镁合金半固态非枝晶组织制备及压铸工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前镁合金半固态成形技术研究所用合金成分均在第二组元的固溶度极限范围内,亦即沿用传统商业牌号的合金。论文突破传统,大胆选择亚共晶范围内的镁铝合金进行半固态触变压铸的研究和探索。这样,首先面临的问题是如何制备适于半固态加工的合金坯料,半固态等温热处理法将非枝晶组织坯料的制备与二次加热合并为一个步骤,其中前期的锭料熔铸、半固态坯料制备等工艺过程控制是决定半固态触变压铸成败的关键。因此,本部分选择了含铝量分别为15%,20%,25%三种不同成分的镁合金,对其等温热处理过程的组织演变做了系统研究,前期的初步试验证明了此方案的可行性。最终得到具有触变性的半固态非枝晶组织。
     论文通过等温处理法制备半固态坯料,研究了含铝20%和15%镁合金半固态触变压铸的工艺特点及对组织、力学性能的影响。采用自行设计的压铸机加热式压室改变了传统压铸机不能用于半固态压铸的状况,加热的压室补充了合金液所散失的热量,减缓了合金溶液在压室中凝固的速度,保证金属有较好的流动性,以满足半固态镁合金压铸成形的要求。实验中考察压射速度、压射比压和模具温度三个工艺参数对压铸件力学性能和组织的影响,把其中两个参数固定在较佳值,考察第三个参数的影响。对于20%合金,在压射比压40MPa,压射速度4 m/s,模具温度160℃时其力学性能最佳,抗拉强度为220MPa,伸长率为5.63%,硬度值98.5HB,冲击韧性8.53J/cm~2。在对半固态压铸零件进行T4处理后,其力学性能均有所提高,其抗拉强度达到了238MPa,伸长率达到了6.71%。触变压铸成形后的组织比等温处理后更加均匀、细小。通过对半固态成形试棒拉伸断口形貌分析,发现半固态成形拉伸试棒的断裂方式主要为沿晶断裂。
     为了便于比较,通过正交实验,研究了15%合金的液态压铸工艺。研究结果表明,压铸工艺参数对15%镁合金力学性能影响的显著性。对抗拉强度的影响由大到小依次为:压射速度、模具温度、浇注温度、压射比压;延伸率依次为:浇注温度、模具温度、压射速度、压射比压。15%镁合金压铸工艺最优方案为:浇注温度为650℃,模具温度为150℃,压射速度为3.5m/s,压射比压为75MPa。对于20%合金液态压铸,平均抗拉强度190MPa,平均延伸率3.19%。通过扫描电镜观察拉伸断口,发现断口存在较多的气孔和疏松,15%压铸镁合金的断裂方式为解理断裂。
At present the application of magnesium alloy components in the solution are within the limitation of Solid solubility, the dissertation has breakthrough of tradition with choosing Hypo-eutectic scope, using AZ91D method for the transformation boldy. It is a difficult point to how to prepare suitable for the processing of semi-solid alloy magnesium alloy billets. This way makes semi-solid isothermal treatment of non-dendritic structure blank Preparation and reheating the merger become a step, but preparation and control blank is inevitable. Therefore, the choice of the aluminium are respective 15%, 20%, 25%, these three different ingredients of magnesium alloy. which has been done more group testing, the initial pre-trial proved the feasibility of this option. Finally, getting a structure of semi-solid non-dendritic with Thixotropy .
     This paper in with of prepares semi-solid billets through the isothermal treatment, which has studied the aluminiferous 20% and 15% magnesium alloy semi-solid process characteristics Thixo-casting .The tradition chamber can not been used in semi-solid diecasting, now, the condition has changed, because the chamber which designed for semi-solid diecasting was used in the experience. The heated chamber can keeps the semi-solid alloy in higher temperature and delays the freezing speed. The excellent fluidity of the alloy fit the semi-solid diecasting of magnesium alloy. The influences of filling speed and pressure of die-casting and mold temperature was investigated to mechanical properties and organization's influence of alloy.Two parameters fixes in the good parameter,studys influence of the third parameter. The result indicated that mechanical properties of the best when injection pressure of 40 MPa, injection speed of 4 m/s, mold temperature at 160℃.The tensile strength has the maximal of 220MPa and the elongation is 5.63% and hardness is 98.5HB and impact toughness is 8.53J/cm~2.After T4 treatment, the tensile strength increased to 238MPa, elongation is 6.71%. Thixocasting forming the organization more evenly distributed.The fracture morphology of tensile tested specimens has analysed. The result indicated that the fracture morphology of the semi-solid diecasting was along grain boundaries mainly.
