无压浸渗法制备Al_2O_(3f)/AZ91D复合材料工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用无压浸渗方法制备了Al_2O_3纤维增强AZ91D镁基复合材料。采用金相显微镜、SEM(扫描电镜)、XRD(X射线衍射)和EDS(能谱分析)等检测分析手段,对复合材料的组织、力学性能及摩擦磨损行为进行了研究。
     经过工艺优化得到的预制体通过扫描电镜观察,发现其内部存在大量的微观孔洞;通过测定预制体的孔隙率,其值可达72%以上;孔隙率随造孔剂碳粉质量分数的增加而增大,当碳粉质量分数小于20wt.%时,随碳粉质量分数的增加,孔隙率变化较明显。碳粉质量分数大于20wt.%时,孔隙率变化幅度趋于平缓。
     通过不同工艺条件下的浸渗成形实验发现,在保温温度高于635℃、保温时间大于40min时浸渗成形均可完成。复合材料的组织中除了存在长条状与点状的Al_2O_3纤维及镁基体外,还可以发现少量的微观孔洞和生成的Mg_2Si相;随着保温温度的升高或保温时间的延长,微观孔洞的数量有所减少,同时,Mg_2Si相的数量也有所增多、尺寸略有变大,并对复合材料的硬度有较明显的影响。Al_2O_3纤维与Mg基体界面处结合良好,界面附近存在Mg_2Si:Al_2O_3纤维表层附着有一层颜色较深的膜,经能谱分析判断其为MgO。增大Al_2O_3纤维的加入量,复合材料硬度呈现上升趋势,且复合材料的硬度都高于AZ91D镁合金的。硬度随保温时间变化趋势是平缓上升的,随着保温温度变化趋势是先升高后平缓降低。
     复合材料的摩擦磨损实验中发现存在一个由轻微磨损向急剧磨损转化的临界载荷,随着Al_2O_3纤维体积分数的增加,该临界转变载荷逐渐升高。Al_2O_3纤维含量对复合材料的磨损率的影响存在临界值,临界点就在Al_2O_3纤维18 vol.%时出现。随着载荷的增加,磨损机制从低应力磨料磨损和轻微粘着磨损向严重的高温粘着磨损转变。随纤维体积分数的增加,复合材料的磨损机制由粘着磨损向低应力磨料磨损和轻微粘着磨损转变。纤维18vol.%复合材料从轻微磨损到急剧磨损的临界转变温度为250℃,在低温时磨损机制为以磨料磨损为主,轻微粘着磨损为辅;随着温度的升高,粘着磨损加剧,并最终发展为严重的高温粘着磨损。
In the paper,Al_2O_(3f)/AZ91D composite was prepared by using the method of Pressureless Infiltration process,Its microstructure,mechanical properties,friction and wear behaviour were studied by Optical microscope,SEM,XRD and EDS.
     Large numbers of micro-porosities in the preform made after optimizing the process could be seen in the SEM picture.Porosity of the preform was more than 72%,and it increased with increasing mass fraction of carbon powder.When mass fraction of carbon powder was less than 20wt.%,Porosity changed evidently with increasing in the mass fraction.In contrast,when mass fraction of carbon powder was more than 20wt.%,the change extent of Porosity became flat.
     It was discovered that infiltration and forming in the experiment could be accomplished as holding temperature higher than 635℃and holding time longer than 40min.Besides Al_2O_3 fiber with long-rod and spotty shape and Mg matrix,a small quantity of micro porosity and Mg_2Si phase could be seen in microstructure of the composite also.With increasing in holding temperature or holding time,the amount of micro porosity decreased while the amount and dimension of Mg_2Si phase increased which impact hardness of the composite evidently.Al_2O_3 fiber and Mg matrix combined well at the interface where Mg_2Si exist nearby.A layer film with deeper color on the surface of Ao_2O_3 fiber was judged for MgO by EDS analysis.With increasing of Al_2O_3 fiber content,hardness of composite present a up-trend and was greater than AZ91D magnesium alloy.Change trend of the hardness rose gently with increasing of holding time,while it declined gently after increased with increasing of holding temperature.
     Critical load from slight wear to severe wear was found in friction and wear experiment. With increasing of Al_2O_3 fiber volume fraction,the critical transformation load increased.A critical value about the wear rate of composite which was affected by Al_2O_3 fiber content existed,it appeared when the volume fraction of Al_2O_3 fiber was 18 vol.%.With applied loads increasing,the wear mechanism changed from low stress abrasion and slight adhesive wear to severe high temperature adhesive wear.With fiber volume fraction increasing,the wear mechanism of composite changed from adhesive wear to low stress abrasion and slight adhesive wear.When fiber volume fraction was 18vol.%,the critical transform temperature from slight wear to severe wear of composite was 250℃.During low temperature period,the abrasion wear took as the dominant and the slight adhesive wear as the subsidiary.With increasing the temperature adhesive wear became severe and finally turned to high temperature severe adhesive wear.
