MEMS微结构几何特征提取与评定的方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来微机电系统(MEMS)蓬勃增长,越来越向微小化发展,以其自身的体积小、重量轻、功耗低、速度快、灵敏度高等优点受到世界各国的青睐,被迅速而广泛地应用于航空航天、军事、生物医学、信息、自动控制等领域。MEMS测试计量理论与技术、MEMS测试计量基本框架的确立是MEMS设计、制造及质量控制和评价的关键环节之一,目前还很薄弱甚至于处在真空期,迫切需要进行系统而深入的研究。本论文针对MEMS微结构特征测试计量关键理论与技术展开研究,主要研究MEMS微结构特征的分析、提取、表征和评定方法,包括基准面数学模型构造,微结构功能特征区域分割技术,从而初步建立MEMS微结构几何特征的评价标准体系。
     论文首先通过多种类型MEMS器件结构特点和加工工艺特性的分析,提出了MEMS微结构表面特征的主要分类。一类为台阶,沟槽和狭缝;另一类为半球体,圆柱体或自由曲面体基元组成的周期性阵列。这两类微结构特征是具有典型性和代表性的MEMS几何特征,也是MEMS测试计量的关键,从而建立了MEMS几何特征分析评定的重要基础。
     提出并建立了基于最小二乘和B样条理论的MEMS微结构基准面算法模型,用基准面这一理想的几何要素来评定微结构在MEMS器件中的位置及微结构各个尺度参数,从而实现多样性MEMS微结构评定基准面的有效准确提取。
     提出并建立了基于Wolf Pruning的MEMS器件微结构功能特征区域分割方法。该方法在分水岭算法的基础上使用符合拓扑学三大定律的修剪规则,加快了区域准确性。相比之前的图像分割方法,该理论不仅在数学上具有拓扑理论的完备性,而且抗噪能力好,鲁棒性高。
     提出了基于功能的MEMS微结构几何特征评定参数系列,并给出了各参数的定义、评定方法。
     基于本文提出的MEMS微结构几何特征分析评定方法,给出了两类典型MEMS微结构特征分析与评定实例,得到了相关参数,并分析了这些参数对MEMS器件关键功能的影响。
In recent years, Micro-Electro-Mechanical Systems (MEMS) with their own, such as small size, light weight, low power consumption, high-speed, high sensitivity, has been very rapidly applied to the aero space, military, biomedical, information, automation and other fields. A metrology infrastructure has underpinned all industrial revolutions, and this infrastructure is weak or nonexistent for many of the proposed MEMS devices. Such systemic theoretical research is more urgent and needs to be carried thoroughly on. Metrology and testing technology of MEMS is one of the key requirements of MEMS designing, fabricating, quality control and evaluation. The main research contents of this paper fall into several parts as below:the theories of analysis, extracting, characterization and evaluation of MEMS microstructure are proposed, and the mathematical modelling for datum plane of characteristic microstructure as well as the identification of characteristic functional regions with the microstructure division technology are studied; the research above mentioned will systematically study the metrology and testing technology of MEMS, and establish the initial standard evaluation system of MEMS characteristic structure, and meet the further needs of MEMS technology. For MEMS geometrical parameters, there is no standard definition acceptable for worldwide, which brings much difficulty in MEMS communication, that is why it need to be further described.
     One of MEMS microstructure surface is most composed of a number of steps, grooves and slots; the other is a type of pattern structures included hemisphere, cylinder, and pillar. Pattern analysis and recognition of these microstructures with particular feature is one of the key problems in metrology and testing technology of MEMS.
     In this paper, the mathematical model to evaluate MEMS microstructure is shown by extracting datum plane of characteristic microstructure. The reference plane for evaluation is defined by the least square method and B-spline theory, a group of statistical parameters base on the reference plane are presented.
     This paper explains that how the SU-8 photoresist lithography process and the character of material caused the microstructure surface roughness and the error of geometrical size and shape-position error, and how these parameter affect the delivery efficiency of MEMS devices.