     For purposes of comparison, by orthogonal experiments on 15% of the liquid alloy die-casting process.The results show that the factors influencing on properties of 15% from the greatest to the smallest are following: on tensile strength are injection speed, mould temperature, pouring temperature and injection pressure; on elongation are pouring temperature, mould temperature, injection speed and injection pressure. In the experiment, the mechanical properties of 15% magnesium alloy were obtain preferable value, at the proper factors: pouring temperature is 650℃, mould temperature is 150℃, injection speed is 3.5m/s, injection pressure is 75MPa. For 20% of liquid alloy die-casting, the average tensile strength of 190 MPa, the average rate of 3.19% extension. We can observe carefully the break surface by means of SEM, the fracture morphology of tensile tested 15% magnesium alloy is cleavage fracture, and pull break surface as same as impact break surface. There are many porosities and different crack.
引文
[1]Flemings M C.Behavior of metal alloys in the semisolid state.Metallurgicaland Materials Transactions,1991,22A(5):957-981.
    [2]Polmear I J.Magnesium alloys and applications.Materials Science &Technology,1994,10(1):1-16.
    [3]汪之清.国外镁合金压铸技术的发展.铸造,1997,46(8):23-27.
    [4]Kirkwood D,Kapranos P H.Semi-solid processing of alloys.Casting Technology,1989,(1):16-21.
    [5]李元东,郝远,陈体军,等.镁合金半固态成形的现状及发展前景.特种铸造及有色合金,2001,15(2):77-78.
    [6]Nussbaum A I.Semi-solid forming of aluminum and magnesium.Light Metal Age,1996,(6):6-22.
    [7]甄子胜.半固态AZ91D镁合金流变学行为和微观组织研究[博士论文].北京:北京科技大学,2003.
    [8]王开,刘昌明,翟彦博.AZ91D镁合金触变铸造件热处理前后组织与性能研究.特种铸造及有色合金(压铸专刊),2007,429-433
    [9]李东南,林涵,吴树森,等.流变压铸成形镁合金AZ91D的显微组织与性能.材料热处理学报,2007,28(4):64-68
    [10]李东南,吴和保,吴树森,等.半固态AZ91D镁合金组织与性能研究.中国机械工程,2006,17(13):1421-1425
    [11]张少明,杨必成,樊中云,等.镁合金AZ61的流变挤压工艺和组织特征.中国有色金属学报,2007,17(9),1423-1428
    [12]赵祖德,单巍巍,罗守靖.等径道角挤压法制备半固态MB15-RE镁合金坯.2006,26(11):707-709
    [13]李元东,郝远,陈体军,等.冷却速率对AZ91D镁合金半固态组织制备的影响.兰州理工大学学报,2004,30(6):19-24
    [14]A Staff Report.Semi-solid metalcasting gains acceptance,applications.Foundry Management & Technology,1995,23(11):23-26.
    [15]吴炳尧.半固态金属铸造工艺的研究现状及发展前景.铸造,1999,48(3):45-52.
    [16]毛卫明,钟雪友.半固态成形技术.北京:机械工业出版社,2004
    [17]Joly P A,Mehrabian R.The rheolegy of a partially solid alloy.Journal of Mateiral Science,1976,40(11):1393-1418
    [18]KattamisT Z,Peccone T J.Rheology of Semi-Solid Al-4.5%Cu-1.5%Mg alloy. Material Science Engineering,1991(131A).265-272
    [19]TumgL S,WangK K.Rheological behavior and modeling of semi-solid Sn- 15%Pb alloy.Journal of Materials Science,1991,31(26).2173-2183
    [20]QuaakC J,HorstenM G,Kool W H.Rheological behavior of partially solidifiedaluminum matrix composites.Materials Science Engineering,1994(183A):247-256
    [21]MehrabianR,FlemingsM C.Die casting ofpartially-solidfied alloys.Die Casting Engineering,1973,20(10):50-59
    [22]J.Aguilar,M.Fehlbier,A.Ludwig,A.Buhrig-Polaczek,P.R.Sahm.Non-equilibrium globular microstructure suitable for semisolid casting of light metal alloys by rapid slug cooling technology(RSCT).Materials Science and Engineering A,2004,7(15):651-655
    [23]Kamado S,Kojima Y.Semi-solid stir-casting and forming magnesium alloys.Material Japan,1994,33(9):1149-1157.
