航空发动机气动稳定性分析系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动稳定性已经成为当代航空发动机重要的战术和技术指标。设计良好的航空发动机,除了实现高性能和高可靠性之外,还要求在整个飞行包线范围内都必须有足够的可用稳定裕度。为此,在发动机研制周期的各个阶段,都需要进行气动稳定性分析,确保其可用稳定裕度大于总需用稳定裕度。影响发动机气动稳定性的因素有很多,外部因素主要有压力畸变、温度畸变、平面波、冲击波和雷诺数等,内部因素主要有加/减速、接通/断开加力、功率提取与附加引气、生产/装配偏差、部件老化、控制容差等。在发动机研制初始阶段,原则上不可能获得各种因素对气动稳定性影响的试验数据;整个研制过程中进行全飞行包线范围的试验成本也太高;对于地面或高空台设施不能进行的试验,也需要利用数值计算来代替。因此,气动稳定性分析中的数值计算方法受到了高度关注并被广泛的应用。
     为提升数值计算方法在航空发动机气动稳定性分析中的功能和适用范围,在分析各项降稳因子对发动机气动稳定性影响的机理基础上,建立和发展了相应的数学模型和求解方法,构建了功能完善的适用于发动机方案设计阶段和工程设计阶段的气动稳定性分析平台,并以某涡扇发动机为例,开展了全飞行包线范围的气动稳定性综合评估。本文的主要研究内容和结论可概括如下:
     (1)对发动机不同研制阶段的气动稳定性分析内容进行概括总结,分析了各项降稳因子对发动机气动稳定性影响的机理并进行合理归类;依据某涡扇发动机的技术任务,并参照国军标GJB/Z224-2005的评估要求,在飞行包线内确定了6个需要评估的典型状态和对应的降稳因子;利用补偿各个降稳因子的局部需用稳定裕度的统计规范值来预估发动机的总需用稳定裕度,完成了方案设计阶段的气动稳定性分析。
     (2)以部件匹配方法为基础,根据控制规律、限制参数和共同工作方程,建立了航空发动机稳态模型,并采用Newton-Raphson方法进行迭代求解;获得了典型状态下风扇和高压压气机的可用稳定裕度;通过将雷诺数修正模型、功率提取、附加引气模型、部件老化模型嵌入到稳态模型中,建立了可以分析雷诺数、功率提取、附加引气、部件老化对发动机气动稳定性影响的数学模型。计算结果表明,发动机处于高空小表速状态时受雷诺数和功率提取的影响最大,此时风扇和高压压气机的稳定裕度均下降明显;附加引气在一定程度上可以增加发动机的稳定裕度;部件老化对发动机稳定裕度的影响不可忽略。
     (3)通过分析动态过程中发动机转速、流量、压力、能量存在的不平衡现象,在发动机稳态模型的基础上,增加主燃烧室、混合室及加力燃烧室、外涵通道的容积效应和高低压转子动力学方程,建立了可以分析加/减速、接通/断开加力等降稳因子对发动机气动稳定性影响的动态过程数学模型,并采用时间推进的欧拉方法进行求解,得到了加速过程、减速过程、接通加力过程和断开加力过程对发动机稳定裕度的影响。计算结果表明,加速过程中,和风扇相比,高压压气机加速线更趋于靠近稳定边界;减速过程中,风扇和高压压气机受稳定边界的限制均较小,只有在低转速段时的风扇稳定裕度和稳态相比有少许的下降;接通/断开加力过程中,高压压气机的稳定裕度基本不变,而风扇的稳定裕度波动较大。
     (4)通过将平行压气机模型扩展为“平行发动机”模型,并采用二维、无粘的欧拉方程进行描述,建立了分析进气畸变对发动机气动稳定性影响的数学模型,并采用四阶Runge-Kutta方法进行求解。计算得到了冲击波、动态温升和动态压力畸变下影响下发动机内部的参数变化,并对本文提出的基于“临界压力梯度”的失稳判据进行验证;和现有失稳判据相比,本文提出的失稳判据适应性更强;通过计算发动机流道中的畸变传递曲线,评估了发动机部件对畸变的衰减能力,其中风扇和高压压气机对畸变的衰减能力最强;计算得到了典型状态下发动机的临界畸变值、畸变敏感系数和补偿进气畸变所需要的局部需用稳定裕度。
     (5)作为研究成果的集中体现,基于VC++软件,编制了具有自主知识产权的航空发动机气动稳定性分析系统。该系统下集成了构建多种类型发动机所需的标准模型,允许用户选用标准模型来组成目标发动机进行分析。该系统功能全面,可以定量的分析气动稳定性评定规范中规定的各项降稳因子对发动机稳定裕度的影响程度,适用于发动机方案设计阶段和工程设计阶段的气动稳定性分析研究。该分析系统具有友好的界面和可扩展性,有利于气动稳定性分析方法的广泛应用和不断发展。
     (6)针对某涡扇发动机,利用所建立的分析系统,完成了工程设计阶段全飞行包线范围内的气动稳定性综合评估。结果表明,在所评估的状态中,高空小表速状态下风扇和高压压气机的总需用稳定裕度最大;在所有降稳因子中,补偿进气畸变的局部需用稳定裕度最高;在高空小表速状态下,雷诺数是影响发动机气动稳定性的重要因素之一。
Aerodynamic stability has become an important tactical and technical index of the aero-engine inmodern time.A well-designed aero-engine must has the sufficient available stability margin in theflight envelop, addition required to achieve good performance and high reliability. For this reason,theaerodynamic stability of aircraft engines must be analyzed in every stage of the developmentcycle.There are many factors affect the aerodynamic stability,pressure distortion,temperaturedistortion,blast wave and Reynolds number are the main external disturbancefactors;acceleration/deceleration, afterburner’s turn on/off, power extraction and additionalair-bleeding, component deterioration, production deviation, production/assembly variation, controltolerance are the main internal disturbance factors.In the initial stage of engine's research anddevelopment, In principle, it is impossible to obtain the experimental data of the influence of variousdisturbance factors on the engine, and the full flight envelope tests cost too much. For the experimentwhich could not be taken on the ground or altitude test facilities should be replace by the numericalcalculation.Therefore, the numerical calculation method in the aerodynamic stability analysis attractsa high attention and is used widely.