     Based on the wolf pruning morphological segment and a novel method of pattern detection are proposed, which can detect functional areas in most situations. It is the most important that this method is consistent topologically. Experiment results prove the efficiency of the method proposed even in measurement data with very low SNR
     The geometrical parameter of MEMS microstructure and roughness of sidewall are distinguished. In line with the development trend of microstructure surface characterization, as well as the practical demand in the semiconductor and lithography industry, the evaluate procedures, bring forward a group of parameters to describe character of MEMS microstructure, is given out.
引文
[1]Bogue, R., MEMS sensors:past, present and future. Sensor Review,2007.27(1):p.7-13.
    [2]Fujita, H. A decade of MEMS and its future.1997:IEEE.
    [3]Senturia, S.D. Perspectives on MEMS, past and future:the tortuous pathway from bright ideas to real products:IEEE.
    [4]余丹铭,梁利华许杨剑,微电子机械技术的研究和发展趋势.电子机械工程,2005.01.
    [5]Blunt, L., X. Jiang, and P.J. Scott, Advances in micro and nano-scale surface metrology. Key Engineering Materials,2005.295:p.431-436.
    [6]Gupta, T. and AH Jayatissa. Recent advances in nanotechnology:key issues & potential problem areas.2003:IEEE.
    [7]Leach, Richard, Derek Chetwynd, Liam Blunt, Jane Haycocks, Peter Harris, Keith Jackson, Simon Oldfield, and Simon Reilly, Recent advances in traceable nanoscale dimension and force metrology in the UK. Measurement Science and Technology,2006.17(3):p.467-476.
    [8]Osanna, P.H., DIMENSIONAL MEASUREMENTS IN THE NANOMETRIC RANGE. MEASUREMENT SCIENCE REVIEW,2001.1(1).
    [9]Bao, M. and W. Wang, Future of microelectromechanical systems (MEMS). Sensors and Actuators A:Physical,1996.56(1-2):p.135-141.
    [10]刘晓为;张博;张宇峰;张鹏,Mems微型燃料电池.化学进展,2009.09.
    [11]谢克文,王晓红姜英琪刘理天,基于mems技术的微型燃料电池的制作.微细加工技术,2004.03.
    [12]Silverbrook, K., Inkjet printhead having a self aligned nozzle.2001, Google Patents.
    [13]Wicht, H. and J. Bouchaud, NEXUS market analysis for MEMS and microsystems III 2005-2009. SETTING THE PACE FOR MICRO ASSEMBLY SOLUTIONS:p.33.
    [14]Eloy, JC, Status of the MEMS Industry:Evolution or MEMS Markets and of the Industrial Infrastructure. Sensors & Transducers Journal,2007.86(12):p.1771-1777.
    [15]Nussbaum, P., R. Volkel, H.P. Herzig, M. Eisner, and S. Haselbeck, Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure and Applied Optics:Journal of the European Optical Society Part A,1997.6:p.617.
    [16]Jean-Michel, S. Market opportunities for advanced MEMS accelerometers and overview of actual capabilities vs. required specifications.2004:IEEE.
    [17]Tanaka, M., An industrial and applied review of new MEMS devices features. Microelectronic Engineering,2007.84(5-8):p.1341-1344.
    [18]Komori, M., H. Uchiyama, H. Takebe, T. Kusuura, K. Kobayashi, H. Kuwahara, and T. Tsuchiya, Micro/nanoimprinting of glass under high temperature using a CVD diamond mold. Journal of Micromechanics and Microengineering,2008.18:p.065013.
    [19]Maboudian, R., Surface processes in MEMS technology. Surface Science Reports,1998. 30(6-8):p.207-269.
    [20]Brown, G.C. and R.J. Pryputniewicz, New test methodology for static and dynamic shape measurements of microelectromechanical systems. Optical Engineering,2000.39:p.127.
    [21]Dai, Gaoliang, Helmut Wolff, Thomas Weimann, Min Xu, Frank Pohlenz, and Hans-Ulrich Danzebrink, Nanoscale surface measurements at sidewalls of nano- and micro-structures. Measurement Science and Technology,2007.18(2):p.334-341.
    [22]Garnaes, J, N Kofod, A Kiihle, C Nielsen, K Dirscherl, and L Blunt, Calibration of step heights and roughness measurements with atomic force microscopes. Precision Engineering,2003. 27(1):p.91-98.
    [23]Knauss, W.G., I. Chasiotis, and Y. Huang, Mechanical measurements at the micron and nanometer scales. Mechanics of materials,2003.35(3-6):p.217-231.
    [24]McWaid, TH, TV Vorburger, J. Fu, JF Song, and E. Whitenton, Methods divergence between measurements of micrometer and sub-micrometer surface features. Nanotechnology,1994.5:p. 33.
    [25]Misumi, Ichiko, Satoshi Gonda, Qiangxian Huang, Taeho Keem, Tomizo Kurosawa, Akihiro Fujii, Nahoko Hisata, Takeshi Yamagishi, Hirohisa Fujimoto, Ken Enjoji, Sunao Aya, and Hiroaki Sumitani, Sub-hundred nanometre pitch measurements using an AFM with differential laser interferometers for designing usable lateral scales. Measurement Science and Technology, 2005.16(10):p.2080-2090.
    [26]Edenfeld, D, AB Kahng, M Rodgers, and Y Zorian,2003 technology roadmap for semiconductors. Computer,2004.37(1):p.47-56.
    [27]Meli, F. and R. Thalmann, Long-range AFM profiler used for accurate pitch measurements. Measurement Science and Technology,1998.9:p.1087.
    [28]Bhushan, Bharat and Yong Chae Jung, Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces. Nanotechnology,2006.17(11):p.2758-2772.
    [29]Hansen, H.N., K. Carneiro, H. Haitjema, and L. De Chiffre, Dimensional micro and nano metrology. CIRP Annals-Manufacturing Technology,2006.55(2):p.721-743.
    [30]Chen, X., J. Raja, and S. Simanapalli, Multi-scale analysis of engineering surfaces. International Journal of Machine Tools and Manufacture,1995.35(2):p.231-238.
    [31]Jiang, XQ, L. Blunt, and KJ Stout, Development of a lifting wavelet representation for surface characterization. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2000.456(2001):p.2283.
    [32]Jiang, XQ, L. Blunt, and KJ Stout, Three-dimensional surface characterization for orthopaedic joint prostheses. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine,1999.213(1):p.49-68.
    [33]曾文涵,双树复小波表面分析模型及加工过程形貌辨识方法研究:[博士论文].武汉:华中科技大学图书馆,.2005.
    [34]Zahouani, H., Spectral and 3D motifs identification of anisotropic topographical components. Analysis and filtering of anisotropic patterns by morphological rose approach. International Journal of Machine Tools and Manufacture,1998.38(5-6):p.615-623.
    [35]Barre, F. and J. Lopez, Watershed lines and catchment basins:a new 3D-motif method. International Journal of Machine Tools and Manufacture,2000.40(8):p.1171-1184.
    [36]Barre, F. and J. Lopez, On a 3D extension of the MOTIF method (ISO 12085). International journal of machine tools & manufacture,2001.41(13-14):p.1873-1880.
    [37]Mezghani, S. and H. Zahouani, Characterisation of the 3D waviness and roughness motifs. Wear,2004.257(12):p.1250-1256.
    [38]Scott, P.J., Novel area characterisation techniques. Advanced Techniques for Assessment Surface Topography:Development of a Basis for 3D Surface Texture Standards "SURFSTAND,2003:p.43-61.
    [39]Vincent, L. and P. Soille, Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE transactions on pattern analysis and machine intelligence,1991. 13(6):p.583-598.
    [40]Stauffer, J.M., MEMS Accelerometers for Production Applications. NEXUS-Network of Excellence in Multifunctional Microsystems EUROPRACTICE-Microsystems Service for Europe,2003:p.16.
    [41]Blunt, Liam and Xiangqian Jiang, Advanced techniques for assessment surface topography. 2003.355.
    [42]Sourlier, D.M., Three dimensional feature independent bestfit in coordinate metrology.1995: ETH.
    [43]官云兰;程效军;施贵刚,一种稳健的点云数据平面拟合方法.同济大学学报(自然科学版),2008.07.
    [44]潘洋宇,李东波慈瑞梅,点云数据曲面重构和小波分解研究.计算机集成制造系统-Cims,2005.10.
