PCBN刀具高速精密硬态切削机理与应用技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削淬硬钢作为新工艺目前被航空航天、汽车等许多工业部门所采用。高速切削淬硬钢作为单点车削方式,其优势之一就是根据机床固有的加工性能对复杂工件型面进行精加工。另外,高速切削淬硬钢比磨削加工效率高并减少对环境的污染,因此,可以代替磨削加工。但是,有些不利的因素并制约高速切削淬硬钢的应用,如刀具材料选用不恰当或加工参数选用不合理,会导致高速切削淬硬钢产生高温和很大的切削力,从而降低刀具寿命和加工表面质量。本文采用PCBN(Polycrystalline Cubic Boron Nitride)刀具对GCr15淬硬钢(HRC62~64)进行一系列高速精密硬态切削实验,并结合有限元仿真,研究高速精密硬态切削机理、刀具磨损和已加工表面质量的变化规律。
     首先,根据弹塑性变形理论和热力耦合有限元方法,利用大型商用有限元分析软件Deform,建立了淬硬钢高速精密硬态切削过程的二维和三维仿真模型,并设定工件材料GCr15为均质、等向强化的弹塑性材料,满足Von Mises屈服准则,在修正了库仑定律的刀/屑摩擦方程和局部网格重划分准则的基础上,采用Johnson-Cook材料模型和Cockroft-Latham断裂准则,分别研究了二维切削过程中的切屑形态和刀具磨损以及三维切削过程中切削力和切削温度的变化规律。
     针对高速精密硬态切削淬硬钢时,由于受金属软化效应和刃口参数的影响,尤其是切削厚度和倒棱宽度在同一数量级时,刃口的滞留层对切削过程影响很大,使切削力的变化存在特殊规律。根据能量法预报剪切角,采用滑移线场计算刃口耕犁力,对改进后Oxley模型进行了修正,建立了倒棱刀具的切削力模型;通过遗传算法建立了PCBN刀具刃口倒棱参数和切削用量对切削力影响的函数关系式,并优选了切削参数。
     由于PCBN刀具高速切削时刀具磨损与普通切削有很大区别,本文通过高速精密硬态切削淬硬钢GCr15试验,研究了涂层和无涂层PCBN刀具的不同刃口结构和不同切削速度对刀具磨损的影响,通过扫描电镜观察和能谱分析,系统研究了PCBN刀具的磨损机理,查明了高速精密硬态切削时PCBN刀具的磨损机理,得到了相应的PCBN磨损强度分布。
     最后,系统进行了高速精密硬态切削淬硬钢已加工表面完整性的研究。通过高速精密硬态切削淬硬钢GCr15实验,研究了PCBN刀具涂层、刀具几何结构和切削参数对表面粗糙度、白层和显微硬度的影响规律;研制了适合于高速精密硬态切削的新型PCBN wiper车刀,加工出了表面粗糙度为0.19μm的加工精度。
The high-speed machining of hardened steel components with Polycrystalline Cubic Boron Nitride (PCBN) inserts has become a very popular machining process in the automotive industry and the aerospace industry in recent years. A significant benefit of the high-speed hard turning as a single point cutting is the capability to produce complex forms of workpiece with the inherent motion capability of modern machine tools. Moreover, because of its economic and environmental advantages in many machining tasks, fine hard turning represents an attractive alternative to grinding. However, there is still much reluctance in adopting hard turning as a finishing process because the high temperature and high levels of specific forces occurr in hard machining operations, leading to very short tool life and poor surface quality if a poor tool material or improper cutting conditions is chosen. In this thesis, the cutting mechanics of high-speed precision hardened steel cutting, tool wear and machined surface quality are studied with experiments of high speed precision hardened steel GCr15 (the hardness of HRC 62~65) with PCBN tools, and combining with finite element method (FEM).
     Firstly, comparing with analytical model, a two-dimensional(2D) and three-dimensional finite element model with general finite element analysis software Deform 2D&3D for high speed precision hardened steel cutting is developed by considering the chip-tool friction, the workpiece material deformed under high strain, high stain rate and high temperature using the Johnson-cook (JC) equation, local remeshing criterion combining with the Cockroft and Latham criterion used for the material damage. The 2D finite element model can predict the thermo-mechanical variables of machining process, such as saw-tooth chip and tool wear in high speed hard cutting. The 3D finite element model can predict cutting forces and cutting temperature in high speed hard cutting.
     The feature of cutting forces in high-speed precision hardened steel cutting is differented from conventional cutting because of the materials soften phenomena, especially in precision hard cutting the depth of cut being the same order as the width of chamfered tool, leading to the Dead Metal Zone near chamfer. By applying the minimum energy principle to predict shear angle and ploughing forces studied with a slip line field model, a theoretical model for cutting forces with chamfered cutting tools, is developed to modify the parallel shear zone of Oxley’s orthogonal cutting model. A mathematical model based on genetic algorithms is developed to study the effect of the geometries of chamfered cutting tools and cutting parameters on cutting forces and to optimize cutting parameters.
     PCBN tool wear mechanism in high speed precision hardened steel cutting is different from that in conventional cutting. By applying a scanning electron microscope (SEM) analysis and energy spectrum analysis, the effects of the geometries of chamfered coated cutting tools, coated cutting tools, and cutting speeds on PCBN tool wear are experimentally investigated to analyze PCBN tool wear mechanisms and to identify different tool wear mechanisms under high speed precision hard cutting.
     Finally, the surface integrity of GCr15 under high-speed hard precision cutting is systematically investigated. The effect of the geometries of chamfered cutting tools and cutting parameters on surface roughness, white layer and microhardness, is experimentally studied with coated PCBN tools and uncoated PCBN tools to design appropriate PCBN tools ( so called“wiper tools”) for producing very good surface quality in high-speed precision hard cutting. By applying a scanning electron microscope analysis and energy spectrum analysis, the mechanism of the formation of white layer is studied.
引文
[1]苗志毅,冯克明.绿色切削与PCBN刀具切削技术[J].金刚石与磨料磨具工程,2004,(10):73-76.
    [2]赵炳桢.重视刀具应用技术提高切削加工效率[J].航空制造技术,2005,(7):38-40.
    [3] K?NIG W,VERKTOLD.A Turning Versus Grinding—a Comparison of Surface Integrity Aspects and Attainable Accuracy[J] . Annals of the CIRP,1993,42(1):39-44.
    [4] KLOCKE F,BRINKSMEIER ECapability.Profile of Hard Cutting and Grinding Processes[J].Annals of the CIRP,2005,54:552-580.
    [5]刘献礼.PCBN刀具在中国市场的应用现状与思考[J].机电商报,2005,(8):1-2.
    [6]赵引良.切削淬火钢的刀具及其参数选择[J].机械管理开发,2005,(6):34-35.
    [7]高天安,章宏伟.采用DEO对十字轴硬态断续切削的研究与应用[J].制造技术与机床,2007,(11):115-118.
    [8]周立华.用PCBN刀具切削支撑辊淬硬钢的分析[J].一重技术,2007,(5):59-60.
    [9]李忠科,张宇.高速硬切削技术及刀具的合理选择[J].工具技术,2007,(1):89-92.
    [10]方斌,黄传真.硬切削中刀具材料的选择[J].机械工程师,2002,(11):6-8.
    [11]艾兴.高速切削刀具的发展现状[J].工具技术,2001,(3):3-8.
    [12] WORBKER T . Harbear Beilung Aus Der Sicht Der Forschung [J].VDIBerichte988,1993,125:189-209.
    [13] Destefani J . The Science of PCBN[J] . Manufacturing Engineering ,2005,134:53-57.
    [14]曹永泉,张弘弢.PCBN刀具硬态切削技术的研究与进展[J].机械制造,2005,(10):58-60.
    [15]艾兴,刘战强.高速切削刀具材料的进展和未来[J].制造技术与机床,2001,(8):21-26.
    [16]刘占强,艾兴.高速切削刀具的发展现状[J].工具技术,2001,(8):3-8.
    [17]刘占强,万熠.高速切削刀具材料及其应用[J].机械工程材料,2006,(5):1-8.
    [18]蔡志海,胡佳帅.Ti N基复合涂层硬质合金刀具的力学性能与切削性能研究[J].装甲兵工程学院学报,2007,(2):87-90.
    [19]广西实施西部大开发招商项目.2005.http://www.gxjmw.gov.cn/11111.htm
    [20]韩荣第,于启勋.难加工材料的切削加工[M].北京:机械工业出版社,1996:1-2.
    [21]仇启源,庞思勤.现代金属切削技术[M].北京:机械工业出版社,1992:12-13.
    [22]张幼祯.金属切削理论[M].北京:航空工业出版社,1988:76-100.
    [23] Chen L.Effects of Edge Preparation and Feed when Hard Turning a Hot Work Die Steel with Polycrystalline Cubic Boron Nitride Tools[J]. Annals of the CIRP,2006,55:89-92.
    [24] ALBRECHT P.New Developments in the Theory of the Metal-cutting Process[J].ASME Journal of Engineering for Industry,1960,82:343-571.
    [25] WALDORF DJ,DEVOR RE.A Slip-line Field for Ploughing During Orthogonal Cutting[J] . ASME Journal of Engineering for Industry ,1998,120(4):693-699.
    [26] REN H , ALTINTAS Y . Mechanics of Machining with Chamfered Tools[J].Journal of Manufacturing Science and Engineering,2000,122(4):650-659.
    [27] HUANG Y,LIANG SY.Force Modeling in Shallow Cuts with Large Negative Rake Angle[J].International Journal of Advanced Manufacturing Technology,2003,22:626-632.
    [28]刘献礼.聚晶立方氮化硼刀具的切削性能及制造技术的研究[D].哈尔滨:哈尔滨工业大学(博士学位论文),1999:20-25.
    [29]方宁,陈永洁,罗正川.考虑多种因素的流屑角求解模型[J].硬质合金,1994,(1):34-38.
    [30] YUAN Z L,ZHOU M.Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in UltraprecisionMachining[J] . Journal of Materials Processing Technology , 1996 (62): 327-330.
    [31]文东辉,刘献礼,严复钢,胡荣生.考虑刃口半径作用时切削力的预报[J].机械科学与技术,2002,(1):23-24.
    [32] KLAMECKI B E.Incipient Chip Formation in Metal Cutting—a Three Dimension Finite Analysis[D].Urbana:University of Illinois at Urbana-Chanpaign(Doctoral Dissertation),1973:1-5.
    [33] STRENKOWSKI J S . A Finite Element Model of Orthogonal Metal Cutting[J].Journal of Engineering for Industry,1985,107:349-354.
    [34] SASAHARA H,OBIKAWA T.FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer[J].Journal of Materials Processing Technology,1996,62:448-453.
    [35] CHILDS T H C . Material Property Needs in Modeling Metal Machining[J] . Proceedings of the CIRP International Workshop on Modeling of Machining Operations,1998,37:193-202.
    [36] KISHAWY H E A.Chip Formation and Surface Integrity in High-speed Machining of Hardened Steel[D] . McMaster : McMaster University(Doctoral Dissertation),1998:25-28.
    [37] CERETTI E,Altan T.FEM Simulation of Orthogonal Cutting:Serrated Chip Formation[J].Journal of Materials Processing Technology,1999,95:17-26.
    [38] ZHANG L C.On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method[J].Journal of Materials Processing Technology,1999,89:273-278.
    [39] NG E . Aspinwall . D . Brazil , and J . Monaghan . Modeling of Temperature and Forces when Orthogonal Machining Hardened Steel[J].International Journal of Machine Tools & Manufacture,1999,39:885-903.
    [40] LIU C R,GUO Y B.Finite Element Analysis of the Effect of Sequential Cuts and Tool-chip Friction on Residual Stresses in a Machined layer[J]. International Journal of Mechanical Sciences , 2000, 42:1069-1086.
    [41] CERETTI , LAZZARONI E C . Turning Simulations Using a Three-Dimensional FEM code[J].Journal of Materials Processing Technology, 2000,98(1):99-103.
    [42] GUO Y B . Finite Element Analysis of Superfinish Hard Turning[D].Purdue:Purdue University(Doctoral Dissertation),2000:15-20
    [43] MAMALIS A G,BRANIS A S.Modeling of Precision Hard Cutting Using Implicit Finite Element Methods[J] . Journal of Materials Processing Technology,2002,123:464-475.
    [44] RAMESH,A.Prediction of Process-induced Microstructural Changes and Residual Stresses in Orthogonal Hard Machining[D].Georgia:Georgia Institute of Technology(Doctoral Dissertation),2002:3-6.
    [45] YANG X P,LIU C R.A New Stress-based Model of Friction Behavior in Machining and its Significant Impact on Residual Stresses Computed by Finite Element Method[J].International Journal of Mechanical Sciences,2002,44:703-723.
    [46] EE K C.Finite Element Modeling and Analysis of Residual Stresses in Two-Dimensional Machining[D] . Kentucky : University of Kentucky(Doctoral Dissertation),2002:13-18.