引文
[1]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004
    [2]周惦武,庄厚龙,刘金水.镁合金材料的研究进展与发展趋势[J].河南科技大学学报(自然科学版),2004,25(3):14-18
    [3]刘正,王越,王中光等.镁基轻质材料的研究与应用[J].材料研究学报,2000,14(5):449-456
    [4]B.L.Mordike,T.Ebert.Magnesium properties—applications-potential[J].Materials Science and Engineering A,2001,302:37-45
    [5]曾荣昌,柯伟,徐勇波等.镁合金的新发展及应用前景[J].金属学报,2001,37(7):673-685
    [6]E Aghion,B Bronfin,D Eliezer.The Role of Magnesium Industry in Protecting the Environment[J].Journal of Materials Processing Technology,2001,117:381-385
    [7]马春江,张荻,覃继宁等.Mg-Li-Al合金的力学性能和阻尼性能[J].中国有色金属学报,2000,10(Suppl.1):10-14
    [8]马春江,张荻,覃继宁等.Mg-Li-Al合金阻尼性能的研究[J].材料工程,2001,5:12-14
    [9]谭欣平,龙思远,李建华等.镁合金在摩托车上的应用可行性研究[J].材料热处理学报,2001,22(增刊):141-144
    [10]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报,2003,12(4):300-306
    [11]张同俊,李星国.镁合金的应用和中国镁工业[J].材料导报,2002,7(7):11-13
    [12]刘正,王中光,王越等.压铸镁合金在汽车工业中的应用和发展趋势[J].特种铸造及有色合金,2002,压铸专刊:300-306
    [13]罗思东.镁合金在汽车上的开发与应用[J].汽车工艺与材料,2004,(6):38-41
    [14]孟树昆.2005年中国镁工业发展报告[J].中国金属通报,2005,21:1-4
    [15]石金柱,郭耀文,侯利锋等.镁合金的研究与开发[J].机械管理开发,2003,(4):4-5
    [16]杨明波,潘复生,张静.Mg-Al系耐热镁合金的开发及应用[J].铸造技术,2005,26(4):331-335
    [17]Polmcar I J.Magnesium alloys and application[J].Mater.Sci.& Tech,1994,(10):1-16
    [18]Mordike B L,Ebert T.Magnesium:Properties-application-potential[J].Materials Science and Engineering,2001,A302(1):37-35
    [19]陈剑峰,于志强,武高辉等.金属基复合材料强度的影响因素[J].金属热处理,2003,28(2):1-7
    [20]Aghion E,Bronfin B.Magnesium Alloys Development towards the 21st century[J].Materials Science Forum,2000,350:19-28
    [21]李荣华,黄继华,殷声.镁基复合材料研究现状与展望[J].材料导报,2002,16(8):17-19
    [22]洪成淼,申健,陈立佳等.颗粒增强镁基复合材料的制备及其性能[J].汽车工艺与材料,2005,(2):7-10
    [23]Q.C.Jiang,H.Y.Wang,B.X.Ma,et al.Fabrication of B_4C particulate reinforced magnesium matrix composite by powder metallurgy[J].Journal of Alloys and Compounds,2005,386:177-181
    [24]Y.L.Xi,D.L.Chai,W.X.Zhang,et al.Titanium alloy reinforced magnesium matrix composite with improved mechanical properties[J].Scripta Materialia,2006,54:19-23
    [25]陈建刚,张文兴,柴东朗.碳化硅颗粒增强镁基复合材料损伤性能的研究[J].金属功能材料,2002,9(2):33-35
    [26]陶国林,胡华.石墨(碳)纤维增强镁基复合材料的界面问题[J].重庆工商大学学报(自然科学版),2005,22(5):497-500
    [27]高珊,赵浩峰.碳纤维增强镁基复合材料腐蚀行为的研究[J].铸造设备研究,2004,(5):13-15
    [28]陈蓉,才鸿年.氧化铝长纤维的性能和应用[J].兵器材料科学与工程,2001,24(4):70-72
    [29]王荣国,武卫莉,谷万里等.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,1999,60
    [30]S.Jayalakshmi,S.V.Kailas,S.Seshan.Tensile bchaviour of squeeze cast AM100 magnesium alloy and its Al_2O_3 fibre reinforced composites[J].Composites:Part A,2002,33:1135-1140