    [45]Muralikrishnan, B. and J. Raja, Computational surface and roundness metrology.2009: Springer Verlag.
    [46]Schroder, P. and W. Sweldens. Spherical wavelets:Efficiently representing functions on the sphere.1995:ACM.
    [47]潘洋宇;李东波;杨辉,曲面重构和均匀b样条小波分解研究.兵工学报,2007.03.
    [48]Hu, S., E.A. Hoffman, and J.M. Reinhardt, Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. Medical Imaging, IEEE Transactions on,2001. 20(6):p.490-498.
    [49]Goo, J.M., T. Tongdee, R. Tongdee, K. Yeo, C.F. Hildebolt, and K.T. Bae, Volumetric Measurement of Synthetic Lung Nodules with Multi-Detector Row CT:Effect of Various Image Reconstruction Parameters and Segmentation Thresholds on Measurement Accuracy1. Radiology,2005.235(3):p.850.
    [50]Cohen, I., L.D. Cohen, and N. Ayache, Introducing deformable surfaces to segment 3D images and infer differential structures.1991:Institut National de Recherche en Informatique et en Automatique.
    [51]Cohen, I., L.D. Cohen, and N. Ayache, Using deformable surfaces to segment 3-D images and infer differential structures. CVGIP:Image understanding,1992.56(2):p.242-263.
    [52]Scott, P.J., An algorithm to extract critical points from lattice height data. International Journal of Machine Tools and Manufacture,2001.41(13-14):p.1889-1897.
    [53]Scott, P.J., Pattern analysis and metrology:the extraction of stable features from observable measurements. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2004.460(2050):p.2845.
    [54]Loughin, S., RH French, LK Noyer, WY Ching, and YN Xu, Critical point analysis of the interband transition strength of electrons. Journal of Physics D:Applied Physics,1996.29:p. 1740.
    [55]Morse, S.P., A mathematical model for the analysis of contour-line data. Journal of the ACM (JACM),1968.15(2):p.205-220.
    [56]Whitehouse, DJ and MJ Phillips, Two-dimensional discrete properties of random surfaces. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1982.305(1490):p.441.
    [57]Peucker, T.K. and D.H. Douglas, Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and Image Processing,1975. 4(4):p.375-387.
    [58]Lee, T.W. and S.V. Pabbisetty, Microelectronic failure analysis:Desk reference. Vol.3.1997: ASM International (Materials Park, OH).
    [59]胡凯;蒋向前;刘晓军,台阶高度的评定方法.中国仪器仪表,2009.10.
    [60]Fu, J and V Tsai, Algorithms for calculating single-atom step heights. Nanotechnology,1999. 10:p.428.
    [61]ISO 5436:1985. Calibration specimens stylus instruments types, calibration and use of specimens.
    [62]Bennett, J.M., Comparison of instruments for measuring step heights and surface profiles. Applied optics,1985.24(22):p.3766-3772.
    [63]Koening, RG, RG Dixson, J Fu, BT Renegar, TV Vorburger, VW Tsai, and MT Postek Jr. Step-height metrology for data storage applications.1999.
    [64]INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2007 EDITION METROLOGY
    [65]Dai, G, H Wolff, F Pohlenz, HU Danzebrink, and G Wilkening, Atomic force probe for sidewall scanning of nano-and microstructures. Applied Physics Letters,2006.88:p.171908.
    [66]Dai, G, L Koenders, F Pohlenz, T Dziomba, and HU Danzebrink, Accurate and traceable calibration of one-dimensional gratings. Measurement Science and Technology,2005.16:p. 1241.
    [67]Wunnicke, O., A. Hennig, K. Grundke, M. Stamm, and G. Czech. Surface properties and topography of 193-nm resist after exposure and development.2002.
    [68]Bora, CK, EE Flater, MD Street, JM Redmond, MJ Starr, RW Carpick, and ME Plesha, Multiscale roughness and modeling of MEMS interfaces. Tribology Letters,2005.19(1):p. 37-48.
    [69]Bhushan, B. Nanotribology and nanomechanics of MEMS devices.1996:IEEE.
    [70]Majumdar, A. and B. Bhushan, Role of fractal geometry in roughness characterization and contact mechanics of surfaces. Journal of Tribology,1990.112:p.205.
