含硅铝合金半固态坯料制备过程中微观组织演变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属半固态成形技术以其高效率、高性能、低成本、节能环保等突出优点被誉为“21世纪最具发展前途的近净成形技术”之一,铝合金半固态零件以其质轻、比强度高、导热性好、机加工性能优异和可回收等优点广泛应用于航空航天、汽车和民用领域等行业,尤其是随着汽车产业的发展,汽车轻量化越来越受到人们的重视,半固态成形方法生产的铝合金部件将具有广阔的应用前景。因此,近年来6061、A390、ADC12等含硅铝合金的半固态成形技术研究受到材料加工领域研究人员的广泛关注。
     不论是半固态流变成形还是触变成形,制得具有细小、均匀的非枝晶组织半固态坯料是半固态成形技术的关键。为此,人们开发了多种半固态坯料制备工艺,其中半固态坯料的近液相线半连续铸造制备方法以其工艺简单、生产效率高、非枝晶组织细小、利于产业化等优势引起人们的重视,尽管人们对铝合金半固态成形开展了大量工作,但到目前为止,关于近液相线半连续铸造方法制备近共晶和过共晶铝合金的半固态坯料的研究尚未见文献报道。另外,虽然用近液相线半连续铸造方法制备的半固态坯料的平均晶粒尺寸小于50μm,晶粒形貌为非枝晶组织,但是仍然包含有一定量的蔷薇晶,有待于进一步改善。为此,本文采用近液相线半连续铸造方法制备含硅铝合金半固态坯料,并进一步通过形变热处理改善微观组织,本文称之为优化Strain Induced Melt Activation(SIMA)法。
     通过实验、理论和多尺度模拟系统研究了亚共晶、近共晶及过共晶含硅铝合金半固态坯料制备过程中微观组织演变的规律,获得的主要结果如下:
     (1)根据均质形核理论,考虑晶粒长大因素,建立了近液相线半连续铸造中液固相变的形核模型,nnuclei=IV(1一Q(t))t式中,nnuclei—形核数目;I—单位时间单位体积内的形核率;Q(t)—熔体内未发生形核与晶粒长大部分所占的体积分数;t—凝固时间。进而得出晶粒尺寸d的预测模型该模型对6061合金晶粒尺寸的预测结果与实验吻合,表明均质形核是近液相线半连续铸造过程中液固相变的主要形核机制。
     (2)利用多尺度模拟方法对近液相线半连续铸造过程中微观组织演变过程进行了模拟,模拟结果与实验吻合。模拟发现,晶粒生长过程中不断向液相排出溶质,导致晶粒液固界面前沿的溶质浓度较高,引起成分过冷,从而导致晶粒以不同形状生长。当成分过冷度较小时,晶粒以球形生长,当成分过冷度较大时,晶粒以蔷薇状生长。
     (3)Si含量对Al-Si合金晶粒尺寸的影响在亚共晶区和过共晶区具有不同的规律。当Si含量在亚共晶范围时,初生相平均尺寸随着Si含量的增加而减小;Si含量接近共晶点时,组织中初生α-Al相、初生Si和共晶组织共存,且晶粒细小;Si含量在过共晶范围时,初生Si和α-A1相平均尺寸随着Si含量的增加而增大
     (4)用近液相线半连续铸造方法可以获得优质的过共晶铝硅合金半固态坏料,并能得到均匀分布的近球形初生Si,其平均尺寸大约为10gm。
     (5)提出了对近液相线半连续铸造组织进一步改善的处理方法—优化Strain Induced Melt Activation (SIMA)法,对近液相线半连续铸造制得的组织进行形变热处理。当塑性变形程度小于50%时,经过热处理后,随着变形量的增加晶粒尺寸急剧减小,变形量越大,球化度越好;当塑性变形程度大于50%时,经过热处理后,晶粒与小于50%变形的热处理组织相比更加细小、圆整,并且晶粒变化不明显,因此本文选择变形量大于50%。变形后组织经过低温长时间或高温短时间均可获得具有细小、圆整的半固态组织坯料。当对6061合金采用60%变形量进行等温热处理时,满足半固态组织要求的等温温度和时间最佳组合见图5.17(第103页)。
     (6)6061、ADC12、A390合金采用近液相线半连续铸造方法可以获得具有细小近球形组织的优质半固态坯料。其最佳工艺参数为浇注温度高于合金液相线温度10℃以内,铸造速度在150mm/min-170mm/min范围内。
Semisolid metal processing is regarded as one of the near-net shape forming technologies with wide application in the21st century due to such advantages as high efficiency, high quality and low cost, energy-saving and environmental protection and so on. The aluminum alloy parts of semi-solid forming have a lot of excellent properties such as light weight, high strength/weight ratio, good heat conductivity, excellent machinability and recycle etc. Semisolid aluminum parts have widely been applied as structural components in the fields of aerospace, automotive, and other commercial application, etc. Especially with the development of the automobile industry, the lightweight of vehicle has drawn more and more attention. In recent years, the study of the semisolid metal processing of such silicon containing aluminum alloys as6061, A390, ADC12has aroused broad attention in the field of materials.
     The key to semisolid metal processing is fabricating the semi-solid metals with fine, uniform and spheroidal microstructure for thixoforming or rheoforming. Several fabrication techniques have been applied for a wide variety of alloys. Thereinto the method of near-liquidus semi-continuous casting has attracted extensive study for its advantages such as simple process, high efficiency, fine non-dendritic structure and conducive industrialization, etc.In despite of lots of work for semisolid forming of aluminum alloy, but so far, it can hardly be found literatures about the processing of semisolid billet of the near-eutectic and hypereutectic aluminum alloys by means of near-liquidus. In addition, the average grain size obtained by this method is about50μm and the grain morphology is non-dendritic microstructure. But there still exist a certain amount of rosette grains to be further improved in the alloys. In this paper, the semi-solid billet of silicon containing aluminum alloy was fabricated by near-liquidus semi-continuous casting, and then deformed and heat treated for further improvement of the microstructure, which is called optimization Strain Induced Melt Activation (SIMA) method here.
