产DCase的基因工程菌发酵及酶固定化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
D-对羟基苯甘氨酸(D-pHPG)是半合成青霉素和头孢霉素的重要前体,是目前制药行业竞争激烈的产品之一,化学法制备D-pHPG带来严重的污染和毒害,现在酶法制备得到人们的青睐。酶法是利用D-海因酶(DHase)将苯海因(DL-pHPH)转化为N-氨甲酰基-D-对羟基苯甘氨酸(NC-D-pHPG),N-氨甲酰基-D-氨基酸酰胺水解酶(DCase)则继续将NC-D-pHPG转化为D-pHPG。但现有的菌种产酶活力不高,故提高酶活力和采取新技术提高酶利用率有着重要研究价值。
     本实验菌种spMF0507是产DHase和DCase的野生菌,而DHase活力远远大于DCase,因此可以通过控制适当pH值,使DCase失活,而保留DHase活力生产NC-D-pHPG。此外还有一菌种Espf7是克隆了DCase基因的大肠杆菌,它能表达DCase活性继续将NC-D-pHPG转化为D-pHPG,可DCase是胞内酶,故需要对其进行细胞破碎才能释放出酶。另外利用正交法对spMF0507的培养基组成和发酵培养条件也进行了研究,之后把发酵优化结果投入5升发酵罐进行验证。最后对工程菌Espf7发酵后提取的酶进行了固定化研究,通过测定蛋白质含量和酶活力来确定固定化结果。以下是整个实验结果:
     (1) 菌种spMF0507的适宜接种龄是20~24h,pH值控制在9.0~9.5时,可以使DCase失活,DHase活力仍有0.2u·mL~(-1),在该条件下来制备NC-D-pHPG。但转化过程中,NC-D-pHPG容易被氧化成红色物质,而通氮气能防止其被氧化。提取NC-D-pHPG时加入2%的丙酮能加快结晶速度,结晶率达到97.9%,NC-D-pHPG的纯度达98.5%。
     (2) 基因工程菌Espf7在0.02%的氯仿用量下可以通透细胞膜,适宜接种龄为16~20h,接种量2%,初始pH值7.0,培养温度30℃,阿拉伯糖0.01%;甘油0.30%;玉米浆3%;NaCL 0.2%;KH_2PO_4 0.05%;MgSO_4 0.05%;MnCL_2 0.02%;CoCL_2 0.01%,使DCase活力由1.12u·mL~(-1)提高到2.1u·mL~(-1),提高了87.5%。在发酵罐上控制条件温度30℃、转速500r/min,pH设定在7.0来补料,结果活力提高到3u·mL~(-1)。
     (3) 均质机破碎细胞的最佳条件为:压力控制在70MPa,破碎时间15min。以TJS环氧基树脂作为固定载体,最适固定化条件为:TJS用量1g对应133u酶活,固定时间15h,温度28℃,pH值7.5最后固定化酶活为58u·g~(-1),蛋白固定率可达98%,酶活回收率达到49.3%。国产载体与进口载体固定化相比较:国外固定化酶活力比国内高3u·g~(-1),但国产的半衰期为35批,而国外为25批,明显国内的固定化酶较稳定。
D-hydroxyphenylglycine(D-pHPG) was the most important precursor used for the synthesis of Semisynthetic penicillin and cephalospor and was a produce competed furiously in the field of pharmacy.Making D-pHPG,enzyme method was better than chemical method which was poisonous.In enzyme method, P-hydroxyphenyldantoin (p-HPH) was transformed into N-Carbamoyl-D-P-hydroxyphenyldantoin(NC-D-pHPG) by Dhydantoinase(DHase), then NC-D-pHPG was transformed into D-pHPG by Ncarbamyl Danimo-acidamidohydrolase (DCase). But now the activity of strain was low,it was very significative that the activity of strain was improved.