     In order to improve the functionality and scope of numerical calculation in the aero-engineaerodynamic stability analysis, based on the mechanism analysis how the disturbance factors affectthe engine’s aerodynamic stability, the corresponding mathematical models and solution methodswere established and developed, and an analysis platform with comprehensive functions wasconstructed, which is applicable to the scheme design stage and engineering design stage. Taking aturbofan engine for example, the aerodynamic stability in full flight envelope was evaluatedcomprehensive. The main contents and conclusions in this paper can be summarized as follows:
     (1)The aerodynamic stability analysis contents in different stages of development of theengine’s research and development were summed up, how the disturbance factors affect the engine’saerodynamic stability were analyzed and the rational classification for factors were made.Based on atechnical task of a turbofan engine and with reference to the military standard GJB/Z224-2005,6typical states were identified in the flight envelope. Using the statistical normative value of thedisturbance factor's local required stability margin, the total required stability margins were estimatedand the aerodynamic stability analysis in engine's scheme design stage were finished.
     (2)Based on the component-matching method, in accordance with the regulation law and limit parameters, the steady-state mathematical model was established, and Newton-Raphson iterationmethod was used to solve the common equation, so the available stability margin of fan and highpressure compressor under typical states could be obtain. By embedding the Reynolds numbercorrection model, power extracted and additional air-bleeding model and component aging correctionmodel in the steady-state mathematical model, the mathematical model which could evaluate theReynolds number, power extraction, additional air-bleeding, component deterioration were built.Results show that, Reynolds number and power extraction have a greatest impact when the engineworks at the high altitude small table speed state, and the stability margins of fan and high pressurecompressor drop significantly; to some extent, additional air-bleeding would increase the stabilitymargin; The effects of the component deterioration on the stability margin would not be ignored.
     (3)By analyzing the imbalance of speed, flow mass, pressure and energy in the aero-enginedynamic process, based on steady-state model, the dynamic equations of the main combustion, themixing chamber combined the afterburner, and the bypass, high and low pressure rotor were increased,so the dynamic process mathematical model which can be used to analyze the disturbance factors,such as acceleration/deceleration, afterburner turn on/off, and the time-marching Euler method wereused to solve. Results show that, in the acceleration process, compared with the fan, the work line ofhigh pressure compressor tends to stability boundary more; in the deceleration process, the fan andhigh pressure compressor are not limited too much to the stability boundary, only the stabilitymargin declines little compared with steady-state when the fan’s speed is low; in the process ofafterburner turn on/off, the high pressure compressor stability margin almost keep constant, while thefan's stability margin fluctuate significantly.