    [47] SHET C,DENG X.Residual Stresses and Strains in Orthogonal Metal Cutting[J].International Journal of Machine Tools and Manufacture, 2003,43(6):573-587.
    [48] PAVEL R.Tool Wear, Surface Quality, and Chip Formation in Continuous and Interrupted Hard Turning[D] . Toledo: The University of Toledo(Doctoral Dissertation),2003:21-27.
    [49] PANTAL O,BACARIA J L.2D and 3D Numerical Models of Metal Cutting with Damage Effects[J].Computer Methods in Applied Mechanics and Engineering,2004,193:4383–4399.
    [50]胡华南,周泽华,陈澄洲.切削加工表面残余应力的理论预测[J].中国机械工程,1995,(6):48-51.
    [51]顾立志.金属切削过程仿真及基在切削参数优化中的应用研究[D].哈尔滨:哈尔滨工业大学(博士学位论文),2000:9-15.
    [52]方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,22(4):641-645
    [53]刘成文.金属切削加工过程的有限元分析[D].杭州:浙江大学(博士学位论文),2002:3-10.
    [54]邓文君,夏伟.钝圆刀刃切削的有限元模拟[J].工具技术,2003,(8):17-21.
    [55] LIN Z C,LIN S Y.Fundamental Modeling for Oblique Cutting by Thermoelastic Plastic Fem[J] . International Journal of Mechanical Sciences,1999,41:941-965.
    [56] LIN Z C,LAI W L.The Study of Ultra- precision Machining and Residual Stress for Nip Alloy with Different Cutting Speeds and Depth of Cut[J].Journal of Materials Processing Technology,2000,97:200-201.
    [57]文东辉,刘献礼.用PCBN刀具精密切削GCr15淬硬轴承钢[J].工具技术,2002,36:10-12.
    [58] LIU X L,WEN D H.Cutting Temperature and Tool Wear of Hard Turning Hardened Bearing Steel[J].Journal of Materials Processing Technology,2002,129:200-206.
    [59] DAVIES M A,CHOU Y.On Chip Morphology, Tool Wear and Cutting Mechanics in Finish Hard Turning[J] . CIRP Annals Manufacturing Technology,1996,45(1):77-82.
    [60] CHOU Y K,EVANS C J.Tool Wear Mechanisms in Continuous Cutting of Hardened Tool Steels[J].Wear,1997,212:59-65.
    [61] HUANG Y.Predictive Modeling of Tool Wear Rate with Application to CBN Hard Turning[D].Geogia:Geogia Institute of Technology,2002:2-8.
    [62] HUANG Y,LIANG S Y.Modeling of CBN Tool Wear Progression in Finish Hard Turning[J] . Journal of Manufacturing Science and Engineering,Transcation of the ASME,2004,126(1):98-106.
    [63] YEN Y C,ALTAN T.Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis[J].Journal of Materials Processing Technology,2004,146:82-91.
    [64] XIE L J.2D FEM Estimate of Tool Wear in Turning Operation[J].Wear,2005,258:1479-1490.
    [65] GRZESIK W . A Rised Model for Predicting Surface Roughness inTurning[J].Wear,1996,194:143-145.
    [66] KHAN Z,PRAAD B.Machining Condition Optimization by Genetic Algorithms and Simulated Annealing[J] . Computers & Operations Research,1997,24(7):647-657.
    [67] CHEUNG C F , LEE W B . A Multi-spectrum Analysis of Surface Roughness Formation in Ultra-precision Machining[J] . Precision Engineering,2000,24:77-87.
    [68] WU J L . Simulation of Rough Surfaces with FFT[J] . Tribology International,2000,33:47-58.
    [69] ABOUELATTA O B.Surface Roughness Prediction Based on Cutting Parameters and Tool Vibrations in Turning Operations[J] . Journal of Materials Processing Technology,2001,118:269-277.
    [70] SURECH P V S.A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model[J].International Journal of Machine Tool& Manufacture,2002,42:675-680.
    [71] BENARDOS P G,VASNIAKOS G C.Predicting Surface Roughness in Machining a Riew[J] . International Joural of Machine Tool& Manufacture,2003,43:833-844.
    [72]李成贵,张国雄,袁长良.分形维数与表面粗糙度参数的关系[J].工具技术,1997(12):36-38.
    [73]李丽伟,董申,程凯.表面微观形貌定量表征中几种新方法的应用[J].中国机械工程,2002,(10):1720-1725.
    [74]王洪祥.超精密车削表面微观形貌理论建模与实验研究[D].哈尔滨:哈尔滨工业大学(博士学位论文),2002:5-15.
    [75] CHOU Y K,EVANS C J.White Layers and Thermal Modelling of Hard Turned Surfaces[J].International Joural of Machine Tool& Manufacture,1999,39:1863–1881.
    [76] SMITH S R.An Investigation into the Effects of Hard Turning Surface Integrity on Component Service Life[D].Georgia:Georgia Institute of Technology(Doctoral Dissertation),2001:10-17.
    [77] BARRY J,BYRNE G.TEM Study on the Surface White Layer in Two Turned Hardened Steels[J].Materials Science and Engineering,2002,325:356-364.
    [78] RAMESHA A,MELKOTEA S N.Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel[J].Materials Science and Engineering,2005,390:88-97.
    [79]庞俊忠,王敏杰.高速切削淬硬钢的研究进展[J].中国机械工程,2006,(8):421-425.
    [80] GERARD P.Hard Turning:Chip Formation Mechanisms and Metallurgical Aspects[J].Journal of Manufacturing Science and Engineering,2000,122:406-412.
    [81] HOU Z B . Modeling of Thermomechanical Shear Instability in Machining[J].International Journal of Mechanical Science,1997,39(11):1273-1314.
    [82] BURNS T J,DAVIES M A.On Repeated Adiabatic Shear Band Formation During High-speed Machining[J].International Journal of Plasticity,2002 (18):487-506.
    [83] SHAW M C.Chip Formation in Machining Hardened steels[J].Annals of the CIRP,1998,47:29-32.
    [84] VYAS A,SHAW M C.Mechanics of Saw-tooth Chip Formation in Metal Cutting[J].Journal of Manufacturing Science and Engineering,1999,121:163-172.
    [85] ALTAN T.Status of FEM in Modeling High Speed Cutting[J].Annals of the CIRP,2006,583-589.
    [86] AURICH J C . 3D Finite Element Modelling of Segmented Chip Formation[J].Annals of the CIRP,2006,47:29-32.
    [87]文东辉,刘献礼.PCBN刀具精密硬态切削淬硬轴承钢的实验[J].研究航空制造技术,2002,(6):44-46.
    [88]段春争,王敏杰.切削高强度结构钢形成的绝热剪切带微结构观察[J].大连理工大学学报,2004,44(2):244-248.
    [89]段春争,王敏杰.高速切削锯齿形切屑内绝热剪切带微观特征研究[J].爆炸与冲击,2007,27(1):91-96.
    [90] ALTAN T.Process Modeling of High Speed Cutting Using 2D-FEM [C] . ALTAN . Proceedings of the NIST-Machining Conference ,Washington,2007,599-602.
    [91] MARUSICH T D,ORTIZ M.Modelling and Simulation of High-speedMachining[J] . International Journal for Numerical Methods in Engineering,1995,38(21):3675-3694.
    [92] BECZE C E,EBESTAWI M A.A Chip Formation Based Analytic Force Model for Oblique Cutting[J] . International Joumal of Machine Tools&Manufacture,2002,42:529-538.
    [93] CHEN W Y.Cutting Forces and Surface Finish when Machining Medium Hardness Steel Using CBN Tools[J].International Journal of Machine Tools & Manufacture,2000,40:455-466.
    [94] CHOU Y.Tool Nose Radius Effects on Finish Hard Turning[J].Journal of Materials Processing Technology,2004,148:259-268.
    [95] KOMANDURI R,BROWN R H.On the Mechanics of Chip Segmentation in Machining[J].Journal of Engineering for Industry:Trans.ASME,1981,103(1):33-51.
    [96] KOMANDURI R,SCHROEDER T.On the Catastrophic Shear Instability in High-Speed Machining of an AISI 4340[J].Journal of Engineering for Industry,Trans.ASME,1982,104(2):121-131.
    [97]王敏杰,段春争,刘洪波.正交切削切屑形成中绝热剪切行为的实验研究[J].中国机械工程,2004,15(2):244-248.
    [98] ELBESTAWI M A,SRIVASTAVA A K.A Model for Chip Formation During Machining of Hard-ened Steel[J].Annals of the CIRP,1996,45(1):71-76.
    [99]庞俊忠,王敏杰.高速切削淬硬钢的研究进展[J].中国机械工程,2006,17:421-425.
    [100] Giovanola J H.Adiabatic Shear Banding under Pure Shear Loading PartⅡ: Fractographic and Metallographic Observations[J] . Mechanics of Materials,1988,7:73-78.