    The strain of spMF0507 could produce DHase and DCase, but the activity of DHase was higher than the one of DCase.Controlling pH DHase had no activity but DCase for producing NC-D-pHPG.However the Espf7 was gene engineering strain of DCase's genes cloned in E.coli.DCase expressed by Espf7 could transform NC-D-pHPG into D-pHPG.But DCase was in cell membrance,Dialysing cell membrance was investigated.Moreover by orthogonal optimization the culture condition and the culture medium were investigated,then the result of optimization was used to fermentor.In end under of detemining protein and enzyme activity the result of immobilizing DCase was conformed.The results of all experiments were followings:
    (1) The pre-inoculation time of spMF0507 was 20~ 24h,under pH9.0-9.5 DCase had no activity but DHase 0.2 u ? ml~(-1) .Otherwise NC-D-pHPG which was oxidated into red matter was prevented by N_2 in the course of transformation. Appending 2% acetone increased crystallization , the crystallized rate was 97.9% and the pure degree of NC-D-pHPG was 99% by HP LC.
    (2) The cell membrance of Espf7 was dialysed by 0.02% CHCl_3 the pre-inoculation time of 16~20h,the inoculum ratio at 2%,initial pH of 7.0,temperature of 30°C,arabinose 0.01%; glycerin 0.30%;Corn steep liquor 3%;NaCL 0.2%;KH_2PO_4 0.05%;MgSO_4 0.05%;MnCL_2 0.02%;CoCL_2 0.01%,the activity of DCase was increased from 1.12 u ? ml~(-1) to 2.1 u ? ml~(-1), increased by 87.5%.The activity of DCase reached 3 u ? ml~(-1) under 5L fermentor conditions including: temperature 30°C, the shaking speed of 500r ? min~(-1) fed in pH of 7.0.
    (3) DCase was dialysed via pressure of 70MPa,time of 15min. TJS was used as carriers for immobilization of DCase,the optimized conditions were the amount of TJS of
引文
[1] 江宁,姜岷,韦萍.恶臭假单胞菌Pseudomonas JS-01的发酵动力学[J].南京化工大学学报,2001,23(3):36-39.
    [2] Yokozeki K, Nakamori S, Yamanka S, et al. Optimal conditions for the enzymatic production of D-amino acid from the corresponding 5- substituted hydantoins[J]. Agri BioChem, 1987, 51: 355-358.
    [3] Ikenaka Y, Nanba H, Yajima K, et al. Screening, characterization and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from the rmotolerants oil bacteria.[J]. Biosci BiotechnolBiochem, 1998, 62: 882.
    [4] Runser S, Chinski N, Ohleyer E. D-p-Hydroxyphenylglycine production from DL-5-p-hydroxyphenylhydantoin by Agrobacterium s p.[J]. Appl Microbiol Biotechnol, 1990, 33: 382-387.
    [5] Nanba H, Takano M, Takahashi S, et al. Isolaion of Agrobacterium sp strain KNK712 that produces N-carbamy-1-D-amino acid ami-dohydrolase, cloning of the gene for this enzyme and properties of the enzyme[J], Biotech Biochem, 1998, 62(5): 875-878.
    [6] Olivieri R, Fascetti E, Angelini L, et al. Microbial transformation of racemic hydantoins to D-amino acid.[J]. Biotechnol Bioeng, 1981, 23: 2173.
    [7] Moller A, Sydtk C, Schulze M, et al. Stereo and substrate specificity of a-D-hydantoinase and a-D-N-carbamyl-amino acid ami-dohydrolase of Arthr obactor crystallopoietes Am.[J]. Enzyme Microbiol Technol, 1988, 10: 618-625.
    [8] Louwrier A, Knowles C. The purification and characterization of a novel D-specific-crbamoylase enzyme from an Agrobacterium sp[J]. Enzyme Microbiol Technol, 1996, 19: 562-568.
    [9] 赵莉霞,范俊虎,袁静明等.N-氨甲酰基-D-氨基酸酰胺水解酶研究进展[J].国外医药抗生素分册,2002,23(6):255-257.
    [10] Wang WC, Hau WH, Chien FT, et al. Crystal structure and site- directed mutagenesis studies of N-carbamyl-D-animo acid amido hydrolase from Agrobacterium radio bacterrevealsahomotetramer and insight in to a catalytic cleft[J]. J MolBio, 2001, 306: 251-256.
    [11] 赵莉霞,钮利喜,范俊虎等.N-氨甲酰基-D-氨基酸酰胺水解酶基因的克降与表达[J].高技术通讯,2003,1:32-36.
    [12] Nakai T, Hascgawa T, Yamashita E, et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase.[J]. aTructure, 2000, 8(7): 729-812.
