耐冷菌Pseudomonas sp.W7产低温蛋白酶水解牛骨蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国骨资源丰富,但是在骨资源利用上存在极大的浪费,酶解骨蛋白生产高质量的蛋白胨,是一条提高畜骨资源利用的有效途径。蛋白胨是蛋白质经水解之后形成的由眎、胨、多肽和氨基酸等组成的混合物,主要用于各种微生物的培养提供N源。
     本研究采用低温蛋白酶水解牛骨蛋白,利用单因素实验研究在不同温度,pH,酶的添加量,反应时间对牛骨蛋白水解的影响,并在此基础上,筛选出3个对酶解效果影响显著的因素:温度、时间、pH;进一步利用响应面法对筛选出的因素进行3因素3水平优化,获得低温蛋白酶水解牛骨蛋白的最优条件为:温度38℃,时间77min,pH7.1,酶的添加量150U/mL。优化后,测得牛骨蛋白水解产物的氨态氮含量达到4.55%。
     为了进一步考察低温蛋白酶水解牛骨蛋白过程中各因素之间的相互作用,本文设计了水解动力学实验,根据实验数据及公式推导得到低温蛋白酶水解牛骨蛋白的动力学方程计算得到米氏常数Km为0.7g/L,Km较小,表明酶与底物的亲和度比较大;最大反应速率Vmax为0.541mol/L.min,Vmax较大,表明酶解反应能够很快到达反应终点;测得反应活化能Ea为4.012KJ/mol,活化能较低,说明低温蛋白酶对温度比较敏感,高温容易使酶失去活性。酶解动力学实验结果为日后发酵生产提供参数依据,采用低温蛋白酶,水解温度一般低于中温酶,同时所用的水解时间很短。
     目前蛋白胨产品主要以氨氮、总氮含量作为质量检测的指标,而蛋白胨中多肽片段大小及分布显著影响微生物对蛋白胨的利用。本文对牛骨蛋白水解产物进行SDS-PAGE凝胶电泳检测,结果表明水解液中的肽段呈连续性分布,在200KDa-6.5KDa之间均有分布,随着时间的延长,大分子的肽段逐渐被水解成小分子的肽段。为了进一步确定水解产物的肽段分布,本实验选取Sephadex G-100、Sephadex G-50,Sephadex G-25三种分子量范围不同的凝胶层析,测得牛骨蛋白水解物中多肽分布为:45KDa-150KDa的多肽占牛骨蛋白胨总量的14.83%,11.7KDa-45KDa的多肽30.37%,1KDa-11.7KDa的多肽34.16%,小于1KDa的多肽10.74%。氨基酸含量检测结果表明:牛骨蛋白水解后游离氨基酸总量高于水解前游离氨基酸的60.21%,其中必需氨基酸占总量的26.72%,半必需氨基酸占总量的5.02%,鲜味氨基酸占46.3%,苦味氨基酸占34.57%。
     与商品蛋白胨(国产)和胰蛋白胨(进口)对比结果显示,牛骨蛋白胨的氨态氮含量高,但是葡聚糖层析结果显示牛骨蛋白水解液中小分子多肽含量低于商品蛋白胨和胰蛋白胨,氨基酸分析结果表明牛骨蛋白水解后游离氨基酸含量均明显高于商品蛋白胨和胰蛋白胨。这一点也解释了为什么低温蛋白酶水解牛骨蛋白产物检测氨态氮含量高,而小分子多肽片段分布少。
Bone resources are very rich in China, but there is a great waste in the utilization ofbone resources. Enzymatic hydrolysis of bone protein is an effective way to improve theutilization of animal bone resources, which produces high quality proteinpeptone.Peptone is a mixture of nitrogen source composed by the proteose, peptone,polypeptide, amino acid that formed after enzyme hydrolysis. It can provide the Nsource for microbial growth.