     (4)The parallel compressor model were extended to the parallel engine model, which weredescribed by two-dimensional integral inviscid Euler equations,the calculation model for analyzinghow the inlet distortions effect the aero-engine aerodynamic stability, and four-order Range-Kuttamethod were used to solve the equations.The changes of engine internal parameters were calculatedwhen the blast wave, dynamic temperature rise and dynamic pressure distortion work in the engineinlet; the instability criterion which is based on "critical pressure gradient”was verified, comparedwith existing instability criterion, the criterion suggested by this paper has the best adaptability; Bycalculating the distortion transfer curves along the engine flow path, the components of the enginedistortion attenuation capability were evaluated, wherein the fan and high pressure compressor werestrongest;Under typical states, the critical distortion index, distortion sensitivity coefficients and localrequired stability margins compensated to the inlet distortion were also obtained.
     (5)As the concentrated expression of the research, based on VC++program, an aero-engineaerodynamic stability analysis system was designed and built. The standard models used to constructmultitypes of engines were integrated in this system, and the target engine would be made up by thestandard models. This system is fully functional, and could be used to quantitatively analyse how thedisturbance factors affect the engine’s aerodynamic stability, which were specified by the assessmentguidelines. This system is applicable to the scheme design stage and engineering design stage. Thissystem also has friendly interfaces and is extensible, and is propitious to the widely used andcontinuing development of aerodynamic stability analysis method.
     (6)For a turbofan engine, using this system, comprehensive assessment of aerodynamicstability in the full flight envelope were completed. Resuls show that, under all evaluating states, theoverall required stability margins of fan and high pressure compressor are the largest, when the engineworks on the the hight-altitude and small-speed state; During all the disturbance factors, the localrequired stability margin for inlet distortion is largest;The Reynolds number is one of the mostimportant factor to the aerodynamic stability the engine works on the the hight-altitude andsmall-speed state.
引文
[1]刘大响,叶培梁,胡骏,等.航空发动机稳定性设计与评定技术.北京:航空工业出版社,2004.
    [2]张环.旋转总压畸变对压气机稳定性影响的研究,[博士学位论文].南京:南京航空航天大学,2009.
    [3]李丹.进口流场温度畸变对航空发动机性能影响研究,[工程硕士学位论文].西安:电子科技大学,2009.
    [4] Seidel J A.NASA Aero Propulsion Research:Looking Forward.ISABE-2001-1013,2001.
    [5] Benzakein M J. Propulsion Strategy for the21st Century: A Vision into TheFuture.ISABE-2001-1005,2001.
    [6]彭友梅.舰载飞机发动机的技术特点.燃气涡轮与试验,2005,18(2):56~58.
    [7] Bernard L K.Gas Turbine Technology Evolution–A Designer’s Perspective.AIAA-2003-2722,2003.
    [8]廉筱纯,吴虎.航空发动机原理.西安:西北工业大学出版社,2005.
    [9]刘永泉,施磊,梁彩云.某航空发动机全包线气动稳定性设计方法.航空动力学报,2012,27(11):2462~2467.
    [10]肖国树主编.航空发动机设计手册第5册:涡喷及涡扇发动机总体.北京:国防工业出版社,2001.
    [11]王鹏.某型涡扇发动机气动稳定性模拟,[硕士学位论文].西安:西北工业大学,2006.
    [12]王占学,王鹏,乔渭阳,蔡元虎.涡扇发动机整机环境下风扇部件气动稳定性评定方法.航空动力学报,2007,22(4):9~11.
    [13]王占学,王鹏,乔渭阳,蔡元虎.涡扇发动机整机环境下压缩部件稳定工作边界计算方法.西北工业大学学报,2007,25(1):6~11.
    [14]王占学,王鹏,乔渭阳.畸变进气时涡扇发动机整机环境下压缩部件气动稳定性评定.推进技术,2007,28(1):20~25.
    [15]航空科学技术工业委员会.GJB/Z64-1994,航空涡轮喷气和涡轮风扇发动机进口总压评定指南,北京:中国标准出版社,1994.
    [16]航空科学技术工业委员会.GJB/Z64-2003,航空涡轮喷气和涡轮风扇发动机进口总压畸变评定指南,北京:中国标准出版社,2003.
    [17]航空科学技术工业委员会.GJB/Z224-2005,航空燃气涡轮发动机稳定性设计与评定方法,北京:中国标准出版社,2005.
    [18]航空科学技术工业委员会.GJB/Z211-2002,航空涡轮喷气和涡轮风扇发动机进口温度畸变评定指南,北京:中国标准出版社,2003.
    [19]代冰,叶巍.美、俄航空发动机稳定性标准对比分析.航空标准质化与质量,2009,(2):44~48.
    [20]李阳.进气畸变对发动机性能和稳定性影响的研究,[硕士学位论文].南京:南京航空航天大学,2005.
    [21]赵刚,刘波,侯为民.发动机稳定性评定数值分析方法研究.机械科学与技术,2009,28(2):258~261.
    [22]王进,骆广琦,陶增元.雷诺数对压气机特性及发动机稳定性影响的计算和分析.航空动力学报,2002,18(1):20~23.
    [23]肖洪,吴虎,廉筱纯.雷诺数对涡扇发动机性能及稳定性影响.航空动力学报,2005,20(3):394~398.
    [24]左晓东.雷诺数对压气机性能影响的分析研究,[硕士学位论文].西安:西北工业大学,2004.
    [25]屠秋野,陈玉春,苏三买,等.雷诺数对高空长航时无人机发动机调节计划和性能影响.推进技术,2005,26(2):125~128.
    [26]唐海龙,朱之丽,罗安阳,等.低Re对某小型涡扇发动机性能影响.北京航空航天大学学报,2005,31(3):303~306.
    [27] Wassell A B.Reynolds Number Effects in Axial Compressor.ASME Journal of Engineeringfor Gas Turbines and Power,1968,(4):149~156.
    [28] Strub R A. Influence of the Reynolds Number on the Performance of CentrifugalCompressors.ASME-GT-1987-10,1987.
    [29] Balje O E A.Study of Reynolds Number Effects in Turbo Machines.Journal of Engineeringfor Power,1964,86(3):227~235.
    [30]赵运生,胡骏,屠宝锋,赖安卿.功率提取与附加引气对涡扇发动机影响仿真.航空计算技术,2012,42(6):34~36.
    [31]王永华,李冬.基于云粒子群算法的航空发动机性能衰退模型研究.燃气涡轮与实验,2012,25(1):17~19.
    [32]李东,浦鹏,谭巍,等.高压压气机性能老化预测和影响分析.燃气涡轮与实验,2011,24(4):1~5.
    [33] Wulf R H.CF6Jet Engine Performance Deterioration.AIAA-1979-1233,1979.
    [34] Wulf R H. Engine Diagnostics Program CF6-50Engine PerformanceDeterioration.NASA-CR-159867,1980.
    [35] Fasching W A. CF6Jet Engine Performance Improvement Summary Report. NASACR-165612,1982.
    [36] Sallee G P.Performance Deterioration Based on Existing(Historical) Data-JT9D Jet EngineDiagnostics Program.NASA-CR-135448,1978.
    [37] Sallee G P.Performance Deterioration Based on In-Service Engine Data-JT9D Jet EngineDiagnostics Program.NASA-CR-139525,1980.
    [38]王占学,刘增文,叶新农.某型涡扇发动机部件老化对性能影响的分析与计算.航空动力学报,2007,22(5):792~796.
    [39]刘超.燃气涡轮发动机整机稳定裕度数值模拟方法研究,[硕士学位论文].南京:南京航空航天大学,2012.
    [40]周茂军.考虑性能衰退的航空发动机总体性能裕度设计研究.航空动力学报,2008,23(10):1868~1874.
    [41]李业波,李秋红,黄向华,等.航空发动机性能退化缓解控制技术.航空动力学报,2012,27(4):930~936.
    [42]聂乾鑫.涡扇发动机加速控制规律优化,[硕士学位论文].西安:西北工业大学,2007.
    [43]周文祥,黄金泉,黄开明.航空发动机简化实时模型仿真研究.南京航空航天大学学报,2005,37(2),251~255.
    [44]从靖梅,唐海龙,张津.面向对象的双轴混排加力涡扇发动机详细非线性实时仿真模型研究.航空动力学报,2002,17(1):65~68.
    [45]李军伟.涡扇发动机动态模型建立及加力数控方案设计,[硕士学位论文].西安:西北工业大学,2007.
    [46]王进,林宏镇.可变喷管涡扇发动机加速性和稳定性预测.推进技术,2003,24(1):9~11.
    [47] Carl J D,Susan M K,John R S,Edward J W.Digital Computer Program For GeneratingDynamic Turbofan Engine Models.NASA-TM-83446,1983.
    [48]屈裕安,谢寿生,宋志平.某涡扇发动机过渡过程仿真研究.航空动力学报,2003,18(4):530~533.