     Evolution of the semisolid microstructures of6061. A390and ADC12were studied by means of experiments, theoretical analysis and multiscale simulation. The main results achieved are as follows:
     (1) A nucleation model for the liquid-solid phase transformation was established concerning the semi-continuous casting process according the theory of homogeneous nucleation taking into account the grain growth, as follows nnuclei=IV(1-Q(t))t
     where nnuclei is the nucleation number. I is defined as the nucleation rate equal to the number of the nucleation in the unit time and the unit volume. Q (t) is equal to the fraction of the untransformed volume.t is solidification time.Thus obtaining the model for predicting the grain size The predicting results of the grain size for6061alloy are consistent with the experimental results. It indicates that homogeneous nucleation is the primary nucleation mechanism for liquid-solid phase transformation of alloys in near-liquidus semi-continuous casting process.
     (2) The microstructural evolution of the alloys was simulated by multiscale simulation method during the near-liquidus semi-continuous casting process. The simulated morphology and size of the grains are consistent with the experimental results. The simulated results show that the concentration of the melt near the liquid/solid boundary becomes higher because of the solute discharged in the course of solidification, which leads to constitutional supercooling. The degree of the constitutional supercooling results in the different styles of grain growth in the solidification. The grains grow with near-spheroide when the constitutional supercooling is small. The grains grow with rosette character when the composition supercooling is large.
     (3) The effects of silicon content on the grain size of Al-Si alloy show different law in hypoeutectic and hypereutectic range.
     In the hypoeutectic range, the average size of primary α-Al phase increases with the decrease of Si content. Near the eutectic point, it coexist the primary α-Al phase, the primary Si and the eutectic micro structure, and the obtained grains are fine. In hypereutectic range, the average size of primary Si and that of α-Al phase increase with Si content.
     (4) Near-liquidus semi-continuous casting can be used to obtain semisolid billets of hypereutectic Al-Si alloy with fine, uniform, globular and non-dendritic microstructures. which is suitable for semisolid metal processing. The primary Si is near-spheroide and uniformly distributed. The average size of primary Si is about10μm.
     (5) The optimal Strain Induced Melt Activation (SIMA) method is proposed in this paper to further improve the microstructure of semi-solid alloys fabricated by near-liquidus semi-continuous casting. When the reduction of the deformation is less than50%, the grain size of the heat treated samples decreases sharply with increasing the degree of the deformation. The larger the degree of the deformation is, the better the roundness of the grain is. When the reduction of the deformation is more than50%, the grain size is smaller, the roundness is better after heat treatment and the grain does not significantly change with increasing the degree of deformation. Therefore, the better reduction is larger than50%. The semisolid billet with fine and near-spheroide microstructure can be obtained at elevated temperature in shorter isothermal holding time or at low temperature in longer isothermal holding time. The appropriate matching of isothermal holding temperature and corresponding isothermal holding time is shown in figure5.17(See p.103).
     (6) It is demonstrated that near-liquidus semi-continuous casting is a simple, feasible and effective method to prepare the6061、ADC12and A390semi-solid billets. The optimum process parameters for fine and near-spheroide microstructure are less than10℃above the liquidus temperature for the pouring temperature, and the range of150mm/min-170mm/min for the casting velocity.
引文
I. Flemings M C, Riek R G, Young K. P. Rheocasting[J], Materials Science and Engineering,1976,25: 103-117.
    2. 谢水生,黄声宏.半固态金属加工技术及其应用[M],北京:冶金工业出版社,1999,9.
    3. 康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M],北京:科学出版社,2004.8.
    4. 毛卫民.半固态金属成形技术[M],北京:机械工业出版社,2004,6.
    5. Young K P, Fitze R. Semi-Solid Metal Cast Aluminum Automotive Components[C], Proceedings of the 3rd International Conference on Semi-solid Processing of Alloys and Composites, Tokyo, Japan, 1994:155-180.
    6. Young K P, Kynka C P, Courtois T A. Fine Grained Matal Composition[P], US Patent: 4415374,1983.
    7. Ji S, Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a twin-screw rheomolding process[J], Materials Science and Engineering,2001,299A:210-217.
    8. Shibata R, Kaneuchi T, Soda T, et al. New semi-liquid metal casting process[C], In: Kirkwood D H, Kapranos P, Proc of the 4th Int Conf on Semi-solid Processing of Alloys and Composites, University of Sheffield, England,1996,296-300.
    9. Kaumfann H, Mundi A, Uggowizetr P J. An update on the new rheocasting development work for Al-Mg alloys[J], Die Casting Engineer,2002, (4):16-19.
    10. Yurko J A, Martinez R A, Flemings M C. Development of the semi-solid rheocasting (SSR) process[C], In: Tsutsui Y, Kiuchi M, Ichikawa K, Proc of the 7th Int Conf on Semi-solid Processing of Alloys and Composites, Tsukuba, Japan,2002,659-664.
    11. Decker R F, Carnaban R D, Vining R, Eldener E. Progress in Thixomolding[C], Proceedings of the 4th International Conference on Semi-solid Processing of Alloys and Composites. Sheffield, England, 1996:221-224.
    12. Witulski T, Winkelmann A, Hirt G. Thixoforming of Aluminum Components for Light Weight Structures[C], Proceedings of the 4th International Conference on Semi-Solid Processing of Alloys and Composites, Sheffield, England,1996:242-247.
    13. Flemings M C, Piek R G, Youny K P. The theology of a partially solid alloy[J], Metallurgical Transactions,1972,17(3):1925-1932.
    14. Spencer D B, Mehrabian R, Flemings M C. Rheological behavior of Sn-15 pct Pb in the crystallization range, Metallurgical transactions,1972,3:1925-1932.
