精密超薄切削加工机理及其表面质量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天、高精密仪器仪表和精密机械等技术的发展,对各种高精度复杂零件的使用性能要求越来越高。在精密超薄切削过程中,由于切削厚度较小,切削刃钝圆半径对切削过程的影响已不容忽视,亚表层损伤给零件性能带来极大影响,导致零件合格率极低。因此,通过精密切削提高加工表面质量,减小变质层和残余应力一直是国内外精密切削领域重要的研究课题。本文通过精密超薄切削高强度弹性合金3J33实验,研究切削参数、刀具几何参数和切削力等对表面粗糙度及变质层的影响规律。
     首先,建立精密超薄正交切削力模型,把切削力分解为第一变形区的分力和钝圆半径变形区的耕犁力。在改进的Oxley切削模型的基础上研究了第一变形区和第二变形区的切削能,并运用能量最小原理计算剪切角,获得第一变形区的切削分力;基于滑移线场理论建立刀具钝圆半径变形区的耕犁力模型。考虑尖刃刀和圆弧刃刀具超薄切削时的流屑角,将精密正交切削力模型应用于尖刃刀和圆弧刃刀具精密超薄切削力的计算,为后续的研究工作提供了理论基础。
     第二,根据弹塑性变形理论和有限元方法,在修正的库仑定律刀/屑摩擦方程和局部网格重划分准则的基础上,利用有限元分析软件Msc.Marc对精密超薄切削过程进行了正交切削和圆弧刃切削过程模拟。研究正交切削过程刀具前角和钝圆半径对切削力、切削温度和应力分布的影响。圆弧刃切削过程分析了刀尖圆弧半径和钝圆半径对切削力、切削温度和应力分布的影响。模拟结果表明切削变形区为一个局部不均匀的高应力区,为实验分析提供了参考数据。
     第三,采用正交实验法,研究切削参数对尖刃刀超薄切削力的影响,建立精密超薄切削力的预测模型。采用旋转正交实验法研究切削参数(进给量和背吃刀量)和刀尖圆弧半径对圆弧刃刀具精密超薄切削力的影响,建立切削力的二次方程,并通过实验验证切削力的理论值和有限元模拟结果。
     第四,在考虑进给量和刀尖圆弧半径对表面粗糙度影响的基础上,着重考虑精密超薄切削力对加工表面粗糙度的影响,提出了用可靠的修正系数,并基于遗传算法对表面粗糙度理论模型加以修正。基于遗传算法,采用旋转正交实验法建立圆弧刃精密超薄切削表面粗糙度预测模型,分析切削参数(进给量和背吃刀量)和刀尖圆弧半径对表面粗糙度的影响。
     最后,用扫描电子显微镜检测加工变质层的显微组织,确定加工变质层厚度,同时采用显微硬度法研究亚表层的加工硬化程度。研究结果表明:变质层的晶粒在切削过程受到拉伸和扭曲,其晶粒流动方向和母材的晶粒流动方向不同,因此精密加工的变质层主要受机械应力引起塑性变形层,没有明显的热影响区和相变特征;精密加工的塑性变形层深度较小;切削用量越大,塑性变形层越深,表面硬化程度也越大。
With the development of the aerospace industry, high accuracy instrument, and precision mechanery, the demands for the service performance of components with complex small features are increasing more and more. The tool edge radius plays an important role in chip formation because undeformed chip thickness is very small in super-thin precision cutting. However, the performance of components will be failure due to damaged layer. Many researchers have put their attentions on reducing damaged layer, residual stress and improving machined surface quality with precision cutting technolagy. In this study, the effects of cutting paraments, tool geometries and cutting forces on surface roughness and damaged layer are studied in super-thin precision cutting 3J33.
     Firstly, the cutting force model of orthogonal super-thin precision cutting is studied with the cutting force divided into the chip formation force due to the primacy deformation zone and the ploughing force due to tool edge radius. By applying the minimum energy principle to cutting energy composed of the cutting and friction energy in the primary and secondary deformation zones on the basis of modified Oxley’s machining model, the shear angle in the primary deformation zone is estimated and the chip formation force is calculated. With the aid of a slip line field model, ploughing forces due to the tool edge radius are studied. The orthogonal super-thin precision cutting forces model is extended to 3D cutting forces model of sharp-nosed tool and nose radius tool considering chip flow angle to lay a theoretical foundation for the subsequent research works.