    [49]戚学锋,樊丁.涡扇发动机加力过程非线性最优控制研究.推进技术,2006,27(4):339~344.
    [50]王新月,苏三买,廉筱纯.混合排气加力涡扇发动机过渡态的数值仿真.推进技术,2002,23(3):189~192.
    [51]薛倩,肖洪,廉筱纯.涡轮风扇发动机接通加力过程的数值模拟.航空动力学报,2005,20(4):545~548.
    [52]陈敏,唐海龙,张津.某型双轴加力涡扇发动机实时性能仿真模型.航空动力学报,2005,20(1):13~17.
    [53]李伟,李军,董顺义.喷管面积调节精度对某型涡扇发动机加力性能影响的数值仿真.航空动力学报,2005,20(4):556~560.
    [54]薛海波.插板后畸变流场的数值模拟及参数分析,[硕士学位论文].南京:南京航空航天大学,2009.
    [55]叶巍.压力畸变对某型发动机稳定性影响的数值研究.燃气涡轮实验与研究,2004,17(2):36~40.
    [56] Frank L C, Russell K D. A Global Approach in Evaluating Inlet/EngineCompatibility.ASME-1991-GT-402,1991.
    [57]芮长胜.周向总压畸变对轴流压气机稳定性影响的模拟研究,[硕士学位论文].西安:西北工业大学,2007.
    [58]王鹏,蔡元虎,王占学,等.进气畸变对发动机压缩系统稳定性影响的数值模拟.流体机械,2006,34(8):15~19.
    [59]叶新农,王占学,乔渭阳.进口压力畸变对弹用涡喷发动机稳定性的影响.西北工业大学学报,2003,21(3):265~268.
    [60]李阳,胡骏.航空发动机进气总压周向畸变数值模拟.航空发动机,2005,31(2):11~13.
    [61]王勤,刘世官,李承辉,等.发动机进气总压动态畸变流场测试及影响因素分析.航空发动机,2002(2):6~10.
    [62]桑增产,江勇,孔卫东,等.某型涡喷发动机进气总压畸变的试验研究.航空动力学报,2000,15(4):423~426.
    [63]叶培梁,刘大响.进口温度畸变对涡扇发动机稳定性影响的试验研究.燃气涡轮试验与研究,2001,14(1):38~45.
    [64]黄顺洲,陆德雨.进口温度畸变对发动机稳定性影响的数值研究.燃气涡轮试验与研究,2001,14(1):46~52.
    [65]航空科学技术工业委员会.GJB/Z211-2002,航空涡轮喷气和涡轮风扇发动机进口温度畸变评定指南,北京:中国标准出版社,2002.
    [66]叶巍,唐世建,白磊.进气温度畸变对某发动机稳定性影响的研究.燃气涡轮与实验,2006,19(4):6~10.
    [67]叶巍,侯敏杰,周志文.压力、温度组合畸变对某发动机影响的数值研究.燃气涡轮实验与研究.2007,20(4):41~44.
    [68]黄顺洲,胡骏.组合畸变对某型发动机稳定性的影响.航空动力学报,2006,21(6):1085~1091.
    [69]黄顺洲.压力温度组合畸变对发动机稳定性影响的数值研究.燃气涡轮试验与研究,2002,15(1):28~32.
    [70]王占学,唐狄毅.瞬态过程热传递对压气机稳定裕度的影响.推进技术,1997,18(5):65~68.
    [71]吴虎,廉小纯.热传递对涡轮发动机瞬态性能影响的数值分析.推进技术,2002,23(6):445~447.
    [72]刘大响,叶培梁.俄罗斯的发动机进口流场畸变评定指南.燃气涡轮试验与研究,1994,(3):1~10.
    [73]陆德雨,黄顺洲,叶巍.发动机稳定性评定方法和试验.燃气涡轮实验与研究,1999,12(4):45~50.
    [74]罗标能.压气机进口插板总压畸变稳定性研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [75]叶培梁,刘大响.航空发动机的进口总压畸变评定技术.燃气涡轮试验与研究,1990,3(4):1~15.
    [76] Society of Automotive Engineers.Inlet Total Pressure Distortion Considerations for GasTurbine Engines.SAE Aerospace Information Reprot,AIR-1419,1983.
    [77] Society of Automotive Engineers.Gas Turbine Engine Inlet Flow Distortion Guidelines.SAEAerospace Recommended Practice,ARP-1420,1978.