    [24]贺秀芳.半熔融和半凝固加工技术展望(一),轧钢,1996,16(1):42-44
    [25]Blais S,Loue w,and Pluchon C.In:Kirkwood D H,Kapranos P.Proc.4th Intenrational Conference on the Processing of Semi-solid Alloy sand Composities,Sheffield,University of Shefield,1996,June,19-21,187-192
    [26]张奎,张永忠,刘国均,等.半固态A1Si7Mg合金二次加热工艺与组织转变机制.金属学报,2000,35(2):127-130.
    [27]Vives C.Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes.Metallurgical and Materials Transactions,1992,23B (4):189-206.
    [28]Young K P,Kyonka C P,Courtois J A.Finne Grained Metal Composition.US Patent,4415374,1983
    [29]PGabathuler J,Barras D,Kriihenbjihl Y,and et al.Evaluation of various processes for the production of billets with thixotropic properties.In:The 2th.International Conference on the Processing of Semi-solid Alloys and Composites.MIT,USA,1992,20(12)33-46.
    [30]Sekihara K,Ohnishi S,Kamado S,and etal.Semi-solid forming of strain-induced AZ91D magnesium alloy.Journal of Japan Institute of Light Metals,1995,45(10):560-565.
    [31]陈体军,郝远,陆松.ZA27合金在SIMA处理过程中形变量和等温温度对组织的影响.金属热处理学报,2000,21(1):26-31.
    [32]Loue W R,M Suery.Microstructural evolution during partial remelting of Al2Si7Mg alloys.Materials Science and Engineering A,1995,A203:1-13.
    [33]Bergsma S C,Li X,Kassner M E.Semi-solid thermal transformations in Al-Si alloys:Ⅱ.The optimized tensile and fatigue properties of semi-solid 357 and modified 319 aluminum alloys.Materials Science and Engineering,2001,A297:69-77.
    [34]Bergsma S C,Toole M C,Kassner M E.Semi-solid thermal transformations of Al-Si alloys and the resulting mechanical properties.Materials Science and Engineering A,1997,A237:24-34.
    [35]朱鸣芳,苏华钦.半固态等温处理制备粒状组织ZA12合金的研究.铸造,1996,45(4):1-5.
    [36]朱鸣芳,苏华钦.ZA12颗粒组织的形成及枝晶形态的演变.东南大学学报,1996,26(2):1-6.
    [37]李元东,郝远,阎峰云,等.AZ91D镁合金在半固态等温热处理中的组织演变.中国有色金属学报,2001,11(4):571-575.
    [38]赵爱民,甄子胜,毛卫民,等.喷射沉积高硅铝合金的半固态触变成形.中国有色金属学报,2000,10(suppl):126-131.
    [39]温景林,管仁国,刘相华.A2017半固态合金的半固态扩展成形.材料研究学报,2003,(1):57-63.
    [40]Young R M K,Clyne T W.A powder mixing and preheating route to slurry production for semisolid diecasting.Powder Metallurgy,1986,29(3):195-199.
    [41]Gabathuler J P,Buxmann K.Process for producing a liquid-solid metal alloy phase for further processing as material in the thixotropic state.USA,1993Feb.
    [42]Apelian D.Semi-solid processing routes and microstructure evolution.In:Tsutsui Y,Kiuchi M,editors.The 7th International Conference on the Processing of Semi-solid Alloys and Composites.Tsukuba,Japan,2002.557-562.
    [43]刘丹.铝合金液相线铸造制浆及半固态加工工艺及理论研究[博士论文].哈尔滨:东北大学,1999.
    [44]Haga T,Kapranos P,Kirkwood D K.Thixforming processes using ingot by a cooling slope and low super heat casting.In:Tsutsui Y,Kiuchi M,editors.The 7th International Conference on the Processing of Semi-solid Alloys and Composites.Tsukuba,Japan,2002.795-800.
    [45]Aliravci C,Gruzleski J E,Dimayuga F etal..Proceedings of 48th Annual World Magnesium Conference.IMA,1991:15
    [46]Ninomiya R,O jiro T,Kubota K.Acta Metall,Mater..1995,43(2):669-674
    [47]Miyazaki Takeshi,Kaneko Junichi,Sugamata Makomoto.Mater.Sci.&Eng..1994,A 181:1401-1414
    [48]Garboggini A,Mcshane H B.J.of Mat.Sci Leters.1994,13:1118-1120
    [49]Gjestland H,Nussbaum G,Regazzoni G.Light Weight Alloys for Aerospace Applications,TMS,Warrendale,PA,1989:139
    [50]Anne T K,Westemgen H,Ruden T J.The Effect of Varying Aluminum and Rare Earth Content on the Mechanical Properties of Die-casting Magnesium Alloys.ASE Technical Paper 940777,Detroit,1994
    [51]Aune T K,Ruden TJ.High Temperature Properties of Magnesium Die-casting Alloys.SAE Technical Paper 920070,Detroit,1990
    [52]Polmear IJ.Light Alloys:Metallurgy of the Light Metals and Alloys.London Edward Arnold,1989
    [53]Sasaki Hiroto,Adachi Mitsuru,Sato Saoru,etal..Efect of Solidified Mirostructures on Mechanical properties of AZ91 Magnesium Alloy.Light Metals,1997,47(3):133
    [54]Aghion E,Bronfin B.Proc.of 3thd Intenrational Magnesium Conference.1011 April 1996,Institue of Materials,London,1997:313
    [55]师昌绪,李恒德,王淀佐,等.加速我国金属镁工业发展的建议[J].材料导报,2001,15(4):5-6.
    [56]Kojima Yo.Project of platform science and technology for advanced magnesium alloys[J].Materials Transactions,JIM,2001,42(7):1154-1159.
    [57]刘正,王越,王中光等,镁基轻质材料的研究与应用.材料研究学报,2000.14(6):449-456
    [58]张九红.上百亿元产业群体即将出现.新材料周刊,2002-01-15(14)
    [59]Claudio Mus.Magnesium Die Casting,History,Principle sand State of the Art Magnesium Industry,2001,18(2):21-25
    [60]杨裕国.压铸工艺与模具设计.北京,机械工业出版社,1996,3:1-3
    [61]毛卫民.半固态金属成形技术.北京,械工业出版社,2004:2-6
    [62]Westengen H.Magnesium alloys:Properties and applications.Encyclopedia of Materials:Science and Technology,2001,3(3):21-28.
    [63]Hervieu O,Collot J.Die-casting of light metal in the semi-solid state:study of the PID process[A].In:Kirkood D H,Kapranos P,editors.The 4th International Conference on the Processing of Semi-solid Alloys and Composites.Sheffield,UK,1996.283-289.
    [64]王晓颖.非均质材料控制加热过程的组织演变与熔化行为[博士论文].西安:西北工业大学,2003.
    [65]Bae D H,Lee M H,Kim K T etal.Application of Quasicrystalline Particles as a Strengthening Phase in Mg-Zn-Y Alloys.Journal of Alloys and Compounds,2002,342(5):445-450
    [66]Emley E F.Principles of Magnesium Technology.Oxford:Pergamon,1996:193-431
    [67]于海朋,王峰.工艺参数和热处理对压铸AZ91D力学性能的影响.特种铸造及有色合金,2002,(2):27-28
    [68]常先猛.镁合合金压铸工艺及产品表面处理.模具工程,2005,10(53):23-27
    [69]Zeng X Q,Wang Q D,Ding W J.Study on ignition proof magnesium alloy with beryllium and rare earth additions.Scripta Mater,2000,13(43):403
    [70]吴伟,邹智厚,马春艳,等.工艺参数对压铸AM50镁合金力学性能的影响.特种铸造及有色合金,2005,25(10):612-614
    [71]刘志勇,许庆彦,柳百成.压铸工艺对镁合金组织性能影响的研究.铸造,2004,8(53):652-657

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700