     In this study, low temperature protease was used to hydrolyze bovine protein.Thesingle factor experiments were considered according to pH, temperature, enzymeaddition and reaction time to optimize the condition for bovine-bone peptone hydrolysis.Based on the results of signle factor optimization,3important factors were selectedwhich affect ammonia nitrogen significantly, pH,temperature and reaction time.Theoptimum hydrolysis conditon was obtained by the response surface methodology (RSM)with temperature38℃, pH7.1, reaction time77min,enzyme addition150U/mL. Theammonia nitrogen content reached to4.55%,.
     To further investigate the interaction of factors in the process of the the bovine bonehydrolysis by low-temperature protease, The hydrolytic kinetic experiment wasdesigned, the dynamics equation of protease hydrolysis based on experimental dataand formula:dh=aexp(-bh)=38.8194e01.17h The Michaelis constantKm was0.7g/L, indicating that the affinity of the enzyme and substrate was relativelylarge. The maximum reaction rate Vmax was0.541mol/L.min, which meant the speedof hydrolysis reaction was fast. Activation energy Ea4.012KJ/mol, lower activationenergy showed that low-temperature protease was more sensitive to temperature. Hightemperature makes the enzyme lost activity easily.The results of enzymatic kineticsexperiment can provide parameters for the fermentation in the future, the hydrolysis temperature of low-temperature protease is generally lower than the temperature ofmedium-temperature enzyme, while the hydrolysis time is very short.
     The quality of peptone products normally is test as the content of ammonia nitrogenand total nitrogen according to factory standard. The size and distribution of the peptidefragment as nitrogen source have a great influence on microorganism growth andfermentation. SDS-PAGE gel electrophoresis was used to primarily determine thedistribution of peptide fragments,the results showed that the hydrolysis of peptide hadcontinuous distribution from the200KD to6.5KDa.With the extension of hydrolysistime, peptides of large molecular were hydrolyzed into low molecule peptides or freeamino acids. To further determine the distribution of peptide, we selected three types ofgel chromatography with different MW ranges, Sephadex G-100, Sephadex G-50, andSephadex G-25. The results indicated that peptide of45KDa to150KDa accounted for14.83%of the total amount of cattle bone peptone,11.7KDa to45KDa accounted for30.37%,1KDa to11.7KDa accounted for34.16%and smaller than1KDa accounted for10.74%of the total protein. The content of amino acid is an important standard todetermine the peptone quality. According to amino acid autoanalyzer,the total contentof free amino acids in bovine-bone peptone after hydrolysis is60.21%higher than thatbefore hydrolysis,among which the essential amino acids accounted for26.72%, halfessential amino acids accounted for5.02%. Flavor amino acid accounted for46.3%,bitter taste amino acids accounted for34.57%.
     Compared with commodity peptone(domestic) and tryptone(import), bovine-bonepeptone we obtained showed higher content of ammonia nitrogen, but Gelchromatography showed that commodity peptone and tryptone peptone contented morepeptide of smaller molecular. By amino acid analysis, this conflict was proved to bedue to a large number of bone protein broken down into free amino acids in thehydrolysis. The total amino acids and free amino acids in bovine bone protein weresignificantly higher than those in commodity peptone and tryptone.
引文
[1]张萍.酶解罗非鱼碎肉制备生化试剂蛋白胨的工艺研究[D].福建农林大学.2009.
    [2]Naegeli,1880,sitzungheriehte der mathematizeh-physikalisehem Klasse derAkademiseher Wissenseh aflen zur Munehen10,277-376. peptones[J].Theriogenology,Theriogenology,2006,66(5):1381-1390.
    [3]曾晓房.鸡骨架酶解及其产物制备鸡肉香精研究(D).华南理工大学.2007.
    [4]张根生,李杭.猪骨油微胶囊包埋技术及快餐汤料包的研究[J],食品科学,2008,29(08).380.
    [5]王羡,猪骨的综合加工技术及其产品研究.[D],湖南农业大学,2009.
    [6]蔡杰,洪玮娣,熊汉国,我国畜禽骨骼及其蛋白质资源综合利用进展[J].肉类研究,2011,25(3)39-42
    [7]曹雁平.我国禽畜骨综合加工利用的现状.粮油加工与食品机械[J],2001,9:6-8.
    [8]杨桂苹,李庆天.骨粉营养成分的分析[J].食品研究与开发,1997,18:32-35.