     Secondly, the friction between the tool and the chip is assumed to follow a modified Coulomb friction law and the adaptive remeshing technique is used for the formation of chip. A two-dimensional and a three-dimensional finite elements model for super-thin precision cutting using the commercial software Msc.Marc on the base of thermo-elastic-plastic deformation theory and FEM. The effect of edge radius and rake angle on cutting forces, temperature distribution, and stress distribution are investigated in the two dimensional finite element analysis. The effect of edge radius and nose radius on cutting forces, temperature distribution, and stress distribution are investigated in the three dimensional finite element analysis. The simulation results demonstrate the behaviors of the non-uniform intense stress fields in deformation zones of precision cutting to give useful data for experimental analysis.
     Thirdly, a mathematical model for cutting force in super-thin precision cutting with sharp-nosed tool is developed in terms of cutting parameters by orthogonal experimental test. A second order mathematical model for cutting forces in super-thin precision cutting with nose radius tool is developed in terms of cutting parameters (feed rate and depth of cut) and nose radius by the quadratic rotary combination design. The experimental cutting forces are used to testify the theoretical model for turning with nose radius tool and simulation results obtained from finite element analysis.
     Moreover, the theoretical model for surface roughness, which is taken as a function of variables feed and tool corner radius, is modified by cutting forces using a Genetic Algorithmic (GA) approach. A second order predictive model for surface roughness in super-thin precision cutting with nose radius tool is developed in terms of cutting parameters (feed rate and depth of cut) and nose radius by the quadratic rotary combination design using GA approach. Lastly, the mechanical and thermal effects on microstructure and hardness of super-thin precision turned sub-surfaces are studied both with a scanning electron microscope (SEM) analysis and microhardness test using microindentation. A thin disturbed or plastically deformed layer is distinguished by the presence of grains that are elongated and rotated in the direction of cutting.
     No significant heat affected layer and phase transformation is found below the machined surface in all the tests. It also implies that mechanical deformation plays a larger role during super-thin precision turning. It was also found that the hardness of the plastically deformed layer differed from the bulk hardness of the workpiece. Larger cutting parameters (depth of cut and feed rate) usually give rise to deeper mechanical affected layers.
引文
1范蜀晋,戴涛.18Ni马氏体时效钢的性能和用途.国外金属热处理,1995,16(3):41~47
    2杜跃军,周安石,闫志强.挠性接头细颈尺寸在线测量技术的研究.中国惯性技术学报,1994,2:39~46
    3阎志强.挠性接头制造技术研究.航天工艺,1994,1:1~4
    4董申,周明,袁哲俊.刀具刃口质量对超光滑切削表面完整性的影响.仪器仪表学报,1996,01:410~413
    5张文生,张飞虎,董申.对极薄切削若干问题的分析.哈尔滨理工大学,2003,8(3):55~58
    6蔡志刚,李旦,梁迎春,董申.极薄切削的实验研究.江苏机械制造与自动化,2001,4:86~88
    7陈子文,吴惠贞,檀美德.马氏体时效钢18Ni350热塑剪切变形的研究.机械科学与技术,1997,26(5):39~41
    8 J.Barry, G.. Byrne. TEM Study on the Surface White Layer in two Turned Hardened Steels. Material Science and Engineering,2002,(A325):356~364
    9仇启源,庞思勤.现代金属切削技术.机械工业出版社,1992:10~15, 374~378
    10臼井英冶著,高希正,刘德忠译.切削磨削加工学.机械工业出版社,1982,12:231~235
    11 M.E.Merchant. Mechanics of the Metal-cutting Process. J.Appl.Phys. 1945,16:267
    12 E.H.Lee, B.W.Shaffer. The Theory of Plasticity Applied to a Problem of Machining.J.Appl.Mech.1951,73:105
    13 P.L.B.Oxley. The Mechanics of Machining: An Analytical Approach to Assessing Machinability, E. Horwood, Chichester, England. 1989:95~117
    14 Partchapol Sartkulvanich. Determination of Material Properties for Use in FEM Simulations of Machining and Roller Burnishing. The Ohio State University.Ph D.2007:61
    15 A.H.Adibi-Sedeh, V. Madhavan.Effect of some Modificatoins to Oxley’s Machining Theory and Applicability of Different Material Models.Machining Science and Techology. 2002,6: 379~395