    [78] Society of Automotive Engineers.Gas Turbine Engine Inlet Flow Distortion Guidelines.SAEAerospace Recommended Practice,ARP-1420B,2002.
    [79] Society of Automotive Engineers.A Current Assessment of the Inlet/Engine TemperatureDistortion Problem.SAE Aerospace Resource Document,ARD-50015,1991.
    [80] Hale A,Brien W O.A Three-Dimensional Turbine Engine Analysis Compressor Code ForSteady-State Inlet Distortion.ASME Journal,1998,120(6):422~430.
    [81] Hu Jun,Thomas P,Leonhard F.Numerical Simulation Of Flow Instabilities in High SpeedMultistage Compressors.Journal of Thermal Science,1999,8(1):23~31.
    [82]胡骏.进气畸变对轴流压气机影响实验研究.航空动力学报,2001,16(2):143~146.
    [83]王春利.风扇/压气机气动稳定性的数值模拟研究,[硕士学位论文].西安:西北工业大学,2007.
    [84]胡骏.旋转总压畸变对压气机稳定性影响数值模拟.工程热物理学报,2000,21(2):161~165.
    [85]王永明,胡骏.进气畸变对轴流压气机性能影响的准三维计算.推进技术,2004,25(4):343~348.
    [86]乔渭阳,蔡元虎.进气畸变对压缩系统稳定性影响的数值模拟.推进技术,2001,22(4):307~310.
    [87]胡骏.轴流压缩系统动态失速的简化模型.航空学报,1997,18(2):207~209.
    [88] Gorrell S E.Application of a Dynamic Compression System Model to a Low Aspect RatioFan:Casing Treatment and Distortion.AIAA-1993-1871,1993.
    [89] Kimball A S.Application of a Modified Dynamic Compression System Model to Low AspectRatio Fan:Effects and Inlet Distortion.AIAA-1995-0301,1995.
    [90] Chue R,Hynes T P,Greitzer E M,et al.Calculation of Inlet Distortion Induced CompressorFlow Field Instability.International Journal of Heat and Field Flow,1989,(10):211~233.
    [91] Hynes T P,Greitzer E M.A Method for Assessing Effects of Circumferential Flow Distortionon Compressor Stability.ASME Journal Turbomach.1987,(109):371~379.
    [92] Li H D,He L.Single-Passage Analysis of Unsteady flows Around Vibrating Blade of aTransonic Fan under Inlet Distortion.ASME Journal Turbomach,2002,(124):285~292.
    [93] Moore F K. A Theory of Rotating Stall of Multistage Axial Compressor: Part I,ASME-83-GT-44.
    [94] Moore F K.A Theory of Rotating Stall of Multistage Axial Compressor:Part II,ASME-83-GT-45.
    [95] Moore F K.A Theory of Rotating Stall of Multistage Axial Compressor:Part III,ASME-83-GT-46.
    [96] Moore F K,Greitzer E M.A Theory of Post Stall Transients in Axial Compression Systems:Part1,ASME Journal of Engineering for Power,1986,108:68~76.
    [97]吴虎,东秋生.某发动机压缩系统喘振与消喘控制的模拟分析.推进技术,2002,23(3):216~218.
    [98]吴虎,黄智涛,廉小纯.某型发动机对进气畸变响应的流动耦合分析.推进技术,2003,24(3):219~221.
    [99]吴虎,廉小纯,沈韶瀛.某加力涡轮发动机变几何扩稳优化模拟.航空动力学报,2001,16(4):390~393.
    [100]蔡元虎,唐狄毅,王宏基.温度突升对发动机稳定性影响的研究.西北工业大学学报,1987,5(3):309~316.
    [101]蔡元虎,王鹏,王占学,等.进气畸变对发动机压缩部件气动稳定性的影响.推进技术,2006,27(3):254~261.
    [102]乔渭阳,蔡元虎,陈玉春.进气畸变对压缩系统稳定性影响的数值模拟.推进技术,2001,22(4):307~310.
    [103]乔渭阳,蔡元虎.燃气涡轮发动机压缩系统稳定性数值模拟的研究.燃气涡轮试验与研究,14(2):19~25.
    [104]王占学,乔渭阳,李文兰.涡扇发动机起动过程气动稳定性的数值仿真.推进技术,2006,27(1):221~224.
    [105]王进,林宏镇.可变喷管涡扇发动机加速性和稳定性预测.推进技术,2003,24(1):9~11.
    [106]李阳,胡骏.航空发动机进气总压周向畸变数值模拟.航空发动机,2005,31(2):11~13.
