol.27(12): 1707-1714
    [158] Stronach S M. Anaerobic digestion process in industrial wastewater treatment.Berlin, Springer—Verlay press, 1948: 54-89
    [159] 吴力斌.国外厌氧颗粒化污泥研究与应用新动向.轻工环保,1989,4:37
    [160] 贺延龄.废水的厌氧生物处理.北京中国轻工业出版社,1998
    [161] 许保玖,龙腾锐.当代给水与废水处理原理.北京:高等教育出版社,2000:337-400
    [162] Jang A. Effects of heavymetals (Cu, Pb, and Ni) on the composit ions of EPS in biofilms. Water Science and Technology, 2001, Vol.43 (6): 41-48
    [163] John A, Nislsen P H. Cell biomass and exopolymer compositions in sewer biofilm. Wat Sci Tech., 1998, Vol.37(1): 17-24
    [164] Wilkinson J. F., The extracellular polysaccharides of bacteria. Bacteriol. Rev., 1958, Vol.22(1): 46-73
    [165] 陈素华,孙铁珩,周启星.微生物与重金属间的相互作用及其应用研究.应用生态学报,2002,Vol.13(2):239-242
    [166] 王保军,杨惠芳.微生物与重金属的相互作用.重庆环境科学,1996,Vol.18(1):35-39
    [167] 贺稚非,唐勇,李洪军.微生物对金属元素富集的研究.中国食品学报,2002,Vol.2 (3):69-72
    [168] Melanie J. Brown, J. N. Lester. Metal removal in activated sludge: the role of bacterial extracellular polymers. Wat. Res. 1979, Vol. 13 (2): 817-837
    [169] 支霞辉.铁内电解法与生物法耦合脱氮工艺的研究:[博士学位论文].上海:同济大学环境科学与工程学院,2006:118-122
    [170] 王红武.细胞聚合物在废水生物处理过程中的作用研究:[博士学位论文].上海:华东理工大学环境科学与工程学院,2003:1-5
    [171] Kakii K., Kitamura S., Shirakashi T. Effect of Calcium Ion on Sludge Characteristics. J. Ferment. Technol., 1985, Vol.63(3): 263-270
    [172] Rasmussen H., Nielsen P. H. Iron Reduction in Activated Sludge Measured with Different Extraction Techniques. Water Res., 1996, Vol.30(3): 551-558
    [173] Nielsen P. H., Keiding K. Disintegration of Activated Sludge Flocs in Presence of Sulfide. Water Res., 1998, Vol.32(2): 313-320
    [174] 高廷耀,顾国维,水污染控制工程(下册),北京:高等教育出版社,1999,19-20
    [175] 李久义,吴晓清.陈福泰Fe(Ⅲ)对活性污泥絮体结构和生物絮凝作用的影响.环境科学学报,2003,Vol.23(5):582-587
    [176] Yan Liu, Herbert H. P. Fang. Influences of Extracellular Polymeric Substances (EPS) on Flocculation, Settling, and Dewatering of Activated Sludge Critical Reviews in Environmental Science and Technology, 2003, Vol.33(3): 237-273
    [177] Nakamura K., Masuda K., Mikami E., Isolation of a new type of polyphosphate accumulating bacterium and its phosphate removal characteristics, J. Ferment. Bioeng., 1991, Vol.71 (4): 258-263
    [178] Satoh H., Mino T., Matsuo T. Uptake of organic substances and accumulation of polyhydroxualkanoates linked with glycolysis of intercellular carbohydrates under anaerobic conditions in the biological excess phosphorus removal process. Wat. Sci. Tech., 1992, Vol. 26(5/6): 933-942
    [179] Mino T., Liiu W. T., Kurrsu F., et al. Modelling glycogen storage and denitrification capavilitu of microorganisms in enhanced biological phosphate removal processes. Wat. Sci. Tech., 1995, Vol. 31(2): 25-34
    [180] Peter J, Jespersen K, Henze M, et al. Biological phosphorus uptake under anoxic and aerobic conditions.Wat. Res., 1993, Vol.7 (4): 617-624
    [181] Bortone G, Libelli S M, Tilche A, et al. Anoxic phosphate uptake in the DEPHANOX process. Wat Sci Tech, 1999, Vol.40 (4-5): 177-185
    [182] Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate accumulating organismsremoval using denitrifying phosphateaccumulating organisms in a sequencing batch reactor. Biochemical Engineering Journal, 2005, Vol.27 (3): 191-196
    [183] Hu J Y, Ong S L, Ng WJ, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Wat. Res., 2003, Vol.37(14): 3463-3471
    [184] Zeng R J, Lemaire R,Yuan Z H, et al. Simulataneous nitrification, denitrification, andphosphorus removal in a lab-scale sequencing batch reactor. Biotechnol Bioeng,2003, Vol.84(2):170-178
    [185] 张自杰,周帆.活性污泥生物学与反应动力学.北京:中国环境科学出版社,1989:358-364
    [186] Kennedy A F D, Sutherland I W. Analysis of bacterial exopolysaccharides. Biotechnol. Appl. Biochem. 1987, Vol.9:12-19
    [187] 刘壮,杨造燕,田淑媛.活性污泥胞外多聚物的研究进展.城市环境与城市生态,1999, Vol.12(5):54-57
    [188] 龙腾锐,孟雪征,赖震宏.Fe~(3+)对活性污泥系统的影响.给水排水,2004,Vol.30(12):15-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700