    16 Ramesh, Anand. Prediction of Process-induced Microstructural Changes and Residual Stresses in Orthogonal Hard Machining. Georgia Institute of Technology. Ph.D.2002:116~132
    17章锦华.精密切削理论与技术.上海科技技术出版社,1986,1:101~105
    18 [苏]马卡洛夫著,杨锦华,袁宁生,王存政,王起鹏译.切削过程最优化,国防工业出版社,1988,6:152,121,99
    19 P.Albrecht. New Developments in the Theory of the Metal-cutting Process, Part 1.Journal of Engineering for Industry,1960:343~371
    20 Z.L.Yuan, M.zhou, S.Dong. Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining, Journal of Materials Processing Technology.1996,62:327~330
    21小野浩一,河村未久等著,高希正,刘德忠翻译.理论切削学.国防工业出版社,1985:78~80;134~140
    22 D.A.Taminiau, J.H. Dautzenberg. Bluntness of the Tool and Process Forces in High-precision Cutting, Ann. CIRP.1991,40(1): 65~68
    23 W.J.Endres, R.E.Devor, S.G.Kapoor. A Dual-mechanism Approach to the Prediction of Machining Forces, Part 1:Model Development. Journal of Engineering for Industry.1995,117:526~533
    24 W.J.Endres, R.E.Devor, S.G.Kapoor. A Dual-mechanism Approach to the Prediction of Machining Forces. Part 2: Calibration and Validation. Journal of Engineering for Industry.1995,117:534~541
    25 W.J.Endres, R.E.Devor, S.G.Kapoor. A Slip-line Field for Ploughing During Orthogonal Cutting. ASME J Manuf Sci Eng. 1998,120(4):693~699
    26 D.J.Waldorf, R.E.Devor, S.G.Kapoor. An Evaluation of Ploughing Models for Orthogonal Machining. Journal of Manufacturing Science and Engineering.1999,21:550~558
    27 R. K.Kountanya, W. J.Endres. A High-Magnification Experimental Study of Orthogonal Cutting With Edge-Honed Tools,in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2001,12:157~164
    28 Jairam Manjunathaiah, W. J. Endres. A New Model and Analysis ofOrthogonal Machining With an Edge-Radiused Tool.Journal of Manufacturing Science and Engineering.2000,122:384~390
    29 Santosh Ranganath, Albert B. Campbell. A Model to Calibrate and Predict Forces in Machining with Honed Cutting Tools or Inserts.International Journal of Machine Tools & Manufacture.2007,47: 820~840
    30 Jeong-Du Kim. Dong Sik Kim. Theoretical Analysis of Micro-cutting Characteristics in Ultra-precision Machining.Journal of Materials Processing Technology, 1995,9:387~398
    31 H.Ren, Y.Altintas. Mechanics of Machining with Chamfered Tools. Journal of Manufacturing Science and Engineering, 2000, 122(4):650~659
    32 Y. Huang, S.Y. Liang. Force Modeling in Shallow Cuts with Large Negative Rake Angle.Int.J.Adv. Manuf Technol. 2003,22:626~632
    33 Gaobo.Fang. Finite Modeling of Chip Formation in Machining with a Rounded-edge Tool, Utah State University. MS .2004:38~56
    34 Yigit Karpat, Tugrul Ozel. Mechanics of High Speed Cutting with Curvilinear Edge Tools. Journal of Machine Tool&Manufacture. 2008,48:195~208
    35王洪祥.超精密车削表面微观形貌理论建模与实验研究.哈尔滨工业大学博士学位论文,2002:17~32
    36文东辉.PCBN刀具硬态切削机理及技术.大连理工大学博士学位论文,2002:32~51
    37 Fang. N. Slip-line Modeling of Machining with a Rounded-edge tool—Part II: Analysis of the Size Effect and the Shear Strain-rate.Journal of the Mechanics and Physics of Solids. 2003,51(4):743~762
    38 Fang.N, Fang.G. Theoretical and Experimental Investigations of Finish Machining with a Rounded Edge Tool. Journal of Materials Processing Technology. 2007,191: 331~334
    39 Xinmin Lai, Hongtao Li, Chengfeng Li, Zhongqin Lin, Jun Ni. Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness. International Journal of Machine Tools and Manufacture. 2008,48:1~14
    40 A. Molinari, A. Moufki. A New Thermomechanical Model of Cutting Applied to Turning Operations. Part I. Theory. Int. J. Mach. Tools Manufact2005,45(2):166~180
    41 A. Molinari, A. Moufki. A New Thermomechanical Model of Cutting Applied to Turning Operations. Part II. Parametric Study, Int. J. Mach. Tools Manufact. 2005,45(2):181~193
    42 E.Usui, A. Hirota. Analytical Prediction of Three Dimensional Cutting Process, Part I: Basic Cutting Model and Energy Approach. Transaction of the SAME, 1978,100:222~228.