    [9]李金元,袁锡贵.牛骨的综合利用.食品研究与开发,2009,8:175-180.
    [10]刘丽莉,马美湖,杨协力.畜禽骨骼开发利用的研究进展[J].肉类工业,2009(9):50-53.
    [11]MariliaM H,VirginiaC.Amaro Martins,Ana Maria de Guzzi Plepis.Interaction ofAnionic collagen with chitosan:Effeet on the rmal and morphologicalcharaeteristics. Carbohydrate Polymers,2009,77:239-43.
    [12]Nasser A M B,Myung S K,Omran A M,Faheem A S,kim H Y. Extraction of Purenatural hydroxyaPatite from the bovine bones bio waste by three different methods.J Materials Processing Technol,2009:3408一3415.
    [13]F. Georgea, M. Vranckena, B. Verhaeghea et al. Freezing of in vitro producedbovine embryos in animal protein-free medium containing vegetal peptones[J].Theriogenology,2006,66(5):1381-1390.
    [14]朱迎春,黄素芳,等.从废弃骨渣中提取可溶性钙的研究报告[J].饲料与营养,2005(3):30-31
    [15]黄闯,张泽生,王玉本,徐慧.马铃薯蛋白酸水解工艺及氨基酸组分检测[J].食品科技,2010,35(8):317-320.
    [16]Alder-Nissen J. Enzymatic Hydrolysis of Food Proteins [M]. London:ElsevierScience Publishing Co,1986.
    [17]Georgios L. Low molecular weight enzymatic fish protein hydrolysates: Chemicalcomposition and nutritive value[J].JAgric Food Chem,1978,26(3),751-756.
    [18]Tang S, Hettiarachchy N S, Horax R,etal. Physicochemical properties andfunctionality of rice bran protein hydrolyzate prepared from heat stabilized defattedrice bran with the aid of enzymes [J].Food Chemistry And Toxicology,2003,68(1):152-157.
    [19]Qi M, Hettiarachychy N S, Kalapathy U. Solubility and emulsifying properties ofsoyprotein isolates modified by pancreatin[J].J Food Sci,1997,62(6):1110-1114.
    [20]Tahiri S,Azzi M. Processing of chrome-tanned solid waste generated in leatherindustry:Recovery of proteins and synthesis of a pigment for paint[J]. JALCA,2001(96):1-8.
    [21]Michel Linder, P Rozan,et al.Nutritional Value of Veal Bone Hydrolysate[J].J ofFood Sci,1997,62(1):183-187.
    [22]Zhen-Yu Li, Wirote Youravong, Aran H-Kittikun aProtein hydrolysis by proteaseisolated from tuna spleen by membrane filtration:A comparative study withcommercial proteases[J],LWT-Food Science and Technology,2010,(43)166–172.
    [23]赵谋明,周雪松.木瓜蛋白酶水解鸡肉蛋白及其产物氨基酸分析研究[J],食品科学,2005,26,7.
    [24]刁静静.猪骨蛋白水解物的抗氧化机理以及在肉制品中应用的研究[D],东北农业大学,2008.
    [25]薛宏基,丁华等.蚕蛹制取试剂蛋白陈研究[J],蚕业科学,1992,18(4):252-257.
    [26]谭斌,曾凡坤,吴永娴.花生蛋白肽的酶法水解工艺研究[J],食品与机械,2000,(3):14-17.
    [27]向聪,马美湖.畜骨综合利用与产品开发研究进展[J].肉类研究,2009,(6):78-83.
    [28]苏捷,海产品蛋白酶水解多肽研究进展[J],渔业现代化,2008,35(2),53-56.
    [29]Bhaskar, N, Benila, T. Radha. C.&Lalitha, R. G. Optimization of enzymatichydrolysis of visceral waste proteins of Catla (Catla catla) for preparing proteinhydrolysate using a commercial protease. Bioresource Technology,2008.99,335–343.
    [30]Vieira, V. L. A., et al. Partial purification and characterization of a thermostabletrypsin from pyloric caeca of tambaqui (Colossoma macropomum).Journal of FoodBiochemistry,(2001).25,199–210.
    [31]翟应良,生物酶法制备胶原小分及其初步分离研究[D],广西大学,2007.
    [32]李娟,李文波等.几种常用蛋白胨的氨基酸含量分析[J].中国食品学杂志,1999,12(3):172.
    [33]刘锦琳,曾吉.螺旋藻蛋白胨在细菌培养中的应用[J],实验与研究,2001,16(2):220-221.
    [34]Mukhin V A,Novikov Y,Ryzhikova L S.A protein hydrolysate enzymaticallyproduced from the industrial waste of processing icelandic scallopch lamysislandica[J]. Applied Biochemistry and Microbiology,2001,37:292-296
    [35]Guérard F,DufosséL,Broise D L,et al.Enzymatic hydrolysis of proteins from yellowFintuna (Thunnusalbacares)wastes using Alcalase[J].Journal of Molecular Catalysis B:Enzymatic,2001,(11):1051-1059.
    [36]王芳,刘育京.蛋白陈对臭氧水杀菌作用影响的试验研究[J].中国公共卫生,2002,18(4)421-422.
    [37]胡学智,王俊.蛋白酶生产和应用的进展[J].工业微生物.2008,38(4),49.
    [38]史劲松.耐冷菌Bacillus cereus SYPA2-3产冷适蛋白酶的研究[D].江南大学.2006.
    [39]Miyazaki K,Wintrode PL,Grayling RA,et al.Directed evolution study oftemperature adaptation in a psychrophilic enzyme.J Mol Biol.[J].2000,297:1015-1026.
    [40]Gianese G, Argos P. Pascarella S. Structural adaptation of enzymes to lowtemperature [J]. Protein Engineering.2001,14:141-148.
    [41]刘婷,张天斌,林远山.产中性蛋白酶菌株的筛选及发酵条件优化[J],湖南农业科技,2009.(5):102-104
    [42]Yan-Hua Hou, Quan-Fu Wang. Purification and properties of an extracellularcold-active protease from the psychrophilic bacterium Pseudoalteromonas sp.NJ276[J]. Biochemical Engineering Journal,2008,38:362-368.
    [43]陈琳,产低温蛋白酶菌株Halomona sp.SD-02的分离鉴定及其酶的提纯与特性研究[D],东北师范大学,2007.
    [44]Margesin,R.et al.J.Biotech.2004,33:1-14
    [45) Timmis K N, Pieper D H. Trends Biotechnol,1999,17:201204.
    [46]Chajmbers,J,Rasmussen.Enzymic treatment of bones[J]. SeiFoodAgrie,2006,42:87-94.
    [47]Morimura S H:Nagata Y. Uemura A,Fahmi T. Shigematsu K Kida. Development ofan effeetive proeess for utilization of collagen from live stoek and fishwaste[J].Process Bioehemistry.2002,37,1403-1412.
    [48]MendisaE, RajaPakse,N.,Byun,H.G,Kim,S.K.2005.Investigation of jumbo squid(Dosidieus gigas)skin gelatin pePtides for their in vitro antioxidant effeets.[J].LifeSeience.(77):2166-2178.
    [49]白恩侠,张卫柱.动物骨生产小肽的工艺研究[J],动物经济学报,2003,7(1):56-57.
    [50]赵霞.羊骨的酶解与多肽饮料的开发[D],山西农业大学,2004.
    [51]张永秀,王世平,周若兰.Flavourzyme蛋白酶酶解牛骨制备低聚肽的处理条件研究[J],食品工业科技,2006,27(07):142-143.
    [52]张恒.鸡骨酶解过程中的呈味特性及氨基酸释放规律研究[D],四川农业大学,2010.
    [53]刘安军,孙洪臣等.牛骨蛋白与多糖的逐级提取及分离方法研究[J],2007,23(3):208-212.
    [54]张根生,岳晓霞,火鸡骨胶原多肽口服液的研究[J],食品科学,2005,26(8):563-566.
