生物油的分馏及品位提升试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质快速热裂解技术由于能够高效生产液体燃料潜在替代品——生物质热解油(生物油),近些年来受到国内外研究者的广泛关注。然而生物油稳定性差、水分含量高、粘度大和具有腐蚀性,难以直接利用,低品位已成为制约生物质快速热裂解技术商业化发展的主要瓶颈,当前生物油提质改性的基础理论研究是该领域的重点与难点。基于此,本文结合国家自然科学基金,对生物油改性技术进行了系统的研究。
     对现有生物油分离技术评价的基础上,选用先进的分子蒸馏技术,在避免热敏性生物油结焦的情况下,成功将生物油预分离为轻、中和重质三种馏分,轻质和中质馏分的产率之和达85 wt%,回收率高达97%,是其它蒸馏方式无可比拟的先进技术。
     对三种馏分理化性质进行深入的分析,得到轻质馏分具有含水量高、流动性好、酸性强和稳定性差的特点,其主要由易挥发低沸点酮、醛以及羧酸等化合物组成;中质馏分产率低,含水量少,具有一定流动性,化学成分以酚类为主;重质馏分在常温下近似固态,无水分,热值较高,不含低沸点成分。依据化学族类,将各馏分的成分归类,探讨蒸馏温度与馏分化学成分的内在联系,以及运用统计方法,评价分子蒸馏在生物油分离方面的应用性。
     通过热重分析仪开展低升温速率下氮气和空气气氛中生物油三馏分的热裂解动力学研究,结合国内外文献和馏分的理化性质,分析热失重过程TG和DTG曲线的变化趋势。在此基础上建立生物油表观动力学模型,进行热裂解动力学参数求解,模型计算结果与试验结果拟合良好。
     对酸性强的轻质馏分进行酯化精制研究。首先在玻璃反应釜中以乙酸和乙醇酯化为模型反应,设计正交试验,确定三种不同强酸性阳离子交换树脂催化酯化的最佳反应工况。然后在模型反应的基础上,开展轻质馏分在同种催化剂作用下的酯化精制研究。经过酯化后,馏分的物理性质得到一定改善,GC-MS对产物成分的鉴定发现有5种酯类化合物生成,同时还会伴随有大量缩醛和少量醚类化合物。最后结合文献分析,提出了阳离子交换树脂催化生物油轻质馏分的酯化反应机理。
     针对轻质馏分稳定性差的缺点,开展负载型贵金属催化剂Ru/γ-Al2O3低温下催化加氢试验研究。选取具有代表性的七种模型化合物,在不同反应温度、氢气压力和进料速率下进行加氢试验,获得模化物加氢反应途径。然后,研究同样反应条件下真实馏分的加氢.讨论反应条件与产物分布的内在联系。通过凝胶渗透色谱的分析结果可知,经过加氢精制后的轻质馏分,稳定性有所提高。
     最后根据DFT理论建立的分子电荷密度模型,利用商业软件Material Studio中Dmol3模块的PW91方法对模型化合物1-羟基-2-丙酮、糠醛、丁子香酚、乙酸等的反应活性和稳定性进行理论研究;得到分子的前线轨道能量EHOMO、ELUMO以及△E(ELUMO-EHOMO),Mulliken电荷布居和Fukui指数等数据判断加氢反应活性位,并预测加氢反应途径和产物,与试验结果较好吻合。量子化学的研究为生物油加氢机理研究提供理论支持。
The bio-oils produced by fast pyrolysis of wood has the potential to used as a substitute for traditional liquid fuel, such as gasoline and diesel oil; however, the crude bio-oils appear to be not good in quality just because of it's high water content, instability and corrosion. Here, mechanism study of bio-oil upgrading was performed to improve the quality of bio-oils under the support of National Natural Science Foundation of China.
     On the basis of an assessment of the existing separation technologies, molecular distillation method is chosen to separate bio-oil into three fractions: light, medium and heavy fraction. Experimental results showed that molecular distillation technology was particularly suitable for bio-oil separation because the maximum yield of light and mid fraction could reach up to 85% and no obvious coke and polymerization were found.
     Based on the analysis of physical and chemical properties of bio-oil, light fraction has the property of strong acidity, poor stability and good fluidness, which is mainly composed of ketones, aldehydes and acids; medium fraction has less mobility and low water content, which accounts for small part of bio-oil; and heavy fraction, without volatile substance, appears in black solid and relatively high in heat value. The effect of distillation temperature on chemical composition of each fraction was studied according to the chemical composition category. Moreover, statistical calculation showed that molecular distillation is successful in the bio-oil separation. A series of experiments on pyrolysis kinetics of three fractions were done on a thermogravimetric balance to measure weight loss curves both in the air and nitrogen at a low heating rate. The change of TG and DTG curves were well explained according to the physical and chemical characterization of each fraction. The kinetic models of fractions pyrolysis were brought forward and the dynamic parameters were obtained. The kinetic model is in good agreement with experimental data. On the basis of model reaction study of acetic acid and ethanol, the research on the esterification of bio-oil was carried out on three kinds of strong acidic cation exchange resins. The catalytic esterification improved light fraction in physical characterization. The analysis of gas chromatography-mass Spectrometry showed that the chemical properties of bio-oil after upgrading were different from original oil in which most of volatile organic acids were converted into esters. Besides that, acetalization of some components in bio-oil was promoted by the strong acidic catalyst simultaneously.
     Hydrotreatment of light fraction was performed on the model compounds and light fraction under the catalysis of Ru/γ-Al2O3 catalyst. Seven model compounds were hydrogenated to determine the reaction mechanism of main components of light fraction. The effect of reaction parameters on the product distribution was also investigated based on the experiment of hydrogenation of light fraction. It was found that mild hydrogenation over Ru/γ-Al2O3 can significantly reduce instability of light fraction.
     The activity and stability of 1-hydroxy-2-propanone, furfural, eugenol and acetic acid were studied by DMol3 program. And the parameters of the geometry, atomic net charges, the atomic frontier electron densities and Fukui index were obtained. The reaction process and products deduce from the calculation were well consonant with experimental results.
引文
[1]骆仲泱,刘妮,高翔,等.中国能源与可持续发展[A].中国动力工程学会第二界青年学术年会论文集[C].湖北宜昌:1999.
    [2]NREL,Renewable data overview-Renewable energy annual.In 1997;.
    [3]中国科学院,http://www.cas.ac.cn/html/Dir/2001/12/04/5111.htm.In 2001;.
    [4]顾树华,段茂盛.中国生物质资源概况及能源利用[A].小型生物质发电技术研讨会[C].吉林长春:1998.
    [5]李京京,白金明.Overend Ralph.中国生物质资源可获性评价[M].,北京:中国环境科学出版社,1998.
    [6]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].林业科技开发,2006,20(4):8-11.
    [7]吴创之,马隆龙.生物质能现代化利用技术[M].,北京:化学工业出版社,2003.
    [8]戴林,李景明,Overend Ralph.中国生物质能转换技术发展与评价[M].,北京:中国环境科学出版社.1998
    [9]Maschio G,Koufopanos C,Lucchesi A.Pyrolysis,a promising route for biomass utilization[J].Bioresource Technology,1992,42(3):219-231.
    [10]Sheng G X.Biomass gasifiers:from waste to energy production[J].Biomass,1989,20(1-2):3-12.
    [11]江淑琴.生物质燃料的燃烧与热解特性[J].太阳能学报,1995,16(1):40-48.
    [12]万仁新.生物质能工程[M].,北京:中国农业出版社,1995.
    [13]Demirbas M F,Balat M.Recent advances on the production and utilization trends of bio-fuels:A global perspective[J].Energy Conversion and Management,2006,47(15-16):2371-2381.
    [14]骆仲泱,周劲松,王树荣,等.中国生物质能利用技术评价[J].中国能源,2004,26(9):39-42.
    [15]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    [16]马孝琴.生物质成型燃料燃烧动力学研究[博士].郑州:河南农业大学,2005.
    [17]张百良.生物质压缩成型机研制[M].,郑州:科研鉴定成果资料汇编,2001.
    [18]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [19]Kurkela E,Stahlberg P,Simell P,et al.Updraft gasification of peat and biomass[J].Biomass,1989.19(1-2):37-46.
    [20]Bridgwater A V.Biomass Fast Pyrolysis[J].Thermal Science,2004,8(2):21-49.
    [21]Mohan D,Pittman C U,Steele P H.Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review[J].Energy Fuels,2006,20(3):848-889.
    [22]Zhang Q,Chang J,Wang T,et al.Review of biomass pyrolysis oil properties and upgrading research[J].Energy Conversion and Management,2007,48(1):87-92.
    [23]Reddy K T,Basu S.Gas-to-liquid technologies:India's perspective[J].Fuel Processing Technology,2007.88(5):493-500.
    [24]Lv P,Yuan Z,Wu C,et al.Bio-syngas production from biomass catalytic gasification[J].Energy Conversion and Management,2007,48(4):1132-1139.
    [25]严陆光.陈俊武.中国能源可持续发展若干重大问题研究[M].北京:科学出版社,2007.
    [26]Encinar J M,Gonzalez J F,Rodriguez J J,et al.Biodiesel Fuels from Vegetable Oils:Transesterification of Oils Cynara cardunculus L.with Ethanol[I].Energy Fuels,2002,16(2):443-450.
    [27]Garcia-Perez M.Adams T T.Goodrum J W,et al.Production and Fuel Properties of Pinc Chip Bio-oil/Biodiesel Blends[J].Energy Fuels,2007,:
    [28]Kulkarni M G,Dalai A K.Waste Cooking Oil-An Economical Source for Biodiesel:A Review[J].Industrial & Engineering Chemistry Research,2006,45(9):2901-2913.
    [29]高虹,张爱黎.新型能源技术与应用[M].北京:国防工业出版社.2007.
    [30]IEA.World Energy outlook.Intl.Energy Agency[M].Paris:1998
    [31]林木森,蒋剑春.生物质快速热解技术现状[J].生物质化学工程,2006,40(1):21-26.
    [32]董治国,王述洋,董治国,等.生物质快速热解液化技术的研究[J].林业劳动安全,2004,17(1):12-14.
    [33]姜年勇,王述洋,刘世锋.生物质快速热解装置主反应器的研究现状[J].林业机械与木工设备,2006.34(8):21-23.
    [34]Kersten S R,Wang X,Prins W,et al.Biomass Pyrolysis in a Fluidized Bed Reactor.Part 1:Literature Review and Model Simulations[J].Industrial & Engineering Chemistry Research,2005,44(23):8773-8785.
    [35]苏振华.世界上第一家生物油热电厂向安大略省电网供电[J].造纸信息,2005,(8):29-29.
    [36]Venderbosch R H,Gansekoele E,Florijn J F,et al.Pyrolysis of Palm Oil Residues in Malaysia[EB/OL].www.pyne.co.uk/docs/PyNe%20Section1.pdf,2006.
    [37]董良杰.生物质热裂解技术及其反应动力学研究[博士].沈阳农业大学,1997.
    [38]谭洪,王树荣,骆仲泱,等.生物质整合式流化床热解制油系统试验研究[J].农业机械学报,2005.36(4):30-33.
    [39]王树荣.生物质热解制油的试验与机理研究[博士].浙江大学,1999.
    [40]朱锡锋.生物质热解原理与技术[M].合肥:中国科技大学出版社,2006.
    [41]Dynamotive,http://www.dynamotive.com/en/biooil/applications_future.html.In 2007;.
    [42]阴秀丽,Leu D.Y.C.废轮胎快速热解实验研究[J].燃料化学学报,2000,28(1):76-79.
    [43]Appleford J M,Ocfemia K C S,Christianson L,et al.Analysis and characterization of the product oil and other of hydrothermal conversion of swine manure[A].2005 ASAE Annual International Meeting[C].Tampa,Florida:2005.
    [44]Peacocke A O A C.A guide to physical property characterisation of biomass-derived fast pyrolysis liquids[EB/OL].Available from:www.vtt.fi/inf/pdf/publications/2001/P450.pdf,2001.
    [45]Peacocke A O A C.a guide to physical property characterisation of biomass-derived fast pyrolysis liquids[EB/OL].Available from:www.vtt.fi/inf/pdf/publications/2001/P450.pdf,2001,.
    [46]刘治中,许世海,姚如杰.液体燃料的性质及应用[M].北京:中国石化出版社,2000.
    [47]廖艳芬.纤维素热裂解机理试验研究[博士].浙江大学,2003.
    [48]Oasmaa A,Lepparnaki E,Koponen P,et al.Physical characterisation of biomass-based pyrolysis liquids.application of standard fuel oil analyses[R].1997.
    [49]Jay D C,Rantanen O,Sipila K,et al.Wood pyrolysis oil for desel engines[A].Proceedings of the 17th Annual Fall Technical Conference of the ASME Internal Combustion[C].New York:1995.51-59.
    [50]Diebold J P.A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oil[EB/OL].Available from:http://webdev.its.iastate.edu/webnews/data/site_biorenew_reading/19/webnewsfilefield_file/ReviewOfMechani sms.pdf,1999.
    [51]Oasmaa A,Meier D.Norms and standards for fast pyrolysis liquids:1.Round robin test[J].Journal of Analytical and Applied Pyrolysis.2005,73(2):323-334.
    [52]Branca C,Giudicianni P,DiBlasi C.GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of Wood[J].Ind.Eng.Chem.Res.,2003,42(14):3190-3202.
    [53]Williams P T.Horne P A.Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass[J]. Journal of Analytical and Applied Pyrolysis, 1995, 31: 15~37.
    [54] Butt D A. Formation of phenols from the low-temperature fast pyrolysis of Radiata pine (Pinus radiata): Part I. Influence of molecular oxygen[.T]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1-2): 38~47.
    [55] Murwanashyaka J N, Pakdel H, Roy C. Step-wise and one-step vacuum pyrolysis of birch-derived biomass to monitor the evolution of phenols[J]. Journal of Analytical and Applied Pyrolysis, 2001, 60(2): 219-—231.
    [56] Andersson T, Hyotylainen T, Riekkola M L. Analysis of phenols in pyrolysis oils by gel permeation chromatography and multidimensional liquid chromatography[J]. Journal of Chromatography A, 2000, 896(1-2): 343-349.
    [57] Amen-Chen C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar[J]. Biomass and Bioenergy, 1997, 13(1-2): 25-37.
    [58] Marsman J H, Wildschut J, Mahfud F, et al. Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection[J]. Journal of Chromatography A, 2007, 1150(1-2): 21-27.
    
    [59] 许国旺[1], 叶芬[2], 等.全二维气相色谱技术及其进展[J].色谱, 2001,19(2): 132-136.
    [60] Oasmaa A, Kuoppala E, Solantausta Y. Fast Pyrolysis of Forestry Residue. 2. Physicochemical Composition of Product Liquid[J]. Energy Fuels, 2003, 17(2): 433—443.
    [61] Oasmaa A., Kuoppala E. Fast Pyrolysis of Forestry Residue. 3. Storage Stability of Liquid Fuel[J]. Energy & Fuels, 2003, 17(4): 1075-1084.
    [62] Garcia-Perez M, Chaala A, Pakdel H, et al. Characterization of bio-oils in chemical families[J]. Biomass and Bioenergy, 2007,31(4): 222-242.
    [63] Wornat M J, Porter B G, Yang N Y. single Droplet Combustion of Biomass Pyrolysis Oils[J]. Energy Fuels, 1994, 8(5): 1131-1142.
    [64] Hristov J Y, Stamatov V, Honnery D R, et al. Radiant heating of a Bio-oil droplet:A quest for a suitable model and scaling of pre-explosion conditions[A]. 15th Australasian Fluid Mechanics Conference[C]. The University of Sydney, Sydney, Australia: 2004.
    [65] Hallett W L, Clark N A. A model for the evaporation of biomass pyrolysis oil droplets[J]. Fuel 2006, 85(4): 532-544.
    [66] Ghetti P, Ricca L, Angelini L. Thermal analysis of biomass and corresponding pyrolysis products[J]. Fuel. 1996, 75(5): 565-573.
    [67] Vitolo S, Seggiani M, Frediani P, et al. Catalytic upgrading of pyrolytic oils to fuel over different zeolites[J]. Fuel, 1999, 78(10): 1147-1159.
    [68] Vitolo S, Ghetti P. Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation[J]. Fuel, 1994, 73(11): 1810—1812.
    [69] Branca C, Di B C, Russo C. Devolatilization in the temperature range 300-600 K of liquids derived from wood pyrolysis and gasification[J]. Fuel, 2005,84(1): 37—45.
    [70] Oasmaa A. Kyto M, Sipila K. Pyrolysis oil combustion tests in an industrial boiler[A]. Bridgwater A V. Progress in Thermochemical Biomass Conversion[C]. Blackwell Science, 2001. 1468—1481.
    [71] Sturzl. R. The commercial co-firing of RTP bio-oil at the Manitowoc Public Utilities power generation station[EB/OL]. Available from: http://www.ensyn.com, 1997.
    [72] Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass[J] Renewable and Sustainable Energy Reviews, 2007, 11(6): 1056—1086.
    [73] In.
    [74] Solantausta Y. Bio fuel oil - Upgrading by hot filtration and novel physical methods[EB/OL]. Available from: http://www.pyne.co.uk/. 2000.
    [75] Diebold J. P., Czernik S. Additives To Lower and Stabilize the Viscosity of Pyrolysis Oils during Storage[J]. Energy & Fuels, 1997,11(5): 1081-1091.
    [76] Ikura M, Stanciulescu M, Hogan E. Emulsification of pyrolysis derived bio-oil in diesel fuel[J]. Biomass and Bioenergy, 2003,24(3): 221-232.
    [77] Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 2: tests in diesel engines[J]. Biomass and Bioenergy, 2003, 25(1): 101 — 111.
    [78] Chiaramonti D, Bonini M, Fratini E, et al. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1 : emulsion production [J]. Biomass and Bioenergy, 2003,25(1): 85—99.
    [79] Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties[J]. Biomass and Bioenergy, 2004, 27(3): 265—275.
    [80] Das P, Ganesh A. Bio-oil from pyrolysis of cashew nut shell-a near fuel[J]. Biomass and Bioenergy, 2003, 25(1): 113-117.
    [81] Sensoz S, Kaynar I. Bio-oil production from soybean (Glycine max L.); fuel properties of Bio-oil[J]. Industrial Crops and Products, 2006,23(1): 99—105.
    [82] Sensoz S, Demiral I, Ferdi G H. Olive bagasse (Olea europea L.) pyrolysis[J]. Bioresource Technology. 2006, 97(3): 429-436.
    [83] Ates F, Putun E, Putun A E. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 779—790.
    [84] Garcia-Perez M, Chaala A, Roy C. Vacuum pyrolysis of sugarcane bagasse[J]. Journal of Analytical and Applied Pyrolysis, 2002, 65(2): 111-136.
    [85] Sheu Y. H. E. Kinetic Studies of Upgrading Pine Pyrolytic Oil by Hydrotreatment[PHD].Texas A&M University, 1985.
    [86] Piskorz J, Majerski P, Radlein D, et al. Conversion of lignins to hydrocarbon fuels[J]. Energy & Fuels, 1989,3(6): 723-726.
    [87] Laurent Etienne, Delmon Bernard. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/ γ-Al2O3 and NiMo/ γ-Al2O3 catalyst : II. Influence of water, ammonia and hydrogen sulfide[J]. Applied Catalysis A: General, 1994,109(1): 97—115.
    [88] Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/ γ-Al2O3 and NiMo/ γ-Al2O3 catalysts: I. Catalytic reaction schemes[J]. Applied Catalysis A: General, 1994, 109(1): 77-96.
    [89] Centeno A, Laurent E, Delmon B. Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxyl, and Guaiacol-Type Molecules[J]. Journal of Catalysis, 1995, 154(2): 288—298.
    [90] Elliott D C, Neuenschwander G G, Liquid fuels by low-severity hydrotreating of biocrude. In Developments in thermochemical biomass conversion, Bridgwater A V, B D G B, "Eds. ; Blackie Academic & Professional: London, 1996; 'Vol.' 1, p 611 —621
    
    [91] Furimsky E. Catalytic hydrodeoxygenation[J]. Applied Catalysis A: General, 2000, 199(2): 147-190.
    [92] Viljava, T-R. From biomass to fuels: hydrotreating of oxygencontaining feeds on a CoMo/A12O? catalyst[PHD].Helsinki University of Technology. 2001.
    [93] Gagnon J, Kaliaguine S. Catalytic hydrotreatment of vacuum pyrolysis oils from wood[J]. Ind. Eng. Chem. Res., 1988,27(10): 1783-1788.
    [94] Mahfud F. H.. Ghijsen F., Heeres H. J. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts[.l]. Journal of Molecular Catalysis A: Chemