纯镁和镁合金的阻尼及微塑变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用热挤压、等通道角挤压(ECAP)和退火处理来改变纯镁的微观组织结构,研究晶粒尺寸和织构等对阻尼和微塑变的影响机制以及它们之间的内在联系,并在纯镁中添加合金元素来研究镁合金的阻尼和微塑变机制。利用光学显微镜(OM)和透射电子显微镜(TEM)等方法观察微观组织变化;通过中子衍射和电子背散射(EBSD)分析织构的演变;采用动态机械分析仪(DMA)研究阻尼性能随应变的变化规律;采用循环拉伸的方法研究微小变形过程中滞弹性应变、摩擦应力和正切弹性模量等的变化规律。揭示了纯镁和镁合金的阻尼和微塑变行为,为新型高阻尼镁合金、耐疲劳镁合金和尺寸稳定镁合金的开发和应用奠定了良好的基础。
     挤压后纯镁的平均晶粒尺寸为68μm,随着ECAP变形道次的增加,再结晶程度逐渐提高,晶粒逐渐细化,在250°C下ECAP变形4道次纯镁的平均晶粒尺寸为6μm。挤压态纯镁具有基面平行于挤压方向的织构。随着变形道次的增加,基面极点以TD和ED为轴逐步发生倾转,最终形成基面极点分别偏离ND和TD大约40o和65o的织构,而基面平行于挤压方向的织构逐渐弱化,导致沿挤压方向变形的基面滑移Schmid因子大幅度提高。退火后纯镁的晶粒尺寸逐渐增大,而织构基本保持不变。
     纯镁与塑性变形相关的阻尼和微塑变行为可用同样的位错机制来解释,它们有着相同的物理本质。塑性阻尼的两个阶段与循环拉伸微塑变的两个阶段相对应:第一阶段对应塑性应变小于2×10~(-4)(总应变约为8×10~(-4))的区域,Schmid因子较大晶粒内部位错从钉扎点上脱钉并在基面滑移,可动性较大,激活体积较大,加工硬化指数较小;当塑性应变高于2×10~(-4)时,由于位错在同一滑移面上运动而发生缠结和堆积,可动位错密度降低,材料硬化,所以具有较大的加工硬化指数和较小的位错滑移激活体积,这时微塑变进入第二阶段。
     在应变小于第一临界应变振幅(1×10~(-4)左右)时,纯镁中位错在弱钉扎点间摆动,加载卸载曲线基本重合为一条直线,此时阻尼性能Q_0~(-1)与应变振幅无关;随应变的增大,位错从弱钉扎点上脱钉,产生应力-应变滞后环,滞弹性应变迅速增加,而正切弹性模量快速降低,此时阻尼性能Q_h~(-1)随应变振幅逐渐增大。这两个滞弹性阶段可以用G-L位错模型来解释;当高于第二临界应变振幅(5×10~(-4)左右)后,G-L曲线偏离直线,基面位错从强钉扎点上脱钉,发生微小塑性变形,阻尼性能Q_p~(-1)快速提高;当高于第三临界应变振幅(9×10~(-4)左右)后,由于位错的缠结和堆积,摩擦应力逐渐增大,而损失模量的增加速度变缓。后两个微小塑性变形阶段需要用微塑变位错模型来解释。随着晶粒尺寸或基面滑移Schmid因子的增大,纯镁的阻尼性能、滞弹性应变和损失弹性模量增大,而正切弹性模量、摩擦应力和背应力降低。
     选取在镁中固溶的Al和不固溶的Si两类合金元素来制备Mg-Al和Mg-Si合金,并以纯镁作为对比研究合金元素的添加对镁的阻尼和微塑变影响规律。添加完全固溶的1%Al元素会极大的降低位错线上弱钉扎点间距,从而提高镁合金在较小应变下的正切弹性模量,摩擦应力和背应力,但同时也会导致阻尼性能的急剧降低;添加基本不固溶的Si元素不会降低镁的低应变阻尼性能,但会生成Mg2Si第二相,明显的减小铸态镁合金的晶粒尺寸,严重阻碍脱钉后的位错运动,导致较大应变下阻尼性能的降低,同时提高正切弹性模量,摩擦应力和背应力。
     在位错增殖的临界应变振幅时,假设位错在强钉扎点钉扎下循环过程中所扫过的面积为圆形。根据功能原理可计算出此临界应变下纯镁和镁合金中的可动位错密度以及位错线上强弱钉扎点间的平均距离,变形后纯镁和镁合金中的可动位错密度为10~(12)m~(-2)数量级,退火态和铸态材料中可动位错密度为10~(10)-10~(11)m~(-2)数量级。
Hot extrusion, equal channel angular pressing (ECAP) and subsequentannealing treatment were performed on pure Mg to modify the microstructure. Theeffects of grain size and texture of pure Mg on microplastic deformation, dampingcapacity and the relationship between them were studied in detail. Two kinds ofalloy elements were added to Mg to study the microplasticity and damping capacityof Mg alloys. The microstructures characteristics of pure Mg and Mg alloys wereobserved by OM and TEM. The texture evolutions were analyzed by neutrondiffraction and EBSD. The strain dependence of damping capacities were studied byDMA. The developments of anelastic strain, friction stress and secant elasticmodulus, etc. in microstrain region were studied by cyclic loading-unloading tests.This paper revealed the damping and microplastic behaviors of pure Mg and Mgalloys, established a good foundation to develop high damping capacity, high fatigueand high dimensional stability Mg based materials.
     The average grain size of pure Mg after extrusion was about68μm. Withincreasing the ECAP passes, the degree of recrystallization was increased, whichresulted in the refinement of grain size. The grain size of pure Mg after ECAPprocessing for4passes at the temperature of250°C was refined to6μm. Theas-extruded Mg exhibits a texture with {0001}1010nearly parallel to theextrusion direction (ED). With increasing the ECAP passes, the basal poles rotatedaround transverse direction (TD) and ED axis and formed a maximum componentlocating at about40ofrom normal direction (ND) and65ofrom TD. The texturecomponent with basal planes parallel to ED becomes much weaker. The textureevolution after ECAP led to a increase of the Schmid factor for basal slip towardsED. The grain size was gradually increased, but the texture almost kept stable afterannealing treatments.
     The microplasticity and damping related to plasticity of pure Mg have the samephysical mechanism and can be explain by the same dislocation model. The twostages of plastic damping and microplasticity correspond to each other. The firststage relates to the plastic strain below2×10~(-4)(the total strain of about8-9×10~(-4)),the basal dislocations in favorable oriented grains break away from strong pinningpoints and slide on the basal planes, which results in the larger volume activationsbut smaller hardening exponents; the microplastic deformation process enters intothe second region when the plastic strain is above2×10~(-4), the tangle and piled-upof dislocations lead to the decrease of mobile dislocations, the materials are characterized by the larger hardening exponents but smaller volume activations.
     When the strain is smaller than the first critical strain amplitude (about1×10-4),the materials almost deform in an elastic manner. At this time the dislocationsreversibly motion between the weak pinning points, the loading-unloading curvesalmost coincide with the elastic line, and the damping capacityQ1
     0is amplitudeindependent; the dislocations unpin from weak pinning points with the increase ofstrain amplitude, as a result of the rapid increase of anelastic strain and decrease ofsecant elastic modulus. At this time the damping capacityQ1
     hincreases graduallywith the increase of amplitude. The first two anelastic stages can be explained bydislocation theory developed by Granato and Lücke (G-L); however, a deviationfrom the straight line occurs beyond the second strain amplitude (about5×10-4), thebasal dislocations break away from strong pinning points, which results in theoccurrence of microplastic deformation. In this case the damping capacityQ_p~(-1)rapidly increases; due to the tangle and piled-up of dislocations above the thirdstrain amplitude (about9×10~(-4)), the friction stress gradually increases but theincrease speed of modulus defect slows down. The last two microplasticdeformation processes should be explained in terms of the microplastic dislocationmodel. With increasing the grain size or the Schmid factor of basal slip, the dampingcapacity, anelastic strain and elastic modulus increase defect, but the secant elasticmodulus, friction and back stresses decrease.
     Two kinds of Mg alloys which containing elements that possess differentsolubilities in Mg were designed and fabricated. The effects of alloy elements ondamping and microplasyicity of Mg alloys were studied with the comparison of pureMg. The distance of weak pinning points on dislocations was reduced when Alelement was added to Mg, so Mg-1Al alloy exhibited the largest secant elasticmodulus and friction stress but the lowest damping capacity at low strain region.However, the addition of Si did not result in the derease of damping capacitybecause it was unable to dissolve in Mg. But the second phase Mg_2Si led to themarked decrease of grain size of as-cast Mg-1Si alloy, which blocked the motion ofdislocations and so resulted in the derease of damping capacity at high strain region.While the secant elastic modulus, friction stress and back stress were increased atthe same time.
     It is supposed that the area swept by a dislocation pinned by strong pinningpoints is a circle at the critical strain amplitude to generate new dislocation. Theaverage mobile dislocation densities and distances between pinning points wereestimated according to the quantitative relationship between the dissipated energy by dislocation motion against the friction stress on the slip plane and dampingcapacity. The average mobile dislocation densities of pure Mg and Mg alloys afterdeformation are in the order of10~(12)m~(-2), and reduced by one or two orders aftershort time annealing treatments.
引文
[1] Roberts J M, Brown N. Microstrain in zinc single crystals[J]. Trans. Metall.Soc. AIME,1960,218:454-463.
    [2] Thomas D A, Averbach B L. The early stages of plastic deformation incopper[J]. Acta Metall.,1959,7(2):69-75.
    [3] Brown N, Lukens K F. Microstrain in polycrystalline metals[J]. Acta Metall.,1961,9:106-111.
    [4] Adrien J, Maire E, Estevez R, Ehrstrom J C, Warner T. Influence of thethermomechanical treatment on the microplastic behaviour of a wroughtAl-Zn-Mg-Cu alloy[J]. Acta Mater.,2004,52(6):1653-1661.
    [5] Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K,Higashi K. The activity of non-basal slip systems and dynamic recovery atroom temperature in fine-grained AZ31B magnesium alloys[J]. Acta Mater.,2003,51(7):2055-2065.
    [6] Li Q, Yu Q, Zhang J, Jiang Y. Effect of strain amplitude ontension-compression fatigue behavior of extruded Mg6Al1ZnA magnesiumalloy[J]. Scripta Mater.,2010,62(10):778-781.
    [7] Park S H, Hong S, Bang W, Lee C S. Effect of anisotropy on the low-cyclefatigue behavior of rolled AZ31magnesium alloy[J]. Mater. Sci. Eng. A,2010,527(3):417-423.
    [8] Marschall C W, Maringer R E. Dimensional instability-An introduction[M].Oxford: Pergamon Press,1997:1.
    [9] Zhang F, Sun P, Li X, Zhang G. A comparative study on microplasticdeformation behavior in a SiCpr2024Al composite and its unreinforcedmatrix alloy[J]. Mater. Lett.,2001,49:69-74.
    [10]钟景明,高勇,王东新,王学泽,王零森.金属铍的微屈服行为及机理[J].中国有色金属学报,2004,14(10):1637-1641.
    [11]李义春,樊建中,张奎,张少明,石力开,武高辉,孙东立,杨德庄.冷热循环对颗粒增强铝基复合材料微屈服行为的影响[J].中国有色金属学报,1998,8:399-404.
    [12] Pu kár A. Internal friction of materials[M]. Cambrigde: CambridgeInternational Science Publishing,2001:234-324
    [13] Pu kár A. Cyclic microplasticity factors of some metals[J]. Mater. Sci. Eng.,1983,61:111-116.
    [14] Roberts J M, Hartman D E. The Temperature dependence of the microyieldpoints in prestrained magnesium single crystals[J]. Trans. Metall. Soc. AIME,1964,230:1125-1134.
    [15] Kustov S, Golyandin S, Sapozhnikov K, Robinson W H.Amplitude-dependent internal friction, microplastic strain and recovery oflead at ambient temperature[J]. Mater. Sci. Eng. A,1997,237(2):191-199.
    [16] Mughrabi H, Hoppel H W, Kautz M. Fatigue and microstructure ofultrafine-grained metals produced by severe plastic deformation[J]. ScriptaMater.,2004,51:807-812.
    [17] Ca′ceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of castmagnesium AZ91alloy under cyclic loading-unloading[J]. Acta Mater.,2003,51(20):6211-6218.
    [18] Mann G E, Sumitomo T, Caceres C H, Griffiths J R. Reversible plastic strainduring cyclic loading-unloading of Mg and Mg-Zn alloys[J]. Mater. Sci. Eng.A,2007,456(1-2):138-146.
    [19] Barnett M R, Keshavarz Z, Beer A G, Ma X. Non-Schmid behaviour duringsecondary twinning in a polycrystalline magnesium alloy[J]. Acta Mater.,2008,56(1):5-15.
    [20] Beausir B, Biswas S, Kim D I, Toth L, Suwas S. Analysis of microstructureand texture evolution in pure magnesium during symmetric and asymmetricrolling[J]. Acta Mater.,2009,57(17):5061-5077.
    [21] Biswas S, Singh Dhinwal S, Suwas S. Room-temperature equal channelangular extrusion of pure magnesium[J]. Acta Mater.,2010,58(9):3247-3261.
    [22] Yin D L, Wang J T, Liu J Q, Zhao X. On tension-compression yieldasymmetry in an extruded Mg-3Al-1Zn alloy[J]. J. Alloys Compd.,2009,478(1-2):789-795.
    [23] Park S H, Hong S-G, Lee C S. Role of initial {1012} twin in the fatiguebehavior of rolled Mg-3Al-1Zn alloy[J]. Scripta Mater.,2010,62(9):666-669.
    [24] Tong L B, Zheng M Y, Xu S W, Hu X S, Wu K, Kamado S, Wang G J, Lv X Y.Room-temperature compressive deformation behavior of Mg-Zn-Ca alloyprocessed by equal channel angular pressing[J]. Mater. Sci. Eng. A,2010,528:672-679.
    [25] Koike J. Enhanced deformation mechanisms by anisotropic plasticity inpolycrystalline Mg alloys at room temperature[J]. Metall. Mater. Trans. A,2005,36:1689-1696.
    [26] Muránsky O, Carr D G, Sittner P, Oliver E C. In situ neutron diffractioninvestigation of deformation twinning and pseudoelastic-like behaviour ofextruded AZ31magnesium alloy[J]. Int. J. Plast.,2009,25(6):1107-1127.