    15.谢水生,潘洪平,丁志勇.金属半固态加工技术研究现状与应用[J],塑性工程学报,2002,9(2):
    16. Nussbam A I. Semi-solid forming of aluminum and magnesium[J], Light Metal Age,1996,54(5): 6-22.
    17. Kapranos P, Kirkwood D H, Atkinson H V, Rheinlander J T, Bentzen J J, Toft P T, Debel C P, Laslaz G, Chiarmetta G. Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy[J], Journal of Materials Processing Technology,2003,135 (2):271-277.
    18. Clanser G L, Ravaioli A, Ciselli F. Advancing the Frontier of Aluminium Technology:The Maltilink Project[A], Kirkwood D H, Kapranos P. The 4th Int. Conf. on Semi-Solid Processing of Alloys and Compositions, UK: The Department of Engineering Materials, University of Sheffield,1996:234-238.
    19.潘险峰.铁基半固态合金的研究[D],沈阳:中国科学院沈阳金属所,2002.
    20.崔建忠,谷晓峰,董杰.7075铝合金液相线铸造过程忠的形核[J],东北大学学报(自然科学版),2002,23(1):38-40.
    21.赵爱民,毛卫民.钢铁半固态流变浆料的制备与输送装置的研制[J],铸造设备研究,2003,(2):1-4.
    22.程晓敏,周世权,方华斌.A12O3颗粒增强铝基复合材料的半固态搅熔复合[J],中国有色金属学报,2001,1(6):12-16.
    23.谢水生,李兴刚.半固态加工技术在镁合金零部件生产中的应用[J],世界有色金属,2005,2:39-48.
    24. Li D N, Luo J R, Wu S S, et al. Study on the semi-solid rheocasting of magnesium alloy by mechanical stirring[J], Journal of Materials Processing Technology,2002,129:431-434.
    25. Motegi T. Continuous Casting of Semisolid Al-Si-Mg alloy[J], Processing of the ICAA,1998: 217-236.
    26. Kuichi M, Hirai M, Fujikawa Y, et al. Process and apparatus for the production of semi-solidified metal composition[P], US Patent:5110547,1992.
    27. Doutre D, Langlais J, Roy S. The SEED process for semi-solid forming[C], Oroc of 8th Int Conf on Semi-solid Processing of Alloys and Composites, Limmasol, Cyprus,2004.10.
    28. Shahrooz Nafisi, Reza Ghomashchi. Effects of modification during conventional and semi-solid metal processing of A356 Al-Si alloy[J], Materials Science and Engineering,2006,41S, (A):273-285.
    29. Haga T. Semi-solid roll casting of aluminum alloy strip by melt drag twin rollcaster[J], Journal of Materials Processing Technology,2001,111 (1-3):64-68.
    30. Wang N N, Peng H, Wang K K. Assesment of porosity level in rheomolded parts[C], Proc of the 4th Int. Conf. on Semi-solid Processing of Alloys and Composites, University of Sheffield,1996,342-246.
    31. Ji S, Fan Z, Liu G. Twin screw Rheomoudling of AZ91D Mg-alloy[J], Proceeding of the 7th Semi-solid Processing of Alloys and Composities, Japan,2002:683-688.
    32. Das A, Ji S, Fan Z. Solidification Microstructure Obtained by a Novel Twin-screw Liquidus Casting Method[J], Proceeding of the 7th Semi-solid Processing of Alloys and Composities, Japan,2002: 689-694.
    33. Fang X, Fan Z, Hu Y. Processing of Immiscible Alloy by a Twin-screw Rheomixing Process[J], Proceeding of the 7th S2P, Japan,2002:695-700.
    34.李东南,罗吉莱,吴树森.半固态镁合金的研究与应用[J],铸造技术,2003(6):249-251.
    35.杜之明,张晓华,罗守靖.双螺杆制备半固态坯料装置的设计[J],锻压技术,2009,34(4):86-89.
    36. Ayurko J A, Martinezand R A, Flemings M C. Development of the Semi-solid Rheocasting (SSM) Process[J], Proceeding of the 7th Semi-solid Processing of Alloys and Composities, Japan,2002: 659-664.
    37. Johnston W C, Kotler G R, Tiller W A. The influence of electromagnetic stirring on the nucleation of Tin and Tin-lead alloy[J], Trans. Metall. Soc. AIME,1963,227 (4):890-96.
    38. Johnston W C, Kotler G R, Tiller W A. Grain refinement via electromagnetic stirring during solidification[J], Trans. Metall. Soc. AIME,1965,233 (9):1856-1860.
    39. Vives C. Effects of electromagnetic vibration on the microstructure of continuously cast aluminum alloys[J], Materials science and engineering,1993, A173:169-172.
    40. Midson S P. The commercial status of semi-solid casting in the USA[C], in: Kirkwood D H Kaprananos P. Proc. of the 4th Int. Conf. on semi-solid Processing of Alloys and Composites, University of Sheffield, England, Jtme 19-21,1996, UK: Department of Engineering Materials, University of Sheffield,1996,251-255.
    41.王祝堂.铝合金轮毂工业的发展[J],轻合金加工技术,1994,22(3):17-22.
    42. Sahm P R. SSM in Europe[C], in:Bhasin A K, Moore J J, et al. Proc. of the 5th Int. Conf. on semi-solid Processing of Alloys and Composites, Golden, Colorado,1998,23-25.
    43. Kelly J E, Blazek K E, Young K P. Method and apparatus for rheocasting[P], US Patent: 5178204, 1993.
    44. Blazek K E, Kelly J E, Pottore N S. The development of a continuous rheocaster for ferrous and high melting point alloys[J], IS1J International,1995,35 (6):813-818.
    45. Blazek K E, Kelly J E. The improvement of surface quality of continuous rheocast bars of steel and high melting point alloys[J], ISU International,1997,37 (4):365-374.
    46.赵爱民,毛卫民,张乐平1Cr18Ni9Ti的流变浆料制备和直接轧制实验[J],特种铸造及有色金属,2001,(5):3-6.
    47. Mao W M, Zhao AM, Yun D, et al. Slurry preparation and rolling of semi-solid 605i2Mn Spring steel[J], J Mater Sci and Tech,2003,19 (6):613-616.
    48.杨卯生,赵爱民,毛卫民60Si2Mn钢半固态初生相形成与演化机制[J],金属学报,2002,38(7):689-693.
    49.冯鹏发,唐靖林,李双寿.“熔体处理+双向电磁搅拌”复合快速制浆技术[J],中国有色金属学报,2007,17(1):14-23.
    50.冯鹏发,唐靖林,李双寿.A356合金半固态浆料在线制备技术研究[J],中国有色金属学报,2006,16(1):13-21.
    51.高松福,毛卫民,白月龙.半固态A356合金的流变压铸充填性与组织分布[J],特种铸造及有色合金,2005,25(10):598-600.
    52.汤兴国,毛卫民,刘永峰.复合工艺对半固态A356铝合金浆料组织的影响[J],材料研究学报,2008,22(20):167-170.
    53.刘政,毛卫民,赵振铎.新工艺制备半固态A356铝合金浆料[J],金属学报,2009,45(4):507-512.
    54.张志峰,田战峰,徐俊,石力开.施加复合电磁搅拌对A357合金微观组织的影响[J],稀有金属,2006,30(2):217-220.
    55.陈兴润,张志峰,石力开.环缝式电磁搅拌法制备半固态浆料过程电磁场的数值模拟[J],北京科技大学学报,2009,319(10):1035-1039.
    56. Wannasin J, Martinez R A, Flemings M C. Grain refinement of an aluminum alloy by introducing gas bubbles during solidification[J], Scripta Materialia,2006,55:115-118.
    57.赵艳君,李逸泰,胡治流.金属半固态加工技术的研究进展[J],新技术新工艺,2009,10:108-111.
    58. Young J K, Eisen P. SSM Technological Alternatives for Different Applications[C], Processing of the 6th International Conference on Semisolid of Alloys and Composites,2000:97-102.
    59. Toshio Haga. Semisolid Strip Casting Using a Twin Roll Casting Equipped with a Cooling Slope[C], Processing of the 7th International Conference on Semisolid of Alloys and Composites, Tsukuba, Japan,2002:107-112.
    60. Haga T. Semi-solid roll casting of aluminum alloy strip by melt drag twin rollcaster[J], Journal of Materials Processing Technology,2001,111 (1-3):64-68.
    61. Kaufmann H, Wabusseg H. Metallurgical and processing aspects of the NRC semisolid casting technology[J], Aluminium,2000,76 (1/2):70-75.
    62. Masashi U. Feature of UBE squeeze process and UNRC process (semi-solid casting) [C],第三届中国国际压铸会议论文集,沈阳:东北大学出版社,2002.
    63. Kono K. Method and apparatus for manufacturing light metal alloy[P], US Patent: 5836372,1998.
    64.管仁国,李建平,王超,波浪型倾斜板振动过程中合金组织的形成机理[J],材料研究学报,2008,22(4):363-368.
    65.管仁国,李江委,陈礼清.AZ91D镁合金波浪型倾斜板振动技术触变成形[J],中国有色金属学报,2007,12(11):1978-1802.
    66.王超,管仁国,崔建忠.新型倾斜板技术半固态铸造Al-20Si合金[J],特种铸造及有色合金,2006,26(7):428-430.
    67.管仁国,石路,尚剑洪.新型倾斜板技术制备半固态AlSi6Mg2合金及触变成形[J],铸造,2007,56(7):694-697.
    68.管仁国,邢振环,康立文.新型倾斜板技术制备半固态铝合金坯料和浆料[J],特种铸造及有色合 金,2007,27(1):31-35.
    69.刘旭波,杨湘杰,郭洪民.铝合金半固态浆料LSPSF法在线制备[J],特种铸造及有色合金,2008,28(10):762-765.
    70.杨湘杰,郭洪民.流变成形浆料制备技术发展动向及其对策[J],特种铸造及其有色合金,2004,14(6):1-4.
    71.郭洪民,杨湘杰,胡斌.转动输送管制浆工艺参数对A356合金半固态组织的影响[J],中国有色金属学报,2004,14(12):2049-2055.
    72.刘丹,崔建忠.无搅拌制浆新技术一液相线铸造[J].铸造技术,1998,(6):44-46,.
    73.董杰,路贵民,崔建忠.液相线铸造法非枝晶半固态组织形成机理探讨[J],金属学报,2002,38(2):203-207.
    74. Le Q Z, Qu P, Wu Y D. Microstructure evolution and partially remelting processing two-phase-regioncasting AZ91D semisolid slurry ingot [J], The Chinese Journal of Nonferrous Metals, 2003,13(6):1488-1493.
    75.路贵民,史立峰,王平.ZL201合金半固态二次加热时的组织演变[J].东北大学学报(自然科学版),2006,27(6):669-672.
    76.路贵民,董杰,崔建忠.7075合金液相线半连续铸造与二次加热的合金组织[J],中国有色金属学报,2001,11(2):211-215.
    77.董杰,路贵民,崔建忠.356铝合金液相线半连续铸造组织的研究[J],东北大学学报(自然科学版),2002,23(3):259-2620.
    78. Pan Y, Aoyama S, Liu C. Spherical structure and formation conditions of semi-solid Al-Si-Mg alloy[C], Proc of the 5th Asian Foundry Congress, Nanjing, China, Sep 23-25,1997:443-451.
    79. Shibata R. SSM activities in Japan. Proc of the 5th Int Conf on Semi-solid Processing of Alloys and Composites, Colorado, USA,1998:1-6.
    80.毛卫民,杨继莲,赵爱民.浇注温度对AlSi7Mg合金半固态组织的影响[[J],北京科技大学学报,2001,23(1):38-41.
    81. Gianaries N J, Garfinkle G A, Myers D C. Proceedings of the 8th International Conference on Semisolid Processing of Alloys and Composites[C], Cyprus:The University of Cyprus,2004,254.
    82. Jorstand J L, Thieman M, Kamm R. Proceedings of the 8th International Conference on Semisolid Processing of Alloys and Composites[C], Cyprus:The University of Cyprus,2004,58.
    83. Kirkwood D H, Kapranos P. Semi-solid processing of alloys[J], Metals and Materials,1989,5(1): 16-19.
    84.刘正,张奎,曾小勤.镁基轻合金理论基础及其应用[M],机械工业出版社,2002,214-218.
    85. Motegi T, Ogawa N, Aoyama S. Continuos Casting of Semi-Solid Al-Si-Mg Alloy[J], Proc. the ICAA-6,1998:297-326.
    86.吉泽升,李庆芬,刘兆晶.应变诱发AZ91D镁合金半固态组织形态及形成机理[J],中国有色金 属学报,2003,13(5):1156-1160.
    87.姜巨福,彭秋才,单巍巍.新SIMA法制备AZ91 D半固态坯[J],特种铸造及有色合金,2005,25(12):740-743.
    88.土武孝,蒋百灵,袁森.AZ91 D镁合金的压缩形变组织及半固态等温组织演变[J],金属热处理,2005,30(7):21-25。
    89. Atkinson H V. Modelling the semisolid processing of metallic alloys[J], Progress in Materials Science, 2005, (50):341-412.
    90. Wang J G, Lu P, Wang H Y, et al. Effect of predeformation on the semisolid microstructure of Mg-9A1-0.6Zn alloy[J], Materials letters,2004, (58):3852-3856.
    91. Xia M X, Zheng H X, Yuan S, et al. Recrystallization of preformed AZ91D magnesium alloys in the semisolid state[J], Materials and Design,2005, (26):343-349.
    92.焦殿辉,赵爱民.钢铁半固态成形技术的研究进展和展望[J],钢铁研究学,2004,16(6):7-11.
    93.谢辉,许丽君,袁中岳.预变形及液固两相区等温处理对ZA27合金铸态组织的影响[J],中国有色金属学报,2001,11(1):47-50.
    94. Luo S J, Tian W T, Zhang G G. Structural Evolution of LC4 Alloy in Making Thixotropic Billet by SIMA Method[J], Transactions of Nonferrous Metals Society of China,2001,11 (4):547-550.
    95. Jiang J F, Luo S J. Reheating microstructure of refined AZ91D magnesium alloy in semi-solid state[J], Transactions of Nonferrous Metals Society of China,2004,14 (6):1074-1081.
    96.姜巨福,彭秋才,单巍巍.新SIMA法制备AZ91D半固态坯[J],特种铸造及有色合金,2005,25(12):740-743.
    97. Jiang J F, Luo S J, Zou J X. Preparation of AZ91 D magnesium alloy semi-solid billet by new strain induced melt activated method[J], Transactions of Nonferrous Metals Society of China,2006,16(6): 1080-1085.
    98. Jiang J F, Luo S J. Micro-structure evolution of processed Mg-AI-Zn alloy by equal channel angular extrusion in semi-solid isothermal treatment[J], Transactions of Nonferrous Metals Society of China, 2006,16(6):1106-1109.
    99. Jiang J F, Luo S J. Preparation of semi-solid billet of magnesium alloy and its thixoforming[J], Transactions of Nonferrous Metals Society of China,2007,17(1):23-32.
    100.韩国民.基于新SIMA法的AlSi30合金半固态坯料制备试验研究[D],安徽,合肥工业大学,2009.
    101.饵光宝.基于SIMA法的近共晶点铝硅合金半固态坯料复合制备研究[D],安徽,合肥工业大学,2007.
    102. Xue K M, Mi G B, Wang Q R. Compound fabrication technology of semi-solid billet of Al-Si alloy based on SIMA method[J], Transactions of Nonferrous Metals Society of China,2006,16:1224-1231.
    103.陈振华Al-Si合金固液混合铸造[J],中国有色金属学报,2001,10(3):349-352.
    104.陈振华,严红革,陈刚.Al-8.7Fe-1.6V-1.3Si耐热铝合金固液混合铸造[J],中国有色金属学报,2002,12(3):422-425.
    105.陈振华,陈鼎,严红革.固液混合铸造的研究[J],湖南大学学报,2002,29(4):20-26.
    106. Young R M K, Clyne T W. Intra-crystalline liquation as a result of solute supersaturation in metallic slurries [J], Acta Metallurgica,1989,37(2):663-674.
    107. Young R M K, Clyne T W. A powder mixing and preheating route to slurry production for semisolid diecasting[J], Powder Metallurgy,1986;29(3):195-199.
    108. Young R M K, Clyne T W. A powder-based approach to semisolid processing of metals for fabrication of diecasting and composites[J], Journal of Materials Science,1986,21:1057-1069.
    109. Sergey V. Dobatkin, Elena N. Bastarache. Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion[J],2005,408 (1):141-146.
    110. Hirt G, Zillgen M, Cremer R. Recent Advances in Thixoforming to Produce Near Net Shape Components[C], Proceedings of the 1st CIDCC, Beijing, China, April,1997,259-266.
    111. Antona R L, Moschini R. New foundry process for the production of light metals in the semiliquid dough state[J], Metall. Sci. Tech.,1986,4(2):49-59.
    112.潘冶.半固态铁基合金的研究进展[J],现代铸铁,1998(3):18-21.
    113.朱鸣芳,苏华钦,高志强.半固态等温处理制备粒状组织ZA12合金的研究[J],铸造,1996(4)1-5.
    114. Flemings M C, Riek R G, Young K P. Rheocasting[J], Materials Science and Engineering,1976,25: 103-117.
    115.杨小容,毛卫民,高冲.采用蛇形管通道浇注法制备半固态浆料[J],中国有色金属学报,2009,19(5):869-873.
    116. Tzimas E, Zavaliangos A. Evaluation of Volume Fraction of Solid in Alloys Formed by Semisolid Processing[J], Journal of Materials Science,2000,35:5319-5329.
    117.邢书明,马静,陈维视.半固态亚共晶铝硅合金非树枝晶固相的形成和演变[J],中国有色金属学报,1999,9(1):270-274.
    118. Yang Z, Zhang H F, Wang A M, et al. The effect of hydrostatic stress gradient and the variation of shear strain on the segregation of liquid phase[J], Materials Science & Technology,2003,19:209-212.
    119. Yang Z, Zhang H F, Wang A M, et al. Stress concentration: an important role on the grain refinement of rheocasting[J], Materials Science and Engineering A,2003, A343:251-255.
    120. Pilling J, Hellawell A. Mechanical deformation of dendrites by fluid flow[J], Metallurgical and Materials Transactions A,1996,27A:229-232.
    121. Vogel A, Doherty R D, Cantor B. Stir-cast microstructure and slow crack growth[C], In:Proceedings of International Conference on Solidification, University of Sheffield, London,1979,518-525.
    122. Ji S. The fragmentation of primary dendrites during shearing in semisolid processing[J], Journal of Materials Science,2003,38:1559-1564.
    123. Doherty R D, Lee H, Feest E A. Microstructure of stir-cast metals[J], Materials Science and Engineering,1984,65:181-189.
    124. Apaydin N, Prabhakar K V, Doherty R D. Special grain boundaries in rheocast Al-Mg[J], Mater Sci Eng,1980,46(2):145-150.
    125. Hellawell A. Grain evolution in conventional and rheocasting[C], Proc of the 4th Int. Conf. on Semi-solid Processing of Alloys and Composites, London, University of Sheffield,1996,50-60.
    126. Mao W M, Li Y J, Zhao A M. The formation mechanism of non-dendritic primary α-Al phase in semi-solid AlSi7Mg alloy[J], Science and Technology of Advanced Materials,2001,2:97-99.
    127.毛卫民,赵爱民,崔成林.AlSi7Mg合金半固态连铸坯料和组织形成研究[J],金属学报,2000,36(5):539-544.
    128.张景新,张奎,刘国钧.电磁搅拌制备半固态材料非枝晶组织的形成机制[J],中国有色金属学报,2000,10(4):511-515.
    129.李涛,卫东,林鑫.半固态处理中球晶形成与演变的直接观察[J],中国有色金属学报,2000,10(5):635-639.
    130. Wang J G, Lu P, Wang H Y. Effect of predeformation on the semisolid microstructure of Mg-9Al-0.6Zn alloy[J], Materials letters,2004, (58):3852-3856.
    131. Sannes S, Westengen H, The influence of process conditions on the microstructure and mechanical properties of magnesium die castings[J], Magnesium Alloys and Their Applications,1998:223-228.
    132. Loue W R, Suery M. Microstructural Evolution During Partial Remelting of AlSi7Mg Alloys[J], Materials Science and Engineering,1995, (A203):1-13.
    133. Wang J L, Su Y H, Tsao C Y A. Structural evolution of conventional cast dendritic and spray cast non-dendritic structures during isothermal holding in the semi-solid state[J], Scripts Materialia,1997, 37(12):2003-2007.
    134.帕坦卡.张政译.传热与流体流动的数值计算[M],北京,科学出版社,1984,10-15.
    135. Mclelland A R A. Semi-Solid Metal Processing[J], International materials reviews, Mate. Sci. Eng., 1997, A232:109-110.
    136. Andrew, Walker J. Modeling Solid-Fluild Interaction in a Dendritic Semi-solid[C], Proc of the 4th Int. Conf. on Semi-solid Processing of Alloys and Composites, London, University of Sheffield,1996, 104-111.
    137. Paradies C J. Two-Phase Model of Flow of Semi-Solid Materials[C], Proceed of the 5th International. Conference, on Semi-solid Processing of Alloys and Composites, Colorado,1998,217-224.
    138. Spimjr J A, Bernadou M J S, Garcia A. Numerical modeling and optimization of zone refining[J], Journal of Alloys and Compounds,2000,1-2 (298):299-305.
    139.高志强,王云华,苏华饮.半固态合金触变铸造数值模拟方法的研究[J],特种铸造及有色合金, 1997,6:8-11.
    140. Oldfield W. A quantitative approach to casting solidification freezing of cast iron[J], ASM Trans,1966, 59:945-960.
    141. Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J], Materials Science and Engineering,1984,65(1):75-83.
    142. Thevoz P H, Desbiolles J L, Rappaz M. Modeling of equiaxed microstructure formation in casting[J], Metallurgical Transactions,1989,20A (2):311-322.
    143. Lipton J, Glicksman M E, Kurz W. Dendrite growth into undercooled alloy melts[J], Mater Sci Eng, 1984,65:57-63.
    144. Glicksman M E. Free dendrite growth[J], Mater Sci Eng,1984,65:45-55.
    145. Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J], Acta Metall,1986,34 (5):823-830.
    146. Lipton J, Glicksman M E, Kurz W. Equiaxed dendrite growth in alloys at small supercooling[J], Metall Trans,1987,18A (2):341-345.
    147. Dustin I, Kurz W. Modeling of cooling curves and microstructures during Equiaxed dendritic solidification[J], Z Metallkd,1986,77(5):265-273.
    148. Rappaz M, Thevoz P H. Solute diffusion model for equiaxed dendritic growth[J], Acta Metall.,1987, 35(7):1487-1497.
    149. Rappaz M, Thevoz P H. Solute diffusion model for equiaxed dendritic growth: Analytical solution[J], Acta Metall,1987,35(12):2929-2933.
