A380铝合金半固态流变压铸工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液态压铸件内部缺陷率较高,产品不能热处理,力学性能较低。因此如何降低压铸件的缺陷率,提高铸件力学性能成为急需解决的问题,并引起广大研究学者的关注。以江西江铃有色金属压铸厂要求达到的力学性能指标为目的,本文以A380铸造铝合金试杆为例,利用实验室自主开发的剪切低温浇注式流变制浆工艺(Low Superheat Pouring with a Shear Field,简称LSPSF)制备半固态浆料,结合DCC280型号卧式压铸机系统研究了半固态流变压铸成型工艺。主要研究了LSPSF法制备A380铝合金半固态浆料最佳工艺参数优化、液态压铸和半固态压铸工艺及其铸件显微组织与力学性能、液态压铸和半固态压铸热处理工艺及其铸件显微组织与力学性能。并进行了流变压铸工艺参数对铸件质量的影响分析。试验结果表明:
     (1)LSPSF法制备A380铝合金的最佳工艺参数为:①浇注温度620℃;②输送管转速90rev/min;③结晶器预热温度550℃;④倾斜角度25°。浇注温度和输送管转速共同影响着输送管对合金熔体的激冷和搅拌混合强度,只要浇注温度和输送管转速能够良好匹配,使出口温度低于合金液相线温度,便可以获得优质的半固态浆料。
     (2)在LSPSF工艺中,低过热浇注、凝固初期的激冷和搅拌混合可有效的激发熔体形核,促进晶粒游离,提高游离晶的存活率,这也是半固态组织细化的本质所在。
     (3)力学性能测试表明,两种不同成形方法所得成形件在压铸态时强度相差无几,但半固态成形件的塑性几乎是液态成形件的2倍。经过同样的T6热处理后,半固态压铸件的抗拉强度有所提高,液态压铸件的抗拉强度却下降很大。伸长率均有所下降,但两者变化的幅度不同,液态压铸件的延伸率下降更多。
     (4)试验过程需要严格控制压铸工艺参数及合金熔炼工艺,否则即使在半固态流变压铸条件下,也会因缺陷的产生而导致力学性能的下降。然而与同等条件下的液态压铸件相比,这些缺陷明显要小得多。总体来看,半固态流变压铸实验结果仍较好于液态压铸,且随着浇注温度的降低,压铸缺陷的减少,得到的组织越趋于圆整、细小,力学性能越高。
Traditional die-casting internal defect ratios are always high, and can not easily do the heat treatment, so how to reduce these defect ratios is an emergent question which needs to be solved has already gathered much concern of scholars.
     In order to improve the mechanical properties for Jiang ling die-casting corporation, the paper systematically does some research on semi-solid rheological forming technology mainly on testing bar which is made of A380 aluminum casting alloy.
     And the study uses a novel rheocasting process ,termed as Low Superheat Pouring with a Shear Field(LSPSF) to prepare semi-solid slurry, the forming equipment is die-casting machine(DCC280). The paper include three parts:the optimization of the LSPSF technical parameters. the microstructure and mechanical properties of liquid die-casting parts and semi-solid die-casting parts before and after heat treatment, then does analysis and research on the influence of rheological die-casting technical parameters to the performance of castings. Research method and main results is as following:
     (1) we received the best microstructure of the A3 80 semisolid aluminum slurry when the rotating speed is 90rev/min , pouring temperature is 620℃, inclined degree is 25°and the temperature of the crucible is 550℃. Pouring temperature and rotation speed of barrel determine the stirring-mixing intensity and cooling ability applied by the rotational barrel on the molten alloy. It can be concluded that sound semi-solid metal slurry can be produced under the appreciate combination of pouring temperature and rotation speed of barrel.
     (2) Under LSPSF process, low superheat pouring combined with localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation, crystal separation and crystal survival. Moreover the effective nucleation rate is significantly affected by the combined effects of pouring temperature and rotation speed of barrel.
     (3) Mechanical property test shows that semi-solid die-casting and liquid die-casting have almost the same tensile strength before they are heat treatmented. but the ductility of the semi-solid forming parts is almost two times than that of liquid forming parts. After T6 heat treatment, the tensile strength improved and the ductility inclined for both semi-solid die-casting and liquid die-casting , but they have different variation range.
     (4) The result shows that these parameters should be strictly controlled or the mechanical properties will fall down because of the defects producing, though under semi-solid rheological die-casting. However, the results of semi-solid one is better than the traditional one, accompanied with descending of pouring point and reducing of detects, finally gains more near-circular and smaller structures.the mechnical properties more improved.
引文
[1] M.C. Flemings. Behavior of Metal Alloys in the Semisolid State. Metallurgical Transactions B, 1991, 22B (6): 269-293.
