自适应时频分析及其在颤振信号处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平稳信号分析是现代数字信号处理的重要分支之一,而基于二维时频空间的时频分析方法是研究该类信号的有效工具,其中,如何对信号特征进行自适应跟踪描述是一个难点,同时也是一项具有积极学术意义和明确应用价值的探索性课题。本文在系统学习现有时频分析方法的基础上,详细研究了自适应时频分析的核心思想和基本方法,基于自适应信号展开理论和自适应滤波理论,提出了自适应Chirplet和自适应递推时频分析这两种新的非平稳信号处理方法,并通过理论分析和数值仿真研究了两种方法和算法的数值与应用特性。结果表明,所研究的方法在时频分辨能力、抗噪性等方面具有明显的优势。
     作为一种特殊的振动形式,颤振与飞行器的运行环境和安全性密切相关,是人机与环境学科的一个重要研究课题。本文基于颤振试验信号的非平稳特点与分析需求,应用自适应时频分析技术给出并实现了两种新的颤振信号处理方案,重点研究了适用于连续变速颤振试验的颤振边界预测问题。并通过数值仿真和某型飞机气弹模型低速风洞颤振试验验证了方案的有效性、可靠性和工程实用性。
     本文相关数值仿真与实时分析软件基于LabVIEW虚拟仪器集成环境设计开发。
Time-frequency analysis represents simultaneously the energy or intensity of signal in time and frequency. It's of great significance how to adaptively describe a signal in time-frequency domain. In this thesis, the theory of time-frequency analysis, especially adaptive time-frequency analysis is considered. Two new methods of adaptive time-frequency analysis are proposed based on adaptive signal expansion and adaptive filtering. The characteristics of the two methods are studied by numerical simulation. The results show that both the methods are reasonable and feasible.
    As a special form of vibration, flutter is a major feature closed with the run environment and safety of aircraft, which is an important project of Human-Machine-Environment Engineering. Focused on the nonstationary features and analysis requirements of flutter test data, the application scheme is brought forward for flutter signal processing. By using computer simulation and flutter test of low-speed wind-tunnel of some aeroelastical modes, the characteristics of the scheme are investigated. Especially, the technique proposed here can be expanded to the flutter test with variable speed.
    The related software is developed on LabVIEW for Windows.
引文
[1] Koenig R, Dunn H K, Lacy L Y, "The Sound Spectrugraph", J. Acoust. Soc. Amer., 1946, 18, pp. 19-49.
    [2] Potter R K, Kopp G, Green H C, 《Visible Speech》, NewYork: Van Nostrand, 1947.
    [3] Gabor D, "Theory of Communication", J. IEE, 1946, 93, pp. 429-457.
    [4] Viii J, "Theorie et application de la notion de signal analytique". Cables et. Transmission, 1948, 2A, pp. 61-74.
    [5] Page C H, "Instantaneous power spectra", J. Appl.Phys, 1952, 23: pp. 103-106.
    [6] Wigner E P, "On the quantum correction for thermodynamic equilibrium", Phys. Rev., 1932, 40, pp. 749-759.
    [7] Bruijn N G de, "A theory of generalized functions, with applications to Wigner distribution and weyl correspondence", Wieuw Archief voor Wiskunde (3), 1973, Ⅻ, pp. 205-280.
    [8] Classen T C M, Mecklenbrauker W F G., "The Winger distribution--part Ⅰ", J. M. Philips Res. 1980, 35, pp. 217-250,276-300, 372-389.
    [9] Cohen L, "Generalized phase-space distribution functions", J. Math. Phys, 1966, 7(5), pp. 781-786.
    [10] Patrick Flandtin, "Time-Frequency and Time-Scale Analysis", Translated from French by Joachim Stockier, Academic Press, 1999.
    [11] Namias V," The fractional Fourier transform and its application in quantum mechanics", J. Inst. Math. Its Appl., 1980, 25, pp. 241-265.
    [12] Richard G Baraniuk, Douglas L Jones, "Signal-Dependent Time-Frequency Using a Radially Ganssian Kernel", J. Signal Processing, 1993, 32, pp. 263-284.
    [13] Qian Shie, Chen Dapang, Chen Kebo, "Signal approximation via data adap-tive normalized Gaussian functions and its application for speech processing", J. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1992, 1(1), pp.141-144.
    [14] Qian Shie, Chen Dapang, "Signal Representation Using Adaptive Normalized Gaussian Function", J. Signal Proccesing, 1994, Vol.36, pp. 1-11.
    [15] Mallat S, Zhang Z, "Match Pursuit with Time-frequency Deictonaris", IEEE Trans on Signal Proccesing, 1993 Vo141, pp. 3397-3415.
    
    
    [16] Mihovilovic D, Bracewell R N, "Adaptive Chirplet representation of signal on time-frequency plane", J. Electronics Letters, 1991, 27(13), pp. 1159- 1161.
    [17] Steve Mann, Simon Haykin, '"Chirplets' and 'Warblets': novel time-frequency methods", J. Electronics Letters, 1992, 28(2), pp. 114-116.
    [18] Steve Mann, Simon Haykin, "Adaptive Chirplet tansformation: an adaptive generalization of the wavelet tansform", J. Optical Engineering, 1992, 31(6), pp. 1243-1255.
    [19] Mann S, Haykin S, "The Chirplet transform: physical considerations", J. IEEE Trans. Signal Processing, 1995, 43(11), pp. 2745-2761.
    [20] Bar aniuk R G, Jones D L, "Wigner-based formulation of the Chirplet transform", J. IEEE Trans Signal Processing, 1996, 44(12). pp. 3129-3135.
    [21] Bultan A, "A four-parameter atomic decomposition of Chirplets", J. IEEE Trans. Signal Processing, 1999, 47(3), pp. 731-745.
    [22] 殷勤业,倪志芳,钱世锷,“自适应旋转投影分解法”,电子学报,1997,25(4),pp.52-58。
    [23] 王宏禹,《非平稳随机信号分析与处理》,国防工业出版社,1999年1月。
    [24] Brenn er, Martin J, Lind, Richard C, Voracek, David F, "Overview of Recent Flight Testing Reasearch at NASA Dryden", NASA-TM-4792, 1997.
    [25] Charles L Ruhlin, Judith J Watsonect, "Evaluation of Four Subcritical Response Methods for On-line Prediction of Flutter Onset in Wind-Tunnel Tests", AIAA82-0644, 1982.
    [26] Larry Shelly, "Trend in Real-time Flight Test Systems", Americal Institute of Aeronautics and Astronautics, 89-3086-CP, 1989.
    [27] 屈见忠,沙长安,“模态参数识别在飞行颤振试验中的应用”,航空学报,1990,11(11)。
    [28] 黄桂生等,“随机减量在SH-飞机大速度监测中的应用”,航空部第六零五研究所,1983年5月。
    [29] 卢奇正等,《颤振亚临界响应数据的指数函数曲线拟合法》,中国人民解放二十九试验训练基地第二研究所,1980年9月。
    [30] Norman H Zimmerman, Jason T Weissenbureer, "Prediction of Flutter Onset Speed Based on Flight Testing at Subcritical Speeds", J. Aircraft, Vol. 1, No.4, July-Aus 1964.
    [31] Price S J, Lee B H K, "Development and Analysis of Flight Flutter Prediction Methods", AIAA-92-2101-CP, 1992.
    
    
    [32] Y uji Matsuzaki ,Yasukatsu Ando, "New Estimation Method for Flutter or Divergence Boundary from Random Responses at Subcritical Speed", Technical Reoort of National Aerospace Laboratory TR-667T, 1981.
    [33] 肖创柏,《低速颤振模型风洞实验颤振边界预测--李亚普诺夫直接法的应用》,西北工业大学硕士论文,1986年3月。
    [34] 林韵,《系统辨识的建模理论和快速算法在颤振边界预测中的应用》,西北工业大学硕士论文,1987年3月。
    [35] Pei Chengming, Tan Yunhai, "A New Method in Tegrated Data Modeling and Stability Critertion for Flutter Boundary Perdiction", JSASS 31st Aircraft Symposium, #3A6, Tokyo, Japan, Aug. 1993.
    [36] 裴承鸣,“颤振试验信号的时频共振与图像跟踪识别方法研究”,中国航空科学技术基金,项目编号01A53001,2002年。
    [37] 技术合同,《某型飞机机翼/外挂风洞模型颤振试验亚临界数据处理》,中国航空一集团公司603所,西北工业大学,2002年2月。
    [38] 《某型飞机部件/全机低速颤振模型风洞试验任务书》,中国航空一集团公司603所,2002年5月。
    [39] Bastiaar M, "A Sampling Theorem for Complex Spectrogram and Gabor's Expansion of A Signal in Gaussian Elementary Signals", 1981.
    [40] 张贤达,《非平稳信号分析与处理》,国防工业出版社,1998年。
    [41] (美)赫金(Haykin S)著,郑宝玉等译,《自适应滤波器原理(第四版)》,电子工业出版社,2003年7月。
    [42] Qian Shie, Chen Dapang, Yin Qinye, "Adaptive Chirplet based signal approximation", J. IEEE Trans. Acoustics, Speech, and Signal Processing, 1998, 3(5), pp. 1781-1784.
    [43] 邹虹,保铮,“一种有效的基于Chirplet自适应信号分解算法”,电子学报,2001,29(4),pp.515-517。
    [44] Yin Qinye, Qian Shie, Feng Aigang, "A fast refinement for adaptive Gaussian Chirplet decomposition", J. IEEE Trans. Signal Processing, 2002, 50(6), pp.1298-1306.
    [45] 裴承鸣,“风洞颤振试验信号分析(Wind Tunnel Flutter Signal Analysis,WTFSA)软硬件系统”,1997年。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700