    43 E.Usui, A. Hirota. Analytical Prediction of Three Dimensional Cutting Process, PartⅡ: Chip Formation and Cutting Force with Conventional Single-point Tool. Transaction of the SAME, 1978,100:229~235
    44 H.T.Yong, P. Mathew, P.L.B. Oxley. Allowing for Nose Radius Effects in Predicting the Chip Flow Direction and Cutting Forces in Bar Turning, Proceedings of the Institution of Mechanical Engineers.1987, 200:213~226
    45王频.新的斜角非自由切削剪切面积计算方法.八一农学院学报,1990,3:23~30
    46文东辉.精密硬态切削的研究.清华大学博士后报告,2004,12:80~99
    47 Y Kevin Chou, Hui.Song. Tool Nose Radius Effects on Finish Hard Turning. Journal of Materials Processing Technology. 2004,148:259~268
    48 Meng Liu, Jun-ichiro Tkagi, Akira Tsukuda. Effect of Tool Nose Radius and Tool Wear on Residual Stress Distribution in Hard Turning of Bearing Steel. Journal of Materials Processing Technology. 2005, 123:234~241
    49 B.E.Klamecki. Incipient Chip Formation in Metal Cutting—a Three Dimension Finite Analysis. Urbana: University of Illinois at Urbana-Chanpaign. Ph D.1973:1 ~10
    50 J. S.Strenkowski, J. T. Carroll. III. A Finite Element Model of Orthogonal Metal Cutting. Journal of Engineering for Industry. 1985 ,107:349~354.
    51 H.Sasahara, T.Obikawa, T.Shirakashi. FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer. Journal of Materials Processing Technology.1996,62:448~453
    52 T.Ozel, T. Altan. Process Simulation Using Finite Element Method - Prediction of Cutting Forces, Tool Stresses and Temperatures in High-speed Flat End Milling. International Journal of Machine Tools & Manufacture.2000,40(5): 713~738.
    53 E.Ceretti, P.Fallbohmer, W.T.Wu, T.Altan. Application of 2D FEM to Chip Formation in Orthogonal Cutting. Journal of Materials Processing Technology. 1996,59:169~180
    54 T. H. C. Childs. Numerical Experiments on the Influence of Material and Other Variables on Plane Strain Continuous Chip Formation in Metal Machining. International Journal of Mechanical Sciences. 2006,48(3): 307~322.
    55 A.G.Mamalis, A.S.Branis. Modeling of Precision Hard Cutting Using Implicit Finite Element Methods. Journal of Materials Processing Technology. 2002,123:464~475
    56方刚,曾攀.切削加工过程数值模拟的研究进展.力学进展,2001,31(3):394~404
    57 Gang Fang, Pan Zeng. Three-dimensional Thermo-elastic-plastic Coupled FEM Simulations for Metal Oblique Cutting. Journal of Materials Processing Technology. 2005,168:42~48.
    58黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究.航空学报,2004,25(3):317~320
    59王素玉,艾兴,赵军.切削速度对工件表面残余应力的有限元模拟.工具技术,2005,9:33~35
    60邓文君,夏伟,周照耀,陈普庆.钝圆刀刃切削的有限元模拟.工具技术,2003,39:17~21
    61顾立志.金属切削过程仿真及基在切削参数优化中的应用研究.哈尔滨工业大学博士学位论文. 2000:55~74
    62 Zong.W.J, D. Li. Elastic-plastic Finite Element Simulation for Diamond Turning Process. Journal of Harbin Institute of Technology.2006,13(1):88~93
    63梁文杰,胡景豫,盆洪民,王宇,刘献礼.硬态干式切削过程的有限元仿真.哈尔滨理工大学,2005,2:7~10
    64 Z.C.Lin, S.Y.Lin. Fundamental Modeling for Oblique Cutting by Thermoelastic Plastic FEM. Int. J. Mech. Sci.1999:941~965.