    [101]段春争.正交切削高强度钢绝热剪切行为的微观机理研究[D].大连:大连理工大学(博士学位论文),2005:2-3.
    [102] JING S,LIU C R.On Predicting Softening Effects in Hard Turned Surfaces-Part I:Construction of Material Softening Model[J].Journal of Manufacturing Science and Engineering,2005,127(3):476-483.
    [103]文东辉.PCBN刀具硬态切削机理及技术[D].大连:大连理工大学(博士学位论文),2002:14-16.
    [104] MERCHANT M E.Mechanics of the Metal Cutting Progress[J].Journal of Applied Physics,1951,16:5-6.
    [105] LEE E H,SHAFFER B W.The Theory of Plasticity Applied to a Problem of Machining[J].Journal of Applied Mechanics,1951,18:405-413.
    [106] SHAW M C,COOK N H.The Machanics of Three Dimentional Cutting Operations[J].Transactions of the ASME,1952,74:1055-1064.
    [107] OXLEY.The Mechanics of Machining:An Analytical Approach to Assessing Machinability[M].England:Ellis Horwood Limited,1989:3-10.
    [108]雷英杰,张善文,李续民,周创明.Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:13-16.
    [109]刘战强.先进刀具设计技术刀具结构、刀具材料与涂层技术[J].航空制造技术,2006,7:38-42.
    [110]张锁平.欧洲齿轮刀具技术发展近况简评[J].工具技术,2002,(5):40-41.
    [111]冯士光.新型超硬材料——立方氮化硼聚晶及其刀具的应用[M].成都:四川科学技术出版社,1984:36-38.
    [112] JIANG W P. Cubic Boron Nitride ( CBN) based Nanocomposite Coatings on Cutting Inserts with Chip Breakers for Hard Turning Applications [J].Surface & Coatings Technology,2005,200,1849-1854.
    [113]小林正树.硬质膜加工工具应用[J].精密工学会志,1993,59(3):9-12.
    [114]方啸虎.超硬材料科学与技术[M].北京:中国建材工业出版社,1998:420-430.
    [115]马卡洛夫.切削过程最优化[M].北京:国防工业出版社,1988:13-15.
    [116] Klocke F,Brinksmeier E,Weinert K.Capability Profile of Hard Cutting and Grinding Processes[J].CIRP Annals,2005,54 (2):557-580.
    [117] Poulachon G,Alber A,Schluraff M.An Experimental Investigation of Work Material Microst ructure Effect s on White Layer Formation in PCBN Hard Turning[J]. International Journal of Machine Tools & Manufacture2005,45 (1):211-218.
    [118] SMITH S R.An Investigation into the Effect s of Hard Turning Surface Integrity on Component Service Life[D].Georgia:Georgia Institute of Technology(Doctoral Dissertation),2001:8-12.
    [119]郭宗连,秦宝荣.机械制造工艺学[M].北京:中国建材工业出版社,1997:69-73.
    [120]于化东.修光刃刀片的应用[J].机械工人冷加工,2002,(10):11-14.
    [121]杨晓.高效加工的技术经济分析[C].刀具协会.高效刀具技术研讨会,株洲, 2006:20-25.
    [122]张鹏.Wiper车刀片大进给切削性能研究[D].济南:山东大学(硕士学位论文),2007:3-5.
    [123] SHAW M C,VYAS A.Heat-affected Zones in Grinding seel[J].Annals of the CIRP,1994,43(1):279-282.
    [124] FIELD M , KAHLES J F . Riew of Surface Integrity of Machined Component[J].Annals of the CIRP,1971,20(2):153-163.
    [125] BRINKSMEIER E,BROCKHOFF T.White Layers in Machining Steels[C].Proceedings of the 2nd International German and French Conference on High Speed Machining,Darmstadt,1999:7-13.
    [126] CHOU Y K,EVANS C J.White Layers and Thermal Modelling of Hard Turned Surfaces[J] . International Journal of Machine Tools and Manufacture,1999,39:1863-1881.
    [127] BOSHEH S S,MATIVENGA P T.White Layer Formation in Hard Turning of H13 Tool Steel at High Cutting Speeds using CBN Tooling[J] . International Journal of Machine Tools & Manufacture ,2006,46:225-233.
    [128] T?NSHOFF H . Hard turning : Influences on the Workpieces Properties[J].Transactions of the NAMRI of SME,1995,23:215–220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700