    [13] 袁静明,石亚伟,杨秀清等.N—氨甲酰基—D—氨基酸酰胺水解酶的快速纯化及性质[J].微生物学报,2002,42(1):88—92.
    [14] 郝淑凤,张惟材,李迎丽等.节杆菌BT801 N-氨甲酰氨基酸水解酶基因的克隆与表达[J].生物工程学报2003,19(2):174-177.
    [15] 紫照胜,李国云.D-对羟基苯甘氨酸的开发应用[J].化工科技市场,发展论坛2002,25(11):23-26.
    [16] 李建生.D-对羟基苯甘氨酸的技术开发和市场分析[J].精细与专用化学品,2000,1:11-12.
    [17] 李志强,刘景晶,胡卓逸,王正华,明欣.假单胞菌海因酶基因的克隆及其在大肠杆菌中的表达[J].中国药科大学学报,2001,32(3):227-230.
    [18] 李隽,胡卓逸,蔡萍.二氢嘧啶酶产生菌的筛选及发酵条件的研究[J].药物生物技术,1999,6(2):90-94.
    [19] Takahasli s, Ohasai. T. Kii. Y. etal, Microbia transfermation of hydantoins to N-carbamyl-D-amino. acids[J]. Ferment Techol, 1979, 57(4): 328.
    [20] 陆庆宁,高永红,陶建伟.D(-)-α-(4-乙基-2,3-双氧代哌嗪-1-甲酰胺基)对羟基苯乙酸的合成[J].精细化工,2003,20(9):570-574.
    [21] 殷树梅,冯柏成,张书圣.DL-对羟基苯甘氨酸的合成新工艺[J].化学通报,2000,553-57.
    [22] 施跃峰 国外新抗生素研究发展动态[J].生物技术,1998,8(5):1—5.
    [23] 杨汝德,现代工业微生物[M].华南理工大学出版社,2001,343-354.
    [24] 徐兆瑜.7-ADCA与7-ACA医药中间体[J].四川化工与腐蚀控制,2003,4(6):38-45.
    [25] 国家药典委员会.中华人民共和国药典2000年版二部[S].化学工业出版社,2000,1:338.
    [26] 张骁,束梅英,张韬.阿莫西林的市场现状及前景[J].中国药房,2002,13(9):519-521.
    [27] 温家柱,蔡梅初,王占良.7-ADCA及其相关侧链的开发[J].河北化工,2002,3:5-7.
    [28] 王京平,智瑞彩.左旋对羟基苯甘氨酸的技术进展[J].河北化工,1999,4:1-4.
    [29] 泮锋纲,陈立功,陈宏亮.D-对羟基苯甘氨酸合成综述[J].广州化学,2002,27(2):54-59
    [30] D-对羟基苯甘氨酸生产技术有突破[R].沈阳化工,2004,29(3):180.
    [31] 孙华林.D-对羟基苯甘氨酸的制备及开发前景[J].云南化工,2001,28(2):41-42.
    [32] Arbogas JW, Darmanyan AP, Foote CS etal. Photophysical properties of C60[J]. Phys. Chem., 1991, 95: 11-12.
    [33] Arbogast JW, Foote CS, Kao M. Electrontransfer to C60.[J]. Am. Chem. Soc., 1992, 114: 2277-2279.
    [34] 周华,孟祥军,姚家元等.对羟基苯甘氨酸的合成[J].中国医药工业杂志,1998,29(11):519.
    [35] Talor R, Parson JP, vent AG et al. Degradation of C60 by light. Nature, 1991, 351: 227.
    [36] Creegan KM, Robbins JL, Robbins WK et al. Synthesis and characterization of C60 the first fullereneepoxide. J. Am. Chem. Soc., 1992, 114: 1103-1105.
    [37] 许激扬,吴梧桐,公剑等.化学酶法合成D-对羟基苯甘氨酸[J].中国药科大学学报,1998,29:394-396.
    [38] 李业英,阚振荣,朱宝成.微牛物酶法制备D-对羟基苯甘氨酸的研究进展[J].生物学杂志,2003,20(6):11-14.
    [39] 尤田耙.手性化合物的现代研究方法[M].合肥:中国科技大学出版社.1993:37.
    [40] 黄红辉,刘猛六,胡卓逸.二氢嘧啶酶的分离纯化与性质研究[J].中国药科大学学报,2000,3(15):389-392.
    [41] 石秀春,庄云龙.D-对羟基苯甘氨酸合成方法进展[J].化工生产与技术.2000,7(6):6-8.
    [42] 马飞,许激扬,何林松等.双酶法合成D-(+)-对羟基苯甘氨酸[J].中国药科大学学报,2001,32(2):155-158.
    [43] Park JH, Kim GJ, Kim HS. Production of D-Amino Acid Using whole cell of Recombinant Escherichiacoli with Separately and Coexpressed D-Hydantoinase and N-Carbamoylase[J]. Biotechnol Prog, 2000, 16, 564-570.
    [44] Runser S, Chinski N, Oheyer E. D-p-hydroxyphenylglycine production from DL-5-p-hydroxyphenylhydantoin by Agrobacteriums p[J].Appl Microbiol Biotechnol, 1990, 33: 382.
    [45] Wiese A, Wilms B, Syldatk C. Cloning nucleotide sequence and expression of ahydantoinase gene from Arthrobacteraruescens DSM 3745 in Escherichiacoli and comparison with the corresonding gene from Arthrobacteramescens DSM 3747[J]. Appl Microbiol Biotechnol, 2001, 55: 750-757.
    [46] 张小飞,刘友全,莫章桦等.假单胞菌的诱变及抗性底物类似物的筛选[J].中南林学院学报,2005.25(6):77-79.
    [47] RamadaH, TakahskiS, KiiY, etal. Distribution of hydantoin hydrolyzing activity in microorganism[J]. Ferment Techmol, 1978, 56(5)484-491.
    [48] Runser S, Chinsk N, Ohleyer E, D-p-Hydroxyphenylglycine production from DL-5p-hydroxyphenylhydantoin by Agrobacterium SP[J]. AppI Microiol Biotechnol, 1990, 33: 382-388.
    [49] SYLDATK C, MAY O ALTENBUCHNER, etal. Microbial hydantoinases industrial enzymes from the origin of life[J]Appl, Microbiol, Biotechnol, 1999, 51: 293-309.
    [50] LUKSAV, STARKUVIENE V, STARKUVIEN B, DAGYS R. Purification and characterization of the Dhydantoinase from Bacillus circulans[J], Applied Biochemistry and Biotechnology, 1997, 62: 219-231.
    [51] SOONG C L, OGAWA J, HONDA M, SHIMIZU S, Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp strain A 17p-4[J], Applied and Encironmental Microbiology. 1999. 65(4): 1459-1462.
    [52] 毕洪书,沈飞,沈树宝等.海因酶法制备L-氨基酸研究进展[J].精细与专用化学品,技术进展,2002,22(5):18-20.
    [53] 李志强,刘景晶,胡卓逸等。假单胞菌海因酶基因的克隆及其在大肠杆菌中的表达[J].中国药科大学学报,2001,32(3):227-230.
    [54] 杨柳青,何南,张玉彬.手性药物的生物转化[J].中国新药杂志,2000,9(12):817-819.
    [55] 孙万儒.产二氢嘧啶酶的菌种筛选和发酵条件的研究[J].微生物学报,1983,23(2):133142.
    [56] MorinA, Hummel W, KulaM-R. Rapid deertion of microbial hydantoinase on solid medium[J]. Biotechnol Lett 1986, 8(8): 573—576.
    [57] 罗雪,冯瑞山,胡卓逸.海因酶产生菌的微孔快速筛选法[J].华西医大学报,2001,32(3):462-463.
    [58] 江宁,任永娥,强亚静,等.用底物类似物抗性法筛选海因酶高产菌株[J].微生物学报,1995,35(3):342-345.
    [59] Nanba H, Ikenaka Y, Yamada Y. et al. Isolationf Agrobacteriums p. strain KNK712 that produces N-Carbamly-D-aminoacidamidohydrolase, cloning of the genes for thisen zyme, and properties of the enzyme[J]Biosci Biotechol Biochem, 1998, 62(5): 875-881.
    [60] 王灼维,王璋.链霉菌生产谷氨酸转胺酶的发酵工艺条件研究[J].食品工业科技,2003,24(9):17—21.