    [107]赖安卿,胡骏,赵运生,等.大涵道比涡扇发动机整机稳定边界预测方法研究.航空计算技术,2013,43(1):81~84.
    [108]李亮.进口总压畸变稳定性评定方法研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [109]叶巍,乔渭阳,候敏杰.发动机在进气畸变条件下的特性研究.推进技术,2008,29(6):677~680.
    [110]叶巍,黄顺洲,陆德雨,等.航空发动机防喘系统及其评定方法.燃气涡轮试验与研究,2000,13(2):53~57.
    [111]叶巍,候敏杰.航空发动机防喘扩稳构件优化研究.燃气涡轮试验与研究,2008,21(4):1~3.
    [112]黄顺洲,胡骏.进气畸变对发动机稳定性影响的分析模型.推进技术,2006,27(5):426~430.
    [113]赵勇.风扇/压气机非设计点性能计算和进气畸变影响预测方法研究,[博士学位论文].南京:南京航空航天大学,2008.
    [114]屠宝锋.风扇/压气机动态失速过程和多尺度非定常气动稳定性研究,[博士学位论文].南京:南京航空航天大学,2010.
    [115]时培杰,乔渭阳,魏佐君,等.畸变进气下压气机三维黏性数值计算模型.航空动力学报,2012,27(7):1473~1478.
    [116]童凯生.航空涡轮发动机性能变比热计算方法.北京:航空工业出版社,1991.
    [117]顾永根.航空发动机设计手册第6册:涡桨及涡轴发动机总体.北京:航空工业出版社,1991.
    [118]曹源,金先龙,孟光.航空发动机系统级仿真研究的回顾与展望.航空动力学报,2004,19(4):562~571.
    [119]王永明,乔谓阳,李立君.计算机模拟技术在航空发动机设计中的应用.燃气涡轮试验与研究,2005,18(1):1~8.
    [120] Sellers J.F.,Daniele G J.Dyngen-A Program for Calculating Steady-State and TransientPerformance of Turbojet and Turbofan Engines.NASA-TND-7901,1975.
    [121]周文祥,黄金泉,窦建平,等.面向对象的涡扇发动机及控制系统仿真平台.航空动力学报,2007,22(1):119~125.
    [122]徐鲁兵,潘宏亮,周鹏.基于面向对象技术的航空发动机性能仿真框架设计.测控技术,2007,26(4):83~86.
    [123]唐海龙,张津.面向对象的航空发动机性能仿真程序设计方法研究.航空动力学报,1999,14(4):421~424.
    [124]郭捷,王咏梅,杜辉,等.低雷诺数条件对涡扇发动机风扇/压气机性能和稳定性影响的试验研究.航空发动机,2004,30(4):4~6.
    [125]温泉,梁德旺,李逢春.雷诺数效应对小流量多级轴流压气机的性能影响.航空动力学报,2004,19(1):81~88.
    [126]曾令君,马千里.雷诺数对压气机性能影响的数值模拟.汽轮机技术,2008,50(5):325~327.
    [127]王如根,周敏,赵英武,等.跨声速压气机低雷诺数下流动失稳机制研究.航空动力学报,2009,24(2):414~419.
    [128]韩同来.涡扇发动机起动性能数值模拟,[硕士学位论文].西安:西北工业大学,2005.
    [129]郑绪生.某型涡轴发动机起动建模技术研究,[硕士学位论文].南京:南京航空航天大学,2005.
    [130]王永杰.航空发动机起动过程数值模拟研究,[硕士学位论文].西安:西北工业大学,2006.
    [131] Davis J B,Pollak R R.Criteria for Optimizing Starting Cycle for High Performance FighterEngines.AIAA-1983-1127,1983.
    [132]冯维林.涡扇发动机起动过程的数值模拟,[硕士学位论文].西安:西北工业大学,2006.
    [133] Szuch J R.Advancements in Real-Time Engine Simulation Technology.AIAA-1982-1075,1982.
    [134] Agarwal H,Kal A,Akkaram S,et al.Inverse Modeling Techniques for Application to EngineTransient Performance Data Matching.ASME-2008-GT-51313,2008.
    [135] Shobeiri T. Nonlinear Dynamic Simulation of Single and Multi-Spool CoreEngines.AIAA-1993-2580,1993.
    [136] Maccallum N R L,Pilidis P.The Prediction of Surge Margins During Gas TurbineTransients.ASME-1985-GT-208,1985.