    [27] Obara T, Yoshinga H, Morozumi S.{1122}<1123> Slip system inmagnesium[J]. Acta Metall.,1973,21(7):845-853.
    [28] Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement inAZ31magnesium alloy by controlling its grain structure[J]. Scripta Mater.,2001,45(1):89-94.
    [29] Yan H, Chen R S, Han E H. Room-temperature ductility and anisotropy oftwo rolled Mg-Zn-Gd alloys[J]. Mater. Sci. Eng. A,2010,527(15):3317-3322.
    [30] Muránsky O, Carr D G, Barnett M R, Oliver E C, Sittner P. Investigation ofdeformation mechanisms involved in the plasticity of AZ31Mg alloy: In situneutron diffraction and EPSC modelling[J]. Mater. Sci. Eng. A,2008,496(1-2):14-24.
    [31] Chun Y B, Davies C H J. Texture effect on microyielding of wroughtmagnesium alloy AZ31[J]. Mater. Sci. Eng. A,2011,528:3489-3495.
    [32] Lamark T T, Hellmig R J, Estrin Y. Mechanical properties of ECAPprocessed magnesium alloy AS21X[J]. Mater. Sci. Forum,2006,503-504:889-894.
    [33]周爱国,张建新.金属镁、钛和钴的非线性弹性研究[J].材料热处理学报,2010,31(8):50-54.
    [34] Lee R E, Jones W J D. Microplasticity and fatigue of somemagnesium-lithium alloys-1[J]. J. Mater. Sci.,1974,9:469-475.
    [35]朱平,张力宁. ICr18Ni9Ti微塑性变形行为的研究[J].金属学报,1989,25(6):410-414.
    [36] Koppenaal T J. Comments on the Rosenfield and Averbach theory for initialyielding in f.c.c. metals and alloys[J]. Acta Metall.,1963,11(1):85-86.
    [37] Alexopoulos P S, Cho C W, Hu C P, Li C. Determination of the anelasticmodulus for several metals[J]. Acta Metall.,1980,29:569-577.
    [38] Brown N, Ekvall R A. Temperature dependence of the yield points in iron[J].Acta Metall.,1962,10(11):1101-1107.
    [39] Armas A F, Here ú S, Bolmaro R, Alvarez-Armas I. Texture variations andcyclic softening mechanisms on ZRY-4at room temperature. Part I: Cyclicbehavior[J]. Rev. Mater.,2004,9(4):280-287.
    [40] Armas A F, Here ú S, Bolmaro R, Alvarez-Armas I. Texture variations andcyclic softening mechanisms on ZRY-4at room temperature.Part II: Textureevolution and simulations [J]. Rev. Mater.,2004,9(4):288-295.
    [41] Seregin G V, Efimenko L L, Leonov M V. Characteristics of aluminum alloymicroplastic deformation in different structural states[J]. Met. Sci. HeatTreat.,1995,37:70-73.
    [42] Lee R E, Jones W J D. Microplasticity and fatigue of somemagnesium-lithium alloys-2[J]. J. Mater. Sci.,1974,9:476-481.
    [43] Agnew S R, Brown D W, Tom C N. Validating a polycrystal model for theelastoplastic response of magnesium alloy AZ31using in situ neutrondiffraction[J]. Acta Mater.,2006,54(18):4841-4852.
    [44] Muránsky O, Barnett M R, Carr D G, Vogel S C, Oliver E C. Investigation ofdeformation twinning in a fine-grained and coarse-grained ZM20Mg alloy:Combined in situ neutron diffraction and acoustic emission[J]. Acta Mater.,2010,58(5):1503-1517.
    [45] Zhou A G, Barsoum M W. Kinking Nonlinear elasticity and the deformationof magnesium[J]. Metall. Mater. Trans. A,2009,40A:1741-1756.
    [46] Zhou A G, Basu S, Barsoum M W. Kinking nonlinear elasticity, damping andmicroyielding of hexagonal close-packed metals[J]. Acta Mater.,2008,56(1):60-67.
    [47] Kocks U F, Mecking H. Physics and phenomenology of strain hardening: theFCC case[J]. Prog. Mater Sci.,2003,48(3):171-273.
    [48] Brandstetter S, Swygenhoven H V, Petegem S V, Schmitt B, Maa R, DerletP M. From micro-to macroplasticity[J]. Adv. Mater.,2006,18:1545-1548.
    [49] Fantozzi G, Esnouf C, Benoit W, Ritchie I G. Internal friction andmicrodeformation due to the intrinsic properties of dislocations: The Bordonirelaxation[J]. Prog. Mater Sci.,1982,27(3-4):311-451.
    [50]钟景明.金属铍的微屈服行为及机理研究[D].中南大学博士学位论文,2001:84-94.
    [51] Raeisinia B, Agnew S R, Akhtar A. Incorporation of Solid Solution AlloyingEffects into Polycrystal Modeling of Mg Alloys[J]. Metall. Mater. Trans. A,2011,42(5):1418-1430.
    [52] Raeisinia B, Agnew S R. Using polycrystal plasticity modeling to determinethe effects of grain size and solid solution additions on individualdeformation mechanisms in cast Mg alloys[J]. Scripta Mater.,2010,63(7):731-736.
    [53] Gharghouri M A, Weatherly G C, Embury J D, Root J. Study of themechanical properties of Mg-7.7at.%A1by in-situ neutron diffraction[J].Philos. Mag. A,1999,79(7):1671-1695.
    [54] Sugimoto K, Niiya K, Okamoto T, Kishitake K. A study of damping capacityin magnesium alloys[J]. Trans. JIM,197718:277-288.
    [55] T.T.Lamark, R.J.Hellmig, Y.Estrin. Mechanical properties of ECAPprocessed magnesium alloy AS21X[J]. Mater. Sci. Forum,2006,503-504:889-894.
    [56] Agnew S R, Yoo M H, Tom C N. Application of texture simulation tounderstanding mechanical behavior of Mg and solid solution alloyscontaining Li or Y[J]. Acta Mater.,2001,49(20):4277-4289.
    [57] Agnew S R, Horton J A, Yoo M H. Transmission electron microscopyinvestigation of dislocations in Mg and–solid solution Mg-Lialloys[J]. Metall. Mater. Trans. A,2002,33A:851-858.
    [58] Keshavarz Z, Barnett M R. EBSD analysis of deformation modes inMg-3Al-1Zn[J]. Scripta Mater.,2006,55(10):915-918.
    [59] Wu L, Agnew S R, Brown D W, Stoica G M, Clausen B, Jain A, Fielden D E,Liaw P K. Internal stress relaxation and load redistribution during thetwinning-detwinning-dominated cyclic deformation of a wrought magnesiumalloy, ZK60A[J]. Acta Mater.,2008,56(14):3699-3707.
    [60] Clausen B, Tom C N, Brown D W, Agnew S R. Reorientation and stressrelaxation due to twinning: Modeling and experimental characterization forMg[J]. Acta Mater.,2008,56(11):2456-2468.
    [61] Agnew S R, Tom C N, Brown D W, Holden T M, Vogel S C. Study of slipmechanisms in a magnesium alloy by neutron diffraction and modeling[J].Scripta Mater.,2003,48(8):1003-1008.
    [62] Akhtar A, Teghtsoonian E. Substitutional solution hardening of magnesiumsingle crystals[J]. Philos. Mag.,1972,25:897-916.
    [63] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium singlecrystals--ii the effect of solute on the ease of prismatic slip[J]. Acta Metall.,1969,17:1351-1356.
    [64] Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium singlecrystals--i alloying behaviour in basal slip[J]. Acta Metall.,1969,17:1339-1349.
    [65] Golovin I S, Kollerov M U, Schinaeva E V. The study of microplasticitymechanism in Ti-50wt.%Nb alloy with high hydrogen content[J]. J. Phys. IV,1996,6(8):289-292.
    [66] Soifer Y M, Shteinberg V G. Low temperature internal friction andmicroplastic strain in copper[J]. Phys. Stat. Sol.(a),1977,42:87-90.
    [67] Bates S J, Bacon D J. Microyielding in alpha titanium[J]. J. Mater. Sci.,1980,15(4):1035-1040.
    [68] Wilson F G, Teghtsoonian E. Microflow in niobium alloy crystals[J]. Metall.Mater. Trans. B,1971,2(4):1183-1188.
    [69] Rosenfield A R, Averbach B L. Initial stages of plastic deformation in copperand aluminum[J]. Acta Metall.,1960,8(9):624-629.
    [70] Yin S M, Yang H J, Li S X, Wu S D, Yang F. Cyclic deformation behavior ofas-extruded Mg-3%Al-1%Zn[J]. Scripta Mater.,2008,58(9):751-754.
    [71] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Reducing thetension-compression yield asymmetry in a Mg-8Al-0.5Zn alloy viaprecipitation[J]. Scripta Mater.,2010,62(5):301-304.
    [72] Nowick A S, Berry B S. Anelastic relaxation in crystalline[M]. New York:Academic Press,1972:130-132.
    [73]王从曾.材料性能学[M].北京:北京工业大学出版社,2001:9-13.
    [74] Granato A, Lücke K. Theroy of mechanical damping due to dislocation[J]. J.Appl. Phys.,1956,27(6):583-593.
    [75] Granato A, Lücke K. Application of dislocation theory to internal frictionphenomena at high frequencies[J]. J. Appl. Phys.,1956,27(7):789-805.
    [76] Peguin P, Perez J, Gobin P. Amplitude-dependent part of the internal frictionof aluminum[J]. Trans. Metall. Soc. AIME,1967,239:438-450.
    [77] James D W. High damping metals for engineering applications[J]. Mater. Sci.Eng. A,1969,4:1-8.
    [78] Wan D, Wang J, Yang G. A study of the effect of Y on the mechanicalproperties, damping properties of high damping Mg-0.6%Zr based alloys[J].Mater. Sci. Eng. A,2009,517(1-2):114-117.
    [79]叶青. ZMTD-1S阻尼合金研制[M].上海交通大学硕士学位论文,1988:8-19.
    [80] Tsui R T C, Sack H S. Internal friction and transmission electron microscopystudies of magnesium-I. internal friction[J]. Acta Metall.,1967,(15):1715-1722.
    [81] TrojanováZ, Lukác P, Riehemann W. Influence of rapid solidification on thedamping behaviour of some magnesium alloys[J]. Mater. Sci. Eng. A,1997,226:867-870.
    [82] Nishiyama K, Matsui R, Ikeda Y, Niwa S, Sakaguchi T. Damping propertiesof a sintered Mg-Cu-Mn alloy[J]. J. Alloys Compd.,2003,355:22-25.
    [83] Hu X S, Wu K, Zheng M Y, Gan W M, Wang X J. Low frequency dampingcapacities and mechanical properties of Mg-Si alloys[J]. Mater. Sci. Eng. A,2007,452-453:374-379.
    [84] Hu X S, Zhang Y K, Zheng M Y, Wu K. A study of damping capacities inpure Mg and Mg-Ni alloys[J]. Scripta Mater.,2005,52(11):1141-1145.
    [85]胡小石.镁合金低频阻尼性能及其稳定性研究[D].哈尔滨工业大学博士学位论文,2008:44-60.
    [86]李明.镁及镁锆合金阻尼特性的研究[J].上海交通大学,1988:80-90.
    [87] Sugimoto K, Matsui K, Okamoto T, Kishitake K. Effect of crystal orientationon amplitude-dependent damping in magnesium[J]. Trans. JIM,1975,16:647-655.
    [88] Schwaneke A E, Nash R W. Effect of preferred orientation on the dampingcapacity of magnesium alloys[J]. Metal. Trans.,1971,2:3454-3457.
    [89] Kamado S, Kojima Y. Damping capacity of cast and rolled Mg-Al alloys[J].Proceeding of the First Is-Raeli Internatiional Conference on MagnesiumScience and Technology. Deadsea, Israel,1997:157-163.
    [90] Fan G D, Zheng M Y, Hu X S, Chang H, Wu K. Low-frequency dampingbehavior of pure mg processed by equal channel angular pressing[J]. Int. J.Mod. Phys. B,2009,23:1829-1833.
    [91] Zheng M Y, Fan G D, Tong L B, Hu X S, Wu K. Damping behavior andmechanical properties of Mg-Cu-Mn alloy processed by equal channelangular pressing [J]. Trans. Nonferrous Met. Soc. China,2008,18:33-38.
    [92] Riehemann W, Abed F. Influence of ageing on the internal friction ofmagnesium[J]. J. Alloys Compd.,2000,310:127-130.
    [93] Hu X S, Wu K, Zheng M Y. Effect of heat treatment on the stability ofdamping capacity in hypoeutectic Mg-Si alloy[J]. Scripta Mater.,2006,54(9):1639-1643.
    [94] Wan D, Wang J, Wang G, Lin L, Feng Z, Yang G. Precipitation andresponding damping behavior of heat-treated AZ31magnesium alloy[J]. ActaMetall. Sin.,2009,22(1):1-6.
    [95] Gonzalez-Martinez R, Goken J, Letzig D, Timmerberg J, Steinhoff K, KainerK U. Influence of heat treatment on damping behaviour of the magnesiumwrought alloy AZ61[J]. Acta Metall. Sin.,2007,20(4):235-240.
    [96] Gonzalez-Martinez R, Goken J, Letzig D, Steinhoff K, Kainer K U. Influenceof aging on damping of the magnesium-aluminium-zinc series[J]. J. AlloysCompd.,2007,437(1-2):127-132.
    [97] Zhang Z, Zeng X, Ding W. The influence of heat treatment on dampingresponse of AZ91D magnesium alloy[J]. Mater. Sci. Eng. A,2005,392(1-2):150-155.
    [98]陶燕玲.镁合金阻尼减振性能及机理研究[M].重庆大学硕士学位论文,2004:50-55.
    [99] Segal V M. Materials processing by simple shear[J]. Mater. Sci. Eng. A,1995,197(2):157-164.
    [100]Fan G D, Zheng M Y, Hu X S, Xu C, Wu K, Golovin I S. Improvedmechanical property and internal friction of pure Mg processed by ECAP [J].Mater. Sci. Eng. A,2012,556:588-594.
    [101]Gan W M, Zheng M Y, Chang H, Wang X J, Qiao X G, Wu K, Schwebke B,Brokmeier H G. Microstructure and tensile property of the ECAPed puremagnesium[J]. J. Alloys Compd.,2009,470(1-2):256-262.
    [102]Ma A, Jiang J, Saito N, Shigematsu I, Yuan Y, Yang D, Nishida Y. Improvingboth strength and ductility of a Mg alloy through a large number of ECAPpasses[J]. Mater. Sci. Eng. A,2009,513-514:122-127.
    [103]Agnew S R, Horton J A, Lillo T M, Brown D W. Enhanced ductility instrongly textured magnesium produced by equal channel angularprocessing[J]. Scripta Mater.,2004,50(3):377-381.
    [104]Kim W J, An C W, Kim Y S, Hong S I. Mechanical properties andmicrostructures of an AZ61Mg Alloy produced by equal channel angularpressing[J]. Scripta Mater.,2002,47(1):39-44.
    [105]Aida T, Matsuki K, Horita Z, Langdon. T G. Estimating the equivalent strainin equal-channel angular pressing[J]. Scripta. Mater.,2001,44:575-579.
    [106]Furukawa M, Hotita Z, Nemoto M, London T G. Processing of metals byequal-channel angular pressing[J]. J. Mate. Sci.,2001,36:2835-2843.
    [107]Tong L B, Zheng M Y, Hu X S, Wu K, Xu S W, Kamado S, Kojima Y.Influence of ECAP routes on microstructure and mechanical properties ofMg-Zn-Ca alloy[J]. Mater. Sci. Eng. A,2010,527(16-17):4250-4256.
    [108]Kim W J, Sa Y K. Micro-extrusion of ECAP processed magnesium alloy forproduction of high strength magnesium micro-gears[J]. Scripta Mater.,2006,54(7):1391-1395.
    [109]Kim W J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Texturedevelopment and its effect on mechanical properties of an AZ61Mg alloyfabricated by equal channel angular pressing[J]. Acta Mater.,2003,51(11):3293-3307.
    [110]Zheng M Y, Hu X S, Xu S W, Qiao X G, Wu K, Kamado S, Kojima Y.Mechanical properties and damping behavior of magnesium alloys processedby equal channel angular pressing[J]. Mater. Sci. Forum,2007,539-543:1685-1690.
    [111]Liu T, Wu S D, Li S X, Li P J. Microstructure evolution of Mg-14%Li-1%Alalloy during the process of equal channel angular pressing[J]. Mater. Sci.Eng. A,2007,460-461:499-503.
    [112]Gan W M, Wu K, Zheng M Y, Wang X J, Chang H, Brokmeier H G.Microstructure and mechanical property of the ECAPed Mg2Si/Mgcomposite[J]. Mater. Sci. Eng. A,2009,516(1-2):283-289.
    [113]Furui M, Kitamura H, Anada H, Langdon T G. Influence of preliminaryextrusion conditions on the superplastic properties of a magnesium alloyprocessed by ECAP[J]. Acta Mater.,2007,55(3):1083-1091.
    [114]Agnew S R, Mehrotra P, Lillo T M, Stoica G M, Liaw P K. Crystallographictexture evolution of three wrought magnesium alloys during equal channelangular extrusion[J]. Mater. Sci. Eng. A,2005,408(1-2):72-78.
    [115]Ferrasse S, Segal V M, Alford F. Texture evolution during equal channelangular extrusion (ECAE): Part II. An effect of post-deformationannealing[J]. Mater. Sci. Eng. A,2004,372(1-2):235-244.
    [116]Ferrasse S, Segal V M, Kalidindi S R, Alford F. Texture evolution duringequal channel angular extrusion: Part I. Effect of route, number of passes andinitial texture[J]. Mater. Sci. Eng. A,2004,368(1-2):28-40.
    [117]Figueiredo R B, Beyerlein I J, Zhilyaev A P, Langdon T G. Evolution oftexture in a magnesium alloy processed by ECAP through dies with differentangles[J]. Mater. Sci. Eng. A,2010,527(7-8):1709-1718.
    [118]Beausir B, Suwas S, Toth L, Neale K W, Fundenberger J-J. Analysis oftexture evolution in magnesium during equal channel angular extrusion[J].Acta Mater.,2008,56(2):200-214.
    [119]Suwas S, Gottstein G, Kumar R. Evolution of crystallographic texture duringequal channel angular extrusion (ECAE) and its effects on secondaryprocessing of magnesium[J]. Mater. Sci. Eng. A,2007,471(1-2):1-14.
    [120]Agnew S R, Mehrotra P, Lillo T M, Stoica G M, Liaw P K. Texture evolutionof five wrought magnesium alloys during route A equal channel angularextrusion: Experiments and simulations[J]. Acta Mater.,2005,53(11):3135-3146.
    [121]Langdon T G. The principles of grain refinement in equal-channel angularpressing[J]. Mater. Sci. Eng. A,2007,462(1-2):3-11.
    [122]Del Valle J A, Carreno F, Ruano O A. Influence of texture and grain size onwork hardening and ductility in magnesium-based alloys processed by ECAPand rolling[J]. Acta Mater.,2006,54(16):4247-4259.
    [123]Tong L B, Zheng M Y, Chang H, Hu X S, Wu K, Xu S W, Kamado S, KojimaY. Microstructure and mechanical properties of Mg-Zn-Ca alloy processed byequal channel angular pressing[J]. Mater. Sci. Eng. A,2009,523(1-2):289-294.
    [124]Zheng M Y, Xu S W, Qiao X G, Wu K, Kamado S, Kojima Y. Compressivedeformation of Mg-Zn-Y-Zr alloy processed by equal channel angularpressing[J]. Mater. Sci. Eng. A,2008,483-484:564-567.
    [125]Zheng M Y, Xu S W, Wu K, Kamado S, Kojima Y. Superplasticity ofMg-Zn-Y alloy containing quasicrystal phase processed by equal channelangular pressing[J]. Mater. Lett.,2007,61(22):4406-4408.
    [126]Jin L, Lin D, Mao D, Zeng X, Ding W. Mechanical properties andmicrostructure of AZ31Mg alloy processed by two-step equal channelangular extrusion[J]. Mater. Lett.,2005,59(18):2267-2270.
    [127]Figueiredo R B, Langdon T G. Principles of grain refinement andsuperplastic flow in magnesium alloys processed by ECAP[J]. Mater. Sci.Eng. A,2009,501(1-2):105-114.
    [128]刘楚明,朱秀荣,周海涛.镁合金相图集[M].湖南:中南大学出版社,2006:3-64.
    [129]Yi S B, Davies C H, Brokmeier H-G, Bolmaro R E, Kainer K U, Homeyer J.Deformation and texture evolution in AZ31magnesium alloy during uniaxialloading[J]. Acta Mater.,2006,54:549-562.
    [130]Riehemann W, Abed El-Al F. Influence of ageing on the internal friction ofmagnesium[J]. J. Alloys Compd.,2000,310(1-2):127-130.
    [131]Burdett C F. The strain amplitude dependent damping in iron[J]. Philos. Mag.,1971,24(192):1459-1464.
    [132]González-Martínez R, G ken J, Letzig D, Timmerberg J, Steinhoff K, KainerK U. Influence of heat treatment on damping behaviour of the magnesiumwrought alloy AZ61[J]. Acta Metall. Sin.,2007,20(4):235-240.
    [133]Lambri O A, Riehemann W, Lucioni E J, Bolmaro R E. Mechanicalspectroscopy of deformed WE43magnesium alloys[J]. Mater. Sci. Eng. A,2006,442(1-2):476-479.
    [134]Lihua L, Xiuqin Z, Xianfeng L, Haowei W, Naiheng M. Effect of silicon ondamping capacities of pure magnesium and magnesium alloys[J]. Mater. Lett.,2007,61:231-234.
    [135]Mason W P. Resonance and Relaxation in Metals[M]. New York: PlenumPress,1964:247.
    [136]Sheerly W F, Nash R R. Mechanical properties of magnesiummonocrystals[J]. Trans. Metall. Soc. AIME,1960,218:416-423.
    [137]Trojanová Z, Weidenfeller B, Lukác P, Riehemann W, Stank M. Anelasticproperties of nanocrystalline magnesium[J]. Nanomaterials by Severe PlasticDeformation,2005,7:413-419.
    [138]肖凯. ECAP变形对AZ31镁合金力学性能与阻尼性能的影响[M].哈尔滨工业大学硕士学位论文,2007:40-50.
    [139]Golovin S A, Golovin I S, Pu kár A. Mechanisms and activation parametersof cyclic microplasticity[J]. Kovove Mater.,1983,3(21):305-313.
    [140]Trojanova Z, Lukac P, Riehemann W. Thermally activated dislocation motionstudied by internal friction[J]. Defect and Diffusion Forum,2002,203-205:249-252.
    [141]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip inmagnesium alloy AZ31B[J]. Int. J. Plast.,2005,21(6):1161-1193.
    [142]Koizumi Y, Ueyama M, Tsuji N, Minamino Y, Ota K. High damping capacityof ultra-fine grained aluminum produced by accumulative roll bonding[J]. J.Alloys Compd.,2003,355(1-2):47-51.
    [143]Balogh L, Figueiredo R B, Ungar T, Langdon T G. The contributions of grainsize, dislocation density and twinning to the strength of a magnesium alloyprocessed by ECAP[J]. Mater. Sci. Eng. A,2010,528(1):533-538.
    [144]Mathis K, Gubicza J, Nam N H. Microstructure and mechanical behavior ofAZ91Mg alloy processed by equal channel angular pressing[J]. J. AlloysCompd.,2005,394:194-199.
    [145]Troshchenko V T. Elasticity and anelasticity of metals. Kiev: Naukovadumka Press,1971:1-50
    [146]Rogers D H. An Extension of a Theory of Mechanical Damping Due toDislocation[J]. J. Appl. Phys.,1962,33:781-792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700