    [31]S.Jayalakshmi,S.V.Kallas,S.Seshan.Properties of squeeze cast Mg-10Al-Mn alloy and its alumina short fibre composites[J],Journal of Materials Science,2003,38:1383-1389
    [32]M.Svoboda,M.Pahutova,K.Kucharova,et al.The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy[J].Materials Science and Engineering,2002,A324:151-156
    [33]Huang Haibo,Li Fan.Study on mechanical properties of composite materials by in-situ tensile test[J].Journal of Southeast University(English Edition),2004,20(1):49-52
    [34]肖利,于立军.晶须增强铝、镁金属基复合材料的研究进展[J].吉林师范大学学报(自然科学版),2004,(2):76-78
    [35]郗雨林,张文兴,柴东琅等.粉末冶金法制备MB15镁基复合材料组织及性能的研究[J].热加工工艺,2002,(1):51-53
    [36]Y.Q.Wang,M.Y.Zheng,K.Wu.Microarc oxidation coating formed on SiC_w-AZ91 magnesium matrix composite and its corrosion resistance[J].Materials Letters,2005,59:1727-1731
    [37]汤彬,李培杰,曾大本等.镁基复合材料研究的现状和展望[J].特种铸造及有色合金,2002,(3):34-36
    [38]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996
    [39]权高峰.SiC颗粒增强镁基复合材料的研究[J].西安交通大学学报.1997,31(6):121-123
    [40]南宏强,袁森,王武孝等.颗粒增强镁基复合材料的制备工艺研究进展[J].铸造技术,2006,27(4):404-407
    [41]Gen Sasaki.Material mechanical properties and microstructure of magnesium alloy matrix composites fabricated by casting process[J].Materials Science Forum,2003,(3):2015-2020
    [42]Cai Y,Tan M J,Shen G J,et al.Mierostructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite[J].Materials Science and Engineering A,2000,282(1-2):232-239
    [43]胡锐,朱冠勇,毕晓勤等.液相浸渗用多孔预制体制备的研究现状[J].兵器材料科学与工程, 2004,27(5):53-57
    [44]张学习,王德尊.非连续增强相预制块的研究进展[J].材料导报,2003,17(5):62-64
    [45]王玲,赵浩峰等.金属基复合材料及其浸渗制备的理论与实践[M].北京:冶金工业出版社,2005:187-188
    [46]张广安,罗守靖,程远胜.挤压浸渗法制备C_(sf)/Al复合材料的组织与性能[J].材料科学与工艺,2003,11(4):351-359
    [47]郑晶,王智民,张冀粤.熔渗压力对制备硅颗粒增强铝基复合材料的影响[J].铸造技术,2005,26(10):899-902
    [48]王涛,李晓池,杨显锋.无压浸渗法制备碳化硅颗粒增强铝基复合材料工艺研究[J].硅酸盐通报,2005(1):101-103
    [49]赵国田,孙素杰,徐永东.无压浸渗法制备高体积含量的铝基复合材料[J].兵器材料科学与工程,2006,29(2):66-69
    [50]姜广鹏,徐永东,张军战.反应熔体浸渗法制备C/SiC复合材料的显微结构与摩擦性能[J].玻璃钢/复合材料,2005,(1):25-28
    [51]黄岳山,岑人经,吴效明.真空浸渗法制备复合材料的渗透动力学特性[J].暨南大学学报,2000,21(1):19-21
    [52]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006,21-28
    [53]祁庆琚.石墨-AZ91镁基复合材料及其摩擦磨损性能的研究[J].特种铸造及有色合金,2006,26(6):353-356
    [54]马颖,任峻,陈体军等.AZ91D镁合金的摩擦磨损行为及其机理探讨[J].兰州理工大学学报,2006,32(1):33-36
    [55]李东南,肖雪清,王黎明等.压铸镁合金AZ91D摩擦磨损性能的研究[J].中国机械工程,2006,17(19):2072-2079
    [56]王学政,赵明,韩子强等.纤维取向对复合材料摩擦磨损性能的影响[J].特种铸造及有色合金,2005,25(9):565-566
    [57]翟秋亚,徐锦锋.Al_2O_3纤维增强铝基复合材料干滑动磨损机制的研究[J].摩擦学学报,2005,25(6):535-539
    [58]刘耀辉,杜军,于思荣等.氧化铝纤维含量对Al_2O_(3f)+C_f/ZL109混杂复合材料耐磨性能的影响[J].摩擦学学报,2003,23(1):18-32
    [59]彭开萍,陈文哲,钱匡武.Al_2O_3SiO_2/ZL108复合材料的高温磨损性能[J].中国有色金属学报,2001,11(2):86-90
    [60]李伟,涂铭旌,赵晰明.氧化铝短纤维增强铝硅合金复合材料高温摩擦磨损性能的研究[J].机械工程材料,1997,21(2):1-3
    [61]杜军,李文芳,刘耀辉.AZ91镁合金及其Al_2O_3短纤维-石墨颗粒混杂增强复合材料的滑动摩擦磨损性能研究[J].摩擦学学报,2004,24(4):341-345
    [62]张帆,李小璀,钟锋等.SiC_P/LY12复合材料真空压力浸渗法中预制件制备工艺研究[J].热加工工艺,1997,(3):31-33
    [63]何奖爱,王玉玮.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001
    [64]Yongxue Gan,Pei Yi,Changqi Chen.Effect of sintering temperature on microwave absorbing behaviour of Mn-Zn ferrite[J].Journal of Materials Science & Technology,1993,(5):5-12
    [65]程兰征,章燕豪.物理化学[M].上海:上海科学技术出版社,1998,269
    [66]王春艳,吴昆.镁基复合材料预制块制备工艺的研究[J].黑龙江工程学院学报,2003,17(1):42-44
    [67]苏莹,张国定.非连续物增强镁基复合材料[J].机械工程材料,1996,20(1):6-8
    [68]周晓和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998
    [69]φ.艾真科尔勃等著.韩凤麟译.粉末冶金[M].北京:中国工业出版社,1959
    [70]И.М.费多尔钦科等著.北京钢铁学院粉末冶金教研室译.粉末冶金学[M].北京:冶金工业出版社,1974
    [71]胡锐.真空浸渗电触头用C/Cu复合材料的研究[D].西北工业大学博士学位论文,2000:1-95
    [72]马红萍,袁森,王武孝.预制体气孔率测试及其影响因素的研究[J].热加工工艺,2002,(3):38-40
    [73]周晓薇,陈金玉.液态金属粘滞性的研究进展[J].沈阳师范大学学报(自然科学版),2003,21(04):255-259
    [74]冯端,师昌绪.材料科学导论[M].北京:化学工业出版社,2002,433
    [75]孔德玉.硅溶胶分散氧化铝浆料的稳定机理及免脱气胶态原位凝固成型制备莫来石陶瓷研究[D].浙江大学,2005
    [76]陈晓,傅高升,钱匡武等.原位反应自生MgO/Mg_2Si增强镁基复合材料的热力学和动力学研究[J].铸造技术,2003,24(4):321-323
    [77]冯刚.Mg_2Si粒子增强Mg/Al基复合材料的制备与性能研究[D].山东大学,2005:37-38
    [78]Zhang J,Fan Z,Wang Y Q,et al.Microstructural development of Al-15%vol Mg_2Si in~situ composite with mischmetal addition[J].Mater Sci Eng A,2000,A281(1):104-112
    [79]中国铸造专业学会编.铸造手册—铸造非铁合金[M].北京:机械工业出版社,1995
    [80]叶恒强,朱静,张国定等.材料界面结构与特性[M].北京:科学出版社,1999:122
    [81]Kainer K U.Influence of heat treatment on the properties of short fiber reinforced magnesium composites[J].J Mater.Sci.Eng.,1991,135A:243-249
    [82]刘贯军,李文芳,彭继华等.硅酸铝短纤维增强镁基复合材料的界面反应及其热力学分析[J].复合材料学报,2007,24(2):7-12
    [83]廖利华,滕新营,张修庆.镁基复合材料界面显微结构与优化[J].热加工工艺,2004,(5):53-55
    [84]郭建亭,谢亿.连续纤维增强NiAl基复合材料研究进展[J].材料研究学报,2007,21(2): 113-118
    [85]吴晶,李文芳,蒙继龙.硅酸铝短纤维/ZL109复合材料的机械性能[J].华南理工大学学报(自然科学版),2003,31(2):62-65
    [86]Prasad B K,Modi O P,Jha A K.The effects of alumina fibres on the sliding wear of a cast aluminum alloy[J].Tribo Inter,1994,27(3):153-158
    [87]Zhang Z F,Zhang L C,Mai Y W.Modeling friction and wear of scratching ceramic particle-reinforced metal composites[J].Wear,1994,176:231-237
    [88]Yu S R,He Z M,Chen K.Dry sliding friction and wear behaviour of fibre reinforced zinc-based alloy composites[J].Wear,1996,198:108-114
    [89]南红强.颗粒增强镁基复合材料的制备工艺与性能研究[D].西安:西安理工大学,2007:58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700