    [55]李天平,徐延,吴逢波等.多肽类物质分离纯化与鉴定方法的研究进展.[中国药房],2009,20(22):1750-1752.
    [56]赵锐,顾谦群,管华诗.多肽物质分离与分析方法研究进展[J],中国海洋药物,2000,75(3):48-53.
    [57]Wolfe AJ,Mohammad M,Cheley YS,et al.Catalyzing the translocation ofpolypeptides through at tractive interactions[J].J A m Chem Soc,2007,129(45):140341.
    [58]D’ Souza AJM,Hart DS,Middaugh CR,et al.Characterization of t he changes insecondary structure and architecture of elastin-mimetic triblck polypeptides duringthermal gelation[J],Mac romolecules,2006,39(20):70841.
    [59]郝彩,韩丽萍等.广东眼镜蛇毒低分子量多肽的分离纯化与性质鉴定[J],中国现代应用药学2011,28(5):383-386
    [60]Won-Kyo Jung,Se-Kwon Kim,Calcium-binding peptide derived from pepsinolytichydrolysates of hoki(Johnius belengerii) frame[J].Eur Food Res Technol,2007.
    [61]K B Mc Cann,B J Shiell.W P Michalski,et al.Isolation and characterization ofantibacterial peptides derived from the region of bovine αs-casein[J].AustralianJournal of Dairy Technology,2003.58(2):199.
    [62]Ghosh R.Purification of lysozyme by microporous PVDF membrane-basedchromatographic process[J].Biochemical Engineering Journal,2003,14:109.
    [63]董义杰.耐冷菌中低温蛋白酶的产酶条件优化及其性质研究[D].黑龙江大学,2011
    [64]刘定航.牛骨蛋白胨中多肽分布及对工业菌株发酵的影响[D].黑龙江大学,2011
    [65]齐威,何志敏,何明霞.蛋白质酶促水解反应机理与动力学模型[J],2005,38(29),768-773.
    [66]K.Oagiri.YNoshoetal.Agrie.Biol.Chem.1985,49:1019.
    [67]甘争艳,吾满·江艾力,夏木西卡马尔.无溶剂体系及微乳体系中脂肪酶催化红花籽油水解的动力学[J].催化学报,2006,27(9):810-814.
    [68]邱峰,李志东等.腈水合酶的催化反应动力学与失活动力学研究[J],矿冶,2007,16(1),50-55.
    [69]VaneeK.etal.StarehhydrolysiskinetiesofBaeilluslieheniformisa-amylase.J.Chem.Teeh.Bioteeh,2008,51:209.
    [70]蔡丽华,马美湖.4种常用蛋白酶对牛骨蛋白的酶解动力学研究[J].食品科学.2010,31(05),150-154.
    [71]董颖超.蛋白酶对大豆蛋白的水解特性及动力学性质研究[D],中国农业大学,2001.
    [72]刘尊英,李八方.鳕鱼皮胶原蛋白胰蛋白酶控制水解动力学模型[J].食品科技,2007,75-77
    [73]Laemmli UK. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. Nature,1970,227:680–685.
    [74]张恒,邬应龙.鸡骨蛋白酶解过程中的产物性质研究及电泳分析[J].食品科学.2011.32.(5):111-114.
    [75]Hanen Louati, Nacim Zouari, Nabil Miled. A new chymotrypsin-like serine proteaseinvolved in dietary protein digestion in a primitive animal, Scorpio maurus:purification and biochemical characterization.[J].Lipids in Health andDisease.2011.10(121).
    [76]高海军等.营养条件对兽疫链球菌发酵生产透明质酸的影响[J].生物工程学报,2000,16(3):396-399.
    [77]石炳兴等.抗生素AGPM摇瓶发酵条件的正交实验[J].过程程工程学报,2001,1(4):442-443.
    [78]李业英.碳源、氮源及其他条件对VB12发酵影响的研究[D].河北大学.2004
    [79] Siripom Danmmgsakkul,Kongpob Ratamthammapan,Kittinan Komolpis et aLEnzymatic hydrolysis of rawhide using papm mad neutrase[J].Journal of Industrialand Engineering Chemistry,2008,(14):202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700