    [2] M.C. Flemings, K. P. Young. Rheocasting. Mater. Sci. Eng., 1976 (25): 103-117.
    [3] M.C. Flemings.SSM: Some Thoughts on Past Milestones and on the Path Ahead. Proceeding of the 6th S2P, Italy, 2000:11-14.
    [4] H. Wang, C. J. Davidson and D. H. St John. Semisolid Microstructural Evolution of AISi7Mg Alloy during Partial Remelting. Materials Science and Engineering A, 2004 (368A): 159-167.
    [5] R. Kopp, H. Shimahara. State of S&D and Future Trends in Semi-solid Manufacturing. Proceeding of the 7th S2P, Japan, 2002: 57-66.
    [6] D. Apelian. Semi-solid Processing Routes and Microstructure. Proceeding of the 7th S2P, Japan, 2002: 25-30.
    [7] Rathindra DasGupta. Industrial Application-The Present Status and Challenges We Face. Proceeding of the 8th S2P, Cyprus, 2004.
    [8] 罗守靖,姜巨福,杜之明.半固态成形研究的新进展、工业应用及其思考.机械工程学报,2004,39(11):52-60.
    [9] 毛卫民.半固态成形技术.北京:机械工业出版社,2004.6.
    [10] 康永林.金属材料半固态技工理论与技术.北京:科学出版社,2004,5.
    [11] 张琳,刑书明,刘文等.半固态合金熔体直接压铸技术.铸造.2006,55(4)323—326
    [12] 杨湘杰,郭洪民.流变成形浆料制备技术发展动向及其对策.特种铸造及有色合金,2004(6):1-4.
    [13] Mehrabian R, Flemings M C. Die Casting of Partially Solidified Alloys. AFS Transactions, 1972 (80): 173-182.
    [14] Wang Kuo K, Peng Hsuan and Wang Nan. Method and apparatus for injection molding of semi-solid metals. US Patent 5501266, 1996.
    [15] 彭暄.半固态合金射出成型的方法和装置.中国专利:97120579.5,1997.
    [16] S. Ji, Z. Fan, M. J. Bevis. Semi-solid processing of engineering alloys by a twin-screw rheomoulding process. Materials Science & Engineering A, 2001,299(1-2): 210-217.
    [17] Z. Fan, S. Ji, J. Zhang. Processing of immiscible metallic alloys by rheomixing process. Materials Science and Technology, 2001, 17(7):837-842.
    [18] Z. Fan, S. Ji, X. Fang. Rheo-diecasting of Aluminum Alloys and components. Proceeding of the 8th S2P, Cyprus, 2004.
    [19] Z. Fan. Rheo-Diecasting of Al-Alloys. MATERIALS FORUM/Aluminum Alloys-Their Physical and Mechanical Properties, 2004: 1-6.
    [20] K. A. Roberts, X. Fang, S. Ji and Z. Fan. Development of Twin-Screw Rheoextrusion Process.Proceeding of the 7th S2P,Japan,2002:677-682.
    [21] 吴树森,李东南,毛有武等.半固态流变压铸AZ91D镁合金的组织与性能.首届中国国际轻金属冻炼加工与装备会议,上海,2002:272-275.
    [22] 罗吉荣,肖泽辉.半固态镁合金流变成形技术及装备.特种铸造及有色合金,2004(4):45-46.
    [23] 吴树森,罗吉荣.半固态金属浆料的制备装置.中国专利,01212744.2,2001.
    [24] Kang Yonglin, An Lin, Wang Kaikun, Sun Jianlin, Xiao Bangguo. Experimental Study on Rheoforming of Semisolid Magnesium Alloys. Proceeding of the 7th S2P, Japan, 2002:287-292.
    [25] 康永林,安林,孙建林.转筒式半固态金属浆料制备与成形设备.中国专利,01109074.X.2001.
    [26] 徐跃,康永林,王朝晖等.机械搅拌法制备半固态镁合金的组织及性能研究.铸造技术.2004,25(9):670-672.
    [27] Shihata R, Kaneuchi T, Soda T. New Semi-Liquid Metal Casting Process. Proceeding of the 4th S2P, England,1996:296-300.
    [28] 洪俊杓,金灾民,金玟秀等.用于流变铸造的模铸法和设备.中国专利:03141281.5,2003.
    [29] 毛卫民.球状初晶半固态合金或合金浆料直接成型方法及装置.中国专利:02104349.3,2002.
    [30] R. Shibata, T. Kaneuchi, T. Souda and H. Yamane. Formation of Spherical Solid Phase in Die Casting Shot Sleeve Without Any Agitation. Proceeding of the 5th S2P, USA, 1998: 465-470.