    [71]孙洪军,赵丽红,分形理论的产生及其应用.辽宁工学院学报,2005.02.
    [72]李成贵,袁长良张国雄,分形理论在表面计量学中的应用.现代计量测试,2000.01.
    [73]Korniss, G., MA Novotny, H. Guclu, Z. Toroczkai, and P.A. Rikvold, Suppressing roughness of virtual times in parallel discrete-event simulations. Science,2003.299(5607):p.677.
    [74]Franke, R. and NAVAL RESEARCH LAB MONTEREY CA MARINE METEOROLOGY DIV., Three Dimensional Covariance Functions:Real Data.1997:Citeseer.
    [75]Li, S., Z. Xu, A. Mazzeo, D.J. Burns, G. Fu, M. Dirckx, V. Shilpiekandula, X. Chen, N.C. Nayak, and E. Wong. Review of production of microfluidic devices:material, manufacturing and metrology.2008.
    [76]Kang, W.J., E. Rabe, S. Kopetz, and A. Neyer, Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography. Journal of Micromechanics and Microengineering,2006.16:p.821.
    [77]Zhang, J., M.B. Chan-Park, and S.R. Conner, Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip,2004.4(6):p. 646-653.
    [78]Nguyen, N.T. and S.T. Wereley, Fundamentals and applications of microfluidics.2002:Artech House Publishers.
    [79]Kittilsland, G., G. Stemme, and B. Norden, A sub-micron particle filter in silicon. Sensors and Actuators A:Physical,1990.23(1-3):p.904-907.
    [80]Ballard, D.H., Generalizing the Hough transform to detect arbitrary shapes. Pattern recognition, 1981.13(2):p.111-122.
    [81]Xu, L., E. Oja, and P. Kultanen, A new curve detection method:randomized Hough transform (RHT). Pattern Recognition Letters,1990.11(5):p.331-338.
    [82]Salonen, I., A. Toropainen, and P. Vainikainen, Linear pattern correction in a small microstrip antenna array. Antennas and Propagation, IEEE Transactions on,2004.52(2):p.578-586.
    [83]Salonen, I., C. Icheln, and P. Vainikainen. A New Method for Array Pattern Correction:IEEE.
    [84]Rubin, D.M., A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research,2004.74(1):p.160.
    [85]Vernhes, P., J. Bloch, C. Mercier, A. Blayo, and B. Pineaux, Statistical analysis of paper surface microstructure:A multi-scale approach. Applied Surface Science,2008.254(22):p. 7431-7437.
    [86]Hutley, M.C., R.F. Stevens, and D.J. Daly. Microlens arrays.1992.
    [87]Daly, D., Microlens arrays.2001:CRC.
    [88]Moon, S., N. Lee, and S. Kang, Fabrication of a microlens array using micro-compression molding with an electroformed mold insert. Journal of Micromechanics and Microengineering, 2003.13:p.98.
    [89]Jiang, JB, CE Cheung, S. To, KW Cheng, K. Wang, and WB Lee. Design and fabrication of freeform reflector for automotive headlamp.2006·IEEE.
    [90]Kim, D.S., I.C. Chang, and S.W. Kim, Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces. Precision Engineering,2002.26(2):p.168-174.
    [91]李丽伟,董申程凯,超精密车削表面三维形貌的形成及加工影响因素分析.制造技术与机床,2003.02.
    [92]李荣彬张志辉李建广,超精密加工的三维表面形貌预测.中国机械工程,2000.08.
    [93]王洪祥,董小瑛董中,金刚石车削表面微观形貌形成机理的研究.哈尔滨工业大学学报,2002.04.
    [94]ISO 14880-1:2001 Optics and photonics-Microlens arrays-Part 1:Vocabulary.
    [95]胡凯;张志辉;蒋向前;孔令豹,微镜阵列的缺陷提取与识别.组合机床与自动化加工技术,2009.09.
    [96]Chen, Jackie, Weisong Wang, Ji Fang, and Kody Varahramyan, Variable-focusing microlens with microfluidic chip. Journal of Micromechanics and Microengineering,2004.14(5):p. 675-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700