    [137]杨琳,秦臻.航空发动机压缩系统切断加力过渡态的性能分析.航空发动机,2012,38(3):38~41.
    [138]王永杰.航空发动机起动过程数值模拟研究,[硕士学位论文].西安:西北工业大学,2006.
    [139]周文祥,黄金泉,黄开明.航空发动机简化实时模型仿真研究.南京航空航天大学学报,2005,37(2),251~255.
    [140]王占学,乔渭阳,李文兰.基于部件匹配技术的涡扇发动机起动过程数值模拟.航空动力学报,2004,19(4):444~448.
    [141]李军伟.涡扇发动机动态模型建立及加力数控方案设计,[硕士学位论文].西安:西北工业大学,2007.
    [142]聂乾鑫.涡扇发动机加速控制规律优化,[硕士学位论文].西安:西北工业大学,2007.
    [143]从靖梅,唐海龙,张津.面向对象的双轴混排加力涡扇发动机详细非线性实时仿真模型研究.航空动力学报,2002,17(1):65~68.
    [144]庞大海.X型发动机控制系统最优加速控制研究,[硕士学位论文].西安:西北工业大学,2001.
    [145]吴志琨.涡扇发动机控制系统设计研究,[硕士学位论文].西安:西北工业大学,2007.
    [146]周文祥.航空发动机及控制系统建模与面向对象的仿真研究,[博士学位论文].南京:南京航空航天大学,2006.
    [147]沈峰.面向对象的航空发动机及控制系统仿真研究,[硕士学位论文].南京:南京航空航天大学,2005.
    [148] Mazzawy R S.Multiple Segment Parallel Compressor Model for Circumferential FlowDistortion.AGARD CP-177,1976.
    [149] Motycka D L.Determination of Maximum Expected Instantaneous Distortion Pattern fromStatistical Properties of Inlet Pressure Data.AIAA-1976-705,1976.
    [150] Melick H C,Ybarra A H.Estimating Maximum Instantaneous Distortion from Inlet TotalPressure Rms Measurement.AIAA-1978-970,1978.
    [151] Sanders M E.An Evaluation of Statistical Methods for Prediction of Maximum Time-VariantInlet Total Pressure Distortion. AIAA/SAE/ASME/16th Joint PropulsionConference.AIAA-1980-1110,1980.
    [152] Borg R A.Synthesis Method for Estimating Maximum Instantaneous Inlet Distortion Basedon Measured Inlet Steady State and Rms Pressure.AGARD-CP-301,1981.
    [153]好毕斯嘎啦图,周胜田,张志舒,等.总压畸变对整机稳定性的影响研究分析.航空发动机,2012,38(4):34~37.
    [154] Carl J D,Susan M K,John R S,Edward J W.Digital Computer Program For GeneratingDynamic Turbofan Engine Models.NASA-TM-83446,1983.
    [155]张明川.预测轴流压气机工作稳定性的Euler模型,[硕士学位论文].西安:西北工业大学,1996.
    [156]郁新华,杨精波,廉小纯.涡扇发动机过失速性能数值模拟.推进技术,2000,21(2):12~14.
    [157]吴虎,廉小纯,陈辅群.动态畸变下轴流压缩系统失稳判别的统一准则.航空动力学报,1996,11(2):157~160.
    [158]王永明,胡骏,邓艳.进气畸变对轴流压气机性能影响的准三维计算.推进技术,2004,25(4):343~348.
    [159]吴虎,廉小纯,陈辅群.不均匀进气对压缩系统稳定性影响的逐级动态响应模型研究.推进技术,1999,20(2):56~60.
    [160]田宁,陈金国,张恩和.畸变对航空发动机稳定性的影响.航空发动机,2002,(2):25~28.
    [161] Davis M.W.Parametric Investigation into the Combined Effects of Pressure and TemperatureDistortion on Compression System Stability.AIAA-1991-1895,1991.
    [162]李家瑞.航空发动机建模技术研究,[硕士学位论文].南京:南京航空航天大学,2005.
    [163]方前.航空发动机系统建模与故障诊断研究,[硕士学位论文].西安:西北工业大学,2005.
    [164]李业波.航空发动机组件化建模及性能参数估计,[硕士学位论文].南京:南京航空航天大学,2011.
    [165]孙龙飞.航空发动机组件化建模技术研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [166]陶金伟.航空发动机组态建模仿真技术研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [167]姚祖明.基于构件的航空发动机建模技术研究,[硕士学位论文].南京:南京航空航天
    大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700