    [31] Dobatkin V I and Eskin G I. Ingots of aluminum alloys with nondenddtic structure produced by ultrasonic treatment for deformation on the semi-solid state. Proceeding of the 4th S2P, England, 1996:193-196.
    [32] 刘丹.铝合金液相线铸造制浆及半固态加工工艺与理论研究.博士学位论文.沈阳,东北大学,1999.
    [33] Xia K, Tausig G. Liquidus Casting of a Wrought Aluminum Alloy 2618 for Thixoforming. Materials Science & Engineering. A, 1998, 246(1-2): 1-10.
    [34] 王平.A356铝合金半固态制浆及成形工艺与理论研究.博士学位论文.沈阳,东北大学,2002.
    [35] 乐启炽,欧鹏,吴跃东等.AZ91D镁合金液相线铸造研究.金属学报,2002,38(2):219-224.
    [36] Ye PAN, Shunzo AOYAMA, Chi LIU. Spherical structure and Formation Conditions of semi-solid AI-Si-Mg Alloy. Proceedings of the 5th Asian Foundry Congress, China, 1997:443-451.
    [37] 毛卫民,杨继莲.浇注温度对AlSi7Mg合金显微组织的影响.北京科技大学学报,2001,23(1):38-41.
    [38] UBE Industries Ltd.. Method and Apparatus for Shaping Semisolid Metals. Japan: EPO 745 694 A 1, Dec. 4, 1996.
    [39] T. Haga. Semi-solid roll casting of aluminum alloy strip by melt drag twin rollcaster. Journal of Materials Processing Technology. 2001, 111(1-3): 64-68.
    [40] Kaufmann H, Wabusseg H. Metallurgical and processing aspects of the NRC semisolid casting technology. Aluminum, 2000, 76(1/2): 70-75.
    [41] H. Kaufmann, R. Potzinger, P. J. Uggowitzer. The Relationship between Processing and Properties of New Rheocast AZ91 and AZ71 Magnesium Pars. Light Metal Age, 2001, 59(1-2):56, 58, 60-61.
    [42] E. Cardoso, H.V. Atkinson, H.Jones. Microstructural Evolution of A356 during NRC Processing. Proceeding of the 8th S2P, Cyprus, 2004.
    [43] 郭洪民.半固态铝合金流变成形工艺与理论研究:[博士学位论文].2007.
    [44] 郭洪民,杨湘杰.半固态流变成形中浆料制备的基本思路.铸造,2006,5:791-802.
    [45] Guo Hongmin, Yang Xiangjie. Continous Fabrication of Sound Semi-Solid slurry for rheoforming. Solid State Phenomena, 2006(116-117): 425-428.
    [46] H.M.Guo,X.J.Yang, B.Hu. Rheocasting of aluminum alloy A356 by low superheat pouring with a shear field. Acta Metallurgic Sinica(English Letters), 2006 (5):328-334.
    [47] 大野笃美.金属凝固学.北京:机械:工业出版社,1977.
    [48] 胡汉起.金属凝固原理.北京:机械工业出版社,2000.13-14.
    [49] 陈嵩生等.半固态铸造.北京:国防工业出版社.1978.
    [50] 彭靓,孙文德,钱翰城.压铸铝合金及先进的压铸技术.2001(50):14-17.
    [51] 王开,刘昌明,邹茂华等.ZL112Y铝合金半固态压铸过程微观组织的演变.中国有色金属学报.2003(13):956-961.
    [52] 余忠士,张恒华,邵光杰.铝合金半固态成形件固溶热处理工艺优化研究.2003(52)
    [53] 李培杰,增大本,贾均等.合金熔体遗传现象的热力学分析[J].铸造,1999,(10):12-15
    [54] 邢书明,张励忠,张国华.白口铸铁磨球半固态挤压铸造工艺参数设计[J].铸造,2002,51(7):431-433.
    [55] ULRICH Jerichow, TAYLAN Altan, PETER R Sahm. Semisolid metal forming of aluminum alloys the effectof process variables upon material flow, cavity fill and mechanical properties[J]. Die Casting Engnieer, 1998,42(1): 76-84.
    [56] VOCTORIE Co, EDWARD J, Vinarcik. Understanding contaminant veins in squeeze casting and semi-solid metal-working Processes[J].特种筹造及有色合金(压铸专刊), 2003:230-234.
    [57] 肖黎明,张励忠,张密兰等.半固态流变模锻工艺参数对铝合金制件质量的影响.2006(34):15-21.
    [58] 章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社.1998.213-214
    [59] 王益志.380压铸合金成分的变化对力学性能的影响.特种铸造及有色合金.2002压铸专刊.76-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700