    65 Katsuhiro Makekawa, Masafumi Maeda, Takeaki Kitagawa. Simulation Analysis of Three-Dimensional Continuous Chip Formation Processes. Int.J.Japan Soc.Pre.Eng.1997,31(1):39~46
    66 Y.Guo. Finite Element Analysis of Superfinish Hard Turning. Purdue University. Ph.D.2000:81~85
    67 O.Pantale, L. Bacaria, O. Dalverny, R. Rakotomalala, S. Caperaa. 2D and 3D Numerical Models of Metal Cutting with Damage Effects. Comput. Methods Appl. Mech. Engrg. 2004,193:4383~4399
    68 E.Ceretti, M.Lucchi, T.Altan. FEM Simulation of Orthogonal Cutting: Serrated Chip Formation. Journal of Materials Processing Technology. 1999,95:17~26
    69 Yung-Chang Yen, Anurag Jain, Taylan Altan. A Finite Element Analysis of Orthogonal Machining Using Different Tool Edge Geometries. Journal of Materials Processing Technology. 2004,146:72~81
    70 Zhang Liang chi. On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method. Journal of Materials Processing Technology. 1999,88-89:273~278
    71 Zone-Ching Lin, Ship-Peng Lo. 2-D Discontinuous Chip Cutting Model by Using Strain Energy Density Theory and Elastic-plastic Finite Element Method. International Journal of Mechanical Sciences. 2001,43:381~398
    72 Sadat Abdul Basir. Effect of Speed,and Tool Geometry on the Machining Characteristics of Bearing Bronze. North Carolina State University.Ph.D.1983:115~145
    73 C. F. Cheung, W.B.Lee. A Multi-spectrum Analysis of Surface Roughness Formation in Ultra-precision Machining. Precision Engineering. 2000,24:77~87
    74张献平,熊大章.圆弧刃车削表面的侧向塑流.长春光学精密机械学院学报,1987,3:1~8
    75 H.A. Kishawy, M.A. Elbestawi. Effects of Process Parameters on Material Side Flow during Hard Turning. International. Journal of Machine Tools & Manufacture. 1999, 39: 1017~1030
    76 John A.Bailey. Surface Damage During Machining of Annealed 18% Nickle Maraging Steel Part1- Unlubricated Condition.Wear.1977,42:.277~296.
    77 W. Grzesik. A Revised Model for Predicting Surface Roughness in Turning. Wear. 1996,194:143~145
    78 Z.Khan, B.Praad, T.Singh. Machining Condition Optimization by GeneticAlgorithms and Simulated Annealing.Computers Ops Res.1997,24:647~657
    79 P.V.S.Surech, P.Venkateswara Bao, S.G.. Deshmukh. A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model. International Journal of Machine Tool& Manufacture. 2002,42:675~680
    80 P.G..Benardos, G..C.Vasniakos. Predicting Surface Roughness in Machining: a Review. International Joural of Machine Tool& Manufacture. 2003,43. 833~844
    81李成贵,张国雄,袁长良.分形维数与表面粗糙度参数的关系.工具技术,1997,31:36~38
    82李丽伟,董申,程凯.表面微观形貌定量表征中几种新方法的应用.中国机械工程,2002.10:1720~1725
    83王明海,卢泽生.GA寻优超精密加工表面粗糙度预测模型参数的研究.航空精密制造技术,2005,3:1~4
    84 X.L.Liu, D.H.Wen, l.J.Li, L.Xiao, F.G.Yan. Experimental Study on Hard Turning Hardened GCr15 Steel with PCBN Tool. J. Mater. Process. Technol. 2002,9:17~221
    85 Arcona. Christopher. Tool Force, Chip Formation and Surface Finish in Diamond Turning. North Carolina State University. Ph.D.1996:68-69
    86王素玉.高速铣削加工表面质量的研究.山东大学博士学位论文,2006,4
    87 M. Elmadagli, A.T. Alpas. Metallographic Analysis of the Deformation Microstructure of Copper Subjected to Orthogonal Cutting. Materials Science and Engineering. 2003,A355:249~259
    88 (日)田中义信.精密加工法.机械工业出版社,1988,10:94
    89 E. K. Henriksen. Residual Stresses in Machined Surfaces. Transactions of the ASME. 1951,1:69~76
    90 C.R.Liu, M.M.Barash. The Mechanical State of the Sub-layer of a Surface Generated by Chip-removal Process. Part1&Part2. Journal of Engineering for Industry.1976:1192~1208
    91 D.W.Wu, Y.Matsumoto. The Effect of Hardness on Residual Stresses in Orthogonal Machining of AISI 4340 Steel. Transactions of the ASME. Journal of Engineering for Industry.1990, 112(3):245-252.
    92 W.E.Fu. Residual Stress Tensor Induced by Machining. The PennsylvanlaState University. Ph.D. 2003:63~76
    93 Kurt Jacobus, R.E.Devor, S.G.Kapoor. Machining-Induced Residual Stress: Experimentation and Modeling, Transaction of the SAME, 2000,122:20~31
    94 S.Y.Liang, J-C.Su. Residual Stress Modeling in Orthogonal Machining. CIRP. 2007,56:65~68
    95 C.R. Liu, Y.B. Guo. Finite Element Analysis of the Effect of Sequential Cuts and Tool-chip Friction on Residual Stresses in a Machined Layer. International Journal of Mechanical Sciences.2000,42:1069~1086
    96 K. C. Ee. Finite Element Modeling and Analysis of Residual Stresses in Two-dimensional Machining. University of Kentucky. Ph.D.2002:130~147
    97王志方.材料表面测定技术.复汉出版社,1988:157~165
    98 Jing Shi, C. Richard Liu. Decomposition of Thermal and Mechanical Effects on Microstructure and Hardness of Hard Turned Surfaces. Journal of Manufacturing Science and Engineering.2004,126:264~273
    99 C.H. Che-Harona, A. Jawaidb. The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V. Journal of Materials Processing Technology. 2005,166:188~192
    100 Michael Jacobson, Patrik Dahlman, Fredrik Gunnberg. Cutting Speed Influence on Surface Integrity of Hard Turned Bainite Steel.Journal of Materials Processing Technology.2002,128:318~323
    101 G. Poulachona, A. Alberta, M. Schluraff, I.S. Jawahirb. An Experimental Investigation of Work Material Microstructure Effects on White Layer Formation in PCBN Hard Turning. International Journal of Machine Tools & Manufacture. 2005,45:211~218
    102 T.I.El-Wardany, H.A. Kishawi, M.A. Elbestawi. Surface Integrity of Die Material in High Speed Hard Machining, Part 1: Micrographical Analysis, Transactions of ASME, Journal of Manufacturing Science and Engineering. 2000,122:620~641
    103 T.I.El-Wardany, H.A. Kishawi, M.A. Elbestawi. Surface Integrity of Die Material in High Speed Hard Machining, Part 2: Microhardness Variations and Residual Stresses, Transactions of ASME, Journal of Manufacturing Science and Engineering. 2000,122: 632~641
    104 R.S. Pawadea, Suhas S. Joshia, Effect of Machining Parameters and CuttingEdge Geometry on Surface Integrity of High-speed Turned Inconel 718. International Journal of Machine Tools & Manufacture. 2008,48:15~28
    105杨继昌,刘伟成.剪切面边界条件对工件表面层加工硬化深度的影响.江苏理工大学学报,1995,03:49~54
    106杨继昌,刘伟成.低速正交金属切削中工件表层加工硬化深度的预报.应用科学学报,1995,03:363~368
    107文东辉,郑力,刘献礼,严复钢.精密硬态切削过程金属软化效应与表面塑性侧流的研究.金刚石与磨料磨具工程,2003,4:9~13
    108韩荣第,王大镇,韩滨.铝复合材料超精密加工表面微观分析.中国机械工程,2003,9:747~749
    109赵文祥,龙震海,王西彬,王好臣.高速切削超高强度合金钢时次表面层组织特性研究.航空材料学报,2005,25(4):22~29
    110景璐璐,沈中,陈明.铣削淬硬模具钢SKD11铣削表面质量试验研究(英文).南京航空航天大学学报(英文版),2007,1:157~163
    111张幼祯.金属切削理论.航空工业出版社,1988:76~100
    112 Pandol, P.R.Gudurub, M. Ortizb, A.J. Rosakisb. Three Dimensional Cohesive-element Analysis and Experiments of Dynamic Fracture in C300 Steel. International Journal of Solids and Structures.2000,37:3733~3760
    113师汉民.金属切削理论及其应用新探.华中科技大学出版社,2003:
    99~103
    114高允彦.正交及回归试验设计方法.冶金工业出版社,1988,5:111~121
    115 M.M.W. Knuefermann, P.A. McKeown. A Model for Surface Roughness in Ultraprecision Hard Turning. CIRP. 2004,53(1):99~102
    116雷英杰,张善文,李续民,周创明.Matlab遗传算法工具箱及应用.西安电子科技大学出版社,2005,4:56~78
    117门学勇.钢的相变实验及组织分析.哈尔滨工业大学出版社,1990:43~46
    118庞滔,郭大春.超精密加工技术.国防工业出版社,2000,8:54~57
    119范继美,万光氓.位错理论及其在金属切削加工中的应用.上海交通大学出版社,1991,5:178 ~185
    120袁哲俊.金属切削实验技术.机械工业出版社,1988:145~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700