    [61] Chao YP, Juang TY, ChernJT, et al. Production of D-p-Hydroxyphenylg lycinebyN-Carbamoyl-D-amino Acid Amidohydrolase Over producing Escherichiacoli Strains[J]. Biotechnol Prog, 1999, 15: 603-607.
    [62] Grifantini R, Galli G, Carpani G, etal. Effiientconvertion of 5-substituted hudantion to D-a-aminoacidsusingrecombinant Escherichiacoli strans[J]. Microbiology, 1998, 144: 947-954.
    [63] Chao YP, Chiang CJ, Lo TE. etal. Over prodection of D-hydantoinase and carbamoylaseinasolunle forming Escherichicoli[J]. ApplMicrobiol Biotechnol, 2000, 54: 348-353.
    [64] Oh KH, Nam SH, Kim HS. Directedevolution of N-Carbmy L-D-amino Acidamidohydrolase for simutaneousim provement of oxidaticeand thermalstability[J]. BiotechnolProg. 2002, 18: 47-477.
    [65] 卓仁禧 罗毅 陶国良,固定化酶技术及进展[J],离子交换与吸附,1994,25,447-450.
    [66] 黎刚.固定化技术进展[J].中国生物工程杂志,2002,22(5):45-48.
    [67] 徐岩,李健波.微生物脂肪酶的固定化及其在非水相催化中的应用研究[J].工业微生物,2001,3l(1):46-48.
    [68] 王蕾.固定化细胞厌氧-好氧工艺处理四环素结晶母液的实验研究[J].环境科学,1995,16(1):29.
    [69] ChibataI. ImmobilizedEnzymes[J], NewYork, London, Sydney, Toronto: John Wiloy and Sons, 1978.
    [70] Butterfield D A. Biofunctional Membrane[J]. Plenum Press, New York, 2001.
    [71] Butterfield D A, Lee J, Ganapathi S, et al. Biofunctional membranes Ⅳ. Active site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studies by electron paramagnetic resonance and kinetics[J]. Membr Sci, 1994, 91: 47-52.
    [72] Ganapathi S, Butterfield D A, Bhattacharyya D. Flat sheet and hollow fiber membrane bioreactors: a study of the kinetics and active site conformational changes of immobilized papain including sorption studies of reaction constituents[J]. Chem Technol Biotechnol, 1995, 64: 157-162.
    [73] Zhuang P, Butterfield D A. Structural and enzymatic characterizations of papain immobilized onto vinyl alcoholPvinyl butyral copolymer membrane[J]. Membr Sci ,1992 ,66:247-251.
    [74] Ganapathi S ,Butterfield D A ,Bhattacharyya D. Kinetics and active fraction determination of a protease enzyme immobilized on functionalized membranes [J]. Appl Polym Sci ,1998 ,14 :865-860.
    [75] Wang J ,Bhattacharyya D ,Bachas L G. Improving the activity of immobilized subtilisin by site2directed attachment through a genetically engineered affinity tag[J]. Fresenius J Anal. Chem,2001 ,369 :280-286.
    [76] Persson M,Bulow L ,Mosbach K. Purification and site specific immobilization of genetically engineered glucose dehydrogenase on thiopropyl sepharose[J]. FEBS Lett, 1990,270:41-49.
    [77] Kallwas H KW,Parris W,McFarlane E L A ,et al .Site specific immobilization of an L-lactate dehydrogease via an engineered surface cysteineresidue.[J]. Biotechnol Lett, 1993 ,15 :29-35.
    [78] McLean M A , Stayton P S , Sligar S G. Engineering protein orientation at surfaces to control macromolecular recognition events[J]. Anal Chem, 1993, 65: 2676-2683.
    [79] Chilkoti A ,Chen G,Stayton P S ,et al. Site2specific conjugation of a temperature sensitive polymer to a genetically engineered protein[J] . Bioconjugate Chem, 1994 , 5 :504-510.
    [80] Carlsson J ,Mosbach K,Bulow L. Affinity precipitation and site specific immobilization of proteins carrying polyhistidine tails [J]. Biotechnol Bioeng , 1996 , 51:221-227.
    [81] Gekas V C. Artificial membranes as carriers for the immobilization ofbiocatalysts[J] . Enzyme and Microbial Technol ,1986 ,8 :450-460.
    [82] Giorno L , Molinari R , Drioli E , et al. Performance of biphasic organic/ aqueous hollow fiber reactor using immobilized lipase [J]. Chem Technol Biotechnol, 1995 , 64 :345-352.
    [83] Jancsik V ,Beleznai Z , Keleti T. Enzyme immobilization bypoly(vinylalcohol) gel entrapment[J] . Mol Cat ,1982 ,14 :297-306.
    [84] Arica M Y, Kacar Y, Ergene A , et al. Reversible immobilization of lipase on phenylalanine containing hydrogel membranes[J] . ProcessBiochem ,2001 , 36: 847-845.
    [85] El - Masry M M ,Demaio A ,Martelli P L ,etal . Influence of the immobilization process on the activity of β - galac2-tosidase bound to nylon membranes grafted with glycidylmethacrylate.[J] .MolCatB:Enzymatic,2001,16:175-189.
    [86] Hicke H G, Bohme P, Becker M, et al. Immobilization of enzymes onto modified polyacrylonitrile membranes: Appli cation of the acryl azide method[J]. Appl Polym Sci, 1996, 60: 1147-1161.
    [87] El-Masry M M, De Maio A, Di Martino S,et al. Modulation of immobilized enzyme activity by altering the hydrophobicity of nylon-grafted membranes.[J]. Mol Cat B: Enzymatic, 2000, 9: 219-230.
    [88] 邓红涛,吴键,徐志康等.酶的膜固定化及其应用的研究进展[J].膜科学与技术,2004,24(3)47-53.
    [89] 张伟,杨秀山.酶的固定化技术及应用[J].自然杂志,2000,22(5)282-286.
    [90] Arica M Y, Baran T, Denizli A. β-Galactosidase immobilization into poly(hydroxyethylmethacrylate) membrane and performance in a continuous system[J]. Appl Polym Sci, 1999,72: 1367-1373.
    [91] Mohy Eldin M S, Bencivenga U, Rossi S, et al. Characterization of the activity of penicillin G acylase immobilized onto nylon membranes grafted with different acrylic monomers by means of?-radiation[J]. Mol Cat B: Enzymatic, 2000, 233-244.
    [92] Miura S, Kubota N, Kawakita H, et al. High-through put hydrolysis of starch during permeation across α-amylase-immobilized porous hollw-fiber membranes[J]. Radiation Phys Chem, 2002, 63: 143-149.
    [93] Jun I, Matsuyama T, Yamamato H, et al. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP -CVD[J]. Biochem Eng, 2000, 50: 179-184.
    [94] Tanioka A, Yokoyama Y, Miyasaka K. Preparation and properties of enzyme immobilized porous polypropylene films[J]. Colloid Interface Sci, 1998, 200: 185-187.
    [95] 曹黎明,陈欢林.酶的定向固定化方法及其对酶生物活性的影响[J].中国生物工程杂志,2003,23(1)22-28.
    [96] Turkova J, Fusek M, Maksimov J J, et al. Reversible and irreversible immobilization of carboxypeptide Yusing biosepcific adsorption[J]. Chromatogr, 1986, 376: 315-320.
    [97] Schmid E L, Keller T A, Dienes Z, et al. Reversible oriented surface immobilization of functional protein on oxide surface[J]. AnalChem, 1997, 69: 1979—1985.
    [98] Butterfield D A, Bhattacharyya D, Daunert S, et al. Catalytic biofunctional membranes containing sitespecifically immobilized enzyme arrays[J]. Membr Sci, 2001, 191: 29-34.
    [99] Spohn U, Preuschoff F, Blankenstein G, et al. Chemiluminometric enzyme sensors for flow-injection analysis[J]. Anal Chim Acta, 1995, 303: 109-120.
    [100] Conrath N, Grundig B, Huwel St, et al. A novel enzyme sensor for the determination of inorganic phosphate[J]. Anal Chim Acta, 1995,309: 47-52.
    [101] 宋建彬,任孝修.以壳聚糖为载体固定化青霉素酰化酶的研究[J],化工进展,2004,23(2):181-184.
    [102] 马哲,姚忠,竺凯等.Burkholdericcepecia1003产海因酶固定化条件[J].南京工业大学学报,2005,27(6):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700