    150. Anderson M P, Srolovitz D J, Grest G S et al. Computer simulation of grain growth-I:Kinetics[J], Acta Metall,1984,32 (5):783-791.
    151. Spittle J A, Brown S G R. A computer simulation of the influence of processing condition on as-cast grain structures[J], Journal of Materials Science,1989,23:1777-1781.
    152. Spittle J A, Brown S G R. Computer simulation of the effects of alloy variables on the grain structures of castings[J], Acta Metall,1989,37(7):1803-1810.
    153. Zhu Panping, Smith R W. Dynamic simulation of crystal growth by Monte Carlo Method-II. ingot microstructures[J], Acta Metall Mater,1992,40 (12):3369-3379.
    154. Rappaz M, Gandin C-A. Probabilistic modeling of microstructure formation in solidification processes[J], Acta Metall Mater,1993,41 (2):345-360.
    155. Gandin C-A, Rappaz M, Tintillier R. Three-dimensional probabilistic simulation of solidification grain structures:application to superalloy precision castings[J], Metall Trans,1993,24A (2):467-479.
    156. Gandin C-A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J], Acta Metall Mater,1994,42 (7):2233-2246.
    157. Stefanescu D M. Methodologies for modeling of solidification microstructure and their capabilities[J], ISIJ International,1995,35 (6):637-650.
    158. Stefanescu D M, Pang H. Modeling of casting solidification stochastic or deterministic[J], Canadian Metallurgical Quarterly,1998,37(3-4):229-239.
    159. Nastac L, Stefanescu D M. Macrotransport-solidification kinetics modeling of equiaxed dendritic growth: Part Ⅰ. Model development and discussion[J], Metall Mater Trans,1996,27A(12): 4061-4074.
    160. Nastac L, Stefanescu D M. Macrotransport-solidification kinetics modeling of equiaxed dendritic growth: Part Ⅱ. Computation problems and validation on INCONEL 718 super alloy castings[J], Metall Mater Trans,1996,27A (12):4075-4083.
    161. Nastac L, Stefanescu D M. Simulation of microstructure evolution during solidification of Incone1718[J],AFS Trans,1996,193:425-434.
    162. Kobayashi Ryo. Modeling and numerical simulations of dendritic crystal growth[J], Physica D,1993, 63:410-423.
    163. Wheeler A A, Murray B T, Schaefer R J. Computation of dendrites using a phase field model[J], Physica D,1993,66:243-262.
    164. Karma A, Rappel W J. Phase field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J], Phys Rev E,1996,53 (4):R3017-3020.
    165. Warren J A, Boettinger W J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[J], Acta Metall Mater,1992,43 (2):689-703.
    166. Lee J S, Suzuki T. Numerical simulation of isothermal dendritic growth by phase-field model[J], ISIJ International,1999,39 (3):246-252.
    167. Dilthey U, Pavlik V. Numerical simulation of dendrite morphology and grain growth with modified cellular automata[C], Modeling of Casting, Welding and Advanced Solidification Processes VIII. Warrendale PA:TMS,1998,589-596.
    168. Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J], Acta Mater,1999,47 (17):4253-4262.
    169. Udaykumar H S, Mao L. Sharp-interface simulation of dendritic solidification of solutions[J], Int J Heat Mass Transfer,2002,45:4793-4808.
    170. Udaykumar H S, Marella S, Krishnan S. Sharp-interface simulation of dendritic growth with convection:Benchmarks[J], Int J Heat Mass Transfer,2003,46:2615-2627.
    171. Wang W, Lee P D, Mclean M. A model of solidification microstructures in nickel-based super alloys: Predicting primary dendrite spacing selection[J], Acta Mater,2003,51:2971-2987.
    172. Zhu M F, Hong C P. A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys[J], ISIJ International,2001,41 (5):436-445.
    173. Zhu M F, Hong C P. A three dimensional modified cellular automaton model for the prediction of solidification microstructures[J], ISIJ International,2002,42(5):520-526.
    174. Zhu M F, Kim J M, Hong C P. Modeling of globular and dendritic structure evolution in solidification of an Al-7mass%Si alloy[J], ISIJ International,2001,41 (9):992-998.
    175. Lee S Y, Lee S M, Hong C P. Numerical modeling of deflected columnar dendritic grains solidified in flowing melt and its experimental verification[J], ISIJ International,2000,40 (1):48-57.
    176. Shin Y H, Hong C P. Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface[J], ISIJ International,2002,42 (4):359-367.
    177. Zhu M F, Lee S Y, Hong C P. Modified cellular automaton model for prediction of dendritic growth with melt convection[J], Phys Rev E,2004,69.
    178. Jacot A, Rappaz M. A pseudo-front tracking technique for the modeling of solidification microstructures in multi-component alloys[J], Acta Mater,2002,50:1909-1926.
    179.许庆彦,冯伟明,柳百成.铝合金枝晶生长的数值模拟[J],金属学报,2002,38(8):799-803.
    180.金俊泽,王宗延.金属凝固组织形成的仿真研究[J],金属学报,1998,34(9):928-939.
    181.康秀红,杜强,李殿中.用元胞自动机与宏观传输模型耦合方法模拟凝固组织[J],金属学报,2004,40(5):452-456.
    182.李强,李殿中,钱百年,枝晶凝固过程溶质浓度分布模拟[J],金属学报,2004,40(11):1215-1220.
    183.于艳梅.过冷熔体中枝晶生长的相场法数值模拟[D],西安,西北工业大学,2002.
    184.余小鲁,李付国,李淼泉.半固态金属材料EMS法制备过程中的微观组织相场法模拟[J],航空学报,2006,27(5):973-977.
    185.吴树森,吴雪平,罗吉荣.半固态金属组织的形成模型及模拟[J],金属学报,429-433.
    186.刘静安,谢水生.铝合金应用与技术开发[M],北京,冶金工业出版社,2004,22-26.
    187.李玉青,吴殿杰.汽车轻量化以及铝镁铸件的应用[J],中国铸造装备与技术,2005,(4):48-50.
    188.尉哲,边栩,钟志平.汽车铝合金锻件精密成形技术新进展[J],机械工人-热加工,2005,(12):14-15.
    189.张屹林,门汝辉,朱利民.汽车工业中的铝合金[J],山东内燃机,2004,(3):26-31.
    190.张少华.铝合金在汽车上应用的进展[J],汽车工业研究,2003,(3):36-39.
    191.丁向群,何国求,张卫华.轿车用铝合金的研究应用进[J],同济大学学报(自然科学版),2005,33(11):1504-1508.
    192.武恭,姚良均,李震夏.铝及铝合金材料手册[M],北京,科学出版社,1994.
    193. Liang D, Bayraktar Y, Moir S A, et al. Primary silicon segregation during isothermal holding of hypereutectic Al-18.3wt%Si alloy in the freezing range[J], Scripta Metall Mater,1994,31:363-367.
    194.李元元,郭国文,龙雁.高强韧铸造铝合金材料研究进展[J],特种铸造及有色合金,2000,(6):45-47.
    195. Lee J I, Lee H I, Kim M I. Formation of spherical primary silicon crystals during semi-solid processing of hypereutectic Al-15.5%Si alloy[J], Scripta Metallurgica et Materialia,1995,32 (12): 1945-1949.
    196. Troeger L P, Starke E A. Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy[J], Mater Sci Eng A,2000,277:102-130.
    197. Cole G S, Sherman A M. Lightweight materials for automotive applications[J], Mater Charact,1995, 35:3-9.
    198. Liu Y Q, Fan Z. Magnesium alloy selections for semisolid metal processing. Proceedings 7th International Conference on Semisolid Processing of Alloys and Composites[C],2002,587-592.
    199.陶静梅.Al-Si系合金的熔体温度处理及其凝固过程研究[D],重庆大学,2004.
    200.冯毅.Al-Si合金非平衡凝固机理研究[D],重庆大学,2008.
    201. Garat M, Blais S, Pluchon C. Aluminium Semi-solid processing: from the billet to the finished part, proc.5th inter. conf. on semi-solid processing of alloys and composites[C],1998, Colorado, USA, 199-213.
    202.赵君文,吴树森,安萍.超声振动对过共晶Al-Si合金半固态浆料凝固组织的影响[J],中国有色金属学报,2008,1(9):1628-1633.
    203.张俊红,任智森,赵群.过共晶铝硅合金显微组织细化新工艺[J],轻金属,2007,10:59-62.
    204. Garat M, Blais S, Pluchon C. Aluminium Semi-solid processing: from the billet to the finished part, proc.5th inter. conf. on semi-solid processing of alloys and composites[C],1998, Colorado, USA, 199-213.
    205.彭著刚,张家涛,孙淑红.等温电磁搅拌对半固态Al-25%Si合金组织的影响[J],昆明理工大学学报(理工版),2006,31(1):19-22.
    206.赵君文,吴树森,安萍.超声振动对过共晶Al-Si合金半固态浆料凝固组织的影响[J],中国有色金属学报,2008,18:1628—1633.
    207. Lee J, Lee H, Kim M. Formation of spherical primary silicon crystals during semi-solid processing of hypereutectic Al-15.5wt%Si alloy[J], Scripta Meterialia,1995,32(12):1945-1949.
    208.丁桦,张彩碚,崔建忠.Al-Li合金淬火组织中的蜷线位错[J],东北大学学报,1994,15(6):605-608.
    209.弭光宝,薛克敏,李培杰.浇注扰动对近液相线铸造半固态AlSi9Mg合金的影响[J],铸造,2009,58(7):671.676.
    210.周尧和,胡壮麒,介万奇.凝固技术[M],机械工业出版社,北京,1998,22.
    211.余永宁.金属学原理[M],北京,冶金工业出版社,2005,300-336.
    212.郁鸽.形核长人转变过程动力学普遍方程的推导[J],中国科学,1996,26(4):339-343.
    213.Frans Spaepen A structural model for the solid-liquid interface in monatomic systems[J], Scripta Metallurgica, 1975,9 (4):22-27.
    214. Kurz K, Fisher D J著,毛协民,刘家钧译.凝固原理[M],西北工业大学出版社,西安,1989.
    215. Mullins W W, Sekerka R F. Morphological stability of a particle growing by diffusion or heat flow[J], Applied Physics,1963,34 (2):323-329.
    216. R. Trivedi. On the growth of dendritic plates[J], Scripta Metallurgica,1969,3 (9):613-617.
    217. Rutter J W. Modification of eutectic morphology[J], Journal of Crystal Growth,1977,42:515-525.
    218. Burke J E, Turnbull D. Recrystallization and Grain Growth[J], Progress in Metal Physics,1952, 3:220-292.
    219.李东成.铝合金及其颗粒增强复合材料的SIMA半固态成型研究[D],吉林大学,2009.
    220.王金国.应变诱发法镁合金AZ9D1半固态组织演变机制[D],吉林大学,2005.
    221. Wagner C. The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems[J], Acta Metallurgica,1969,17(2):99-107.
    222. Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions[J], Phys. Chem. Solids,1961,19:35-50.
    223. Pitts H. Semi-solid processing of aluminium 6061 [D], University of Sheffield,1999.
    224. Annavarapu S, Doherty R D. Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid[J], Acta Metall Mater,1995,43 (8):3207-3230.
    225. Manson-Whitton E D, Stone I C, Cantor B. Isothermal grain coarsening of spray formed alloys in the semi-solid state[J], Acta Materialia,2002, (50):2517-2535.
    226. Atkinson H V, Liu D. Microstructural coarsening of semi-solid aluminium alloys[J], Materials Science and Engineering A,2008, (496):439-446.
    227. Liu D, Atkinson H V, Jones H. Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys[J], Mater. Sci. Eng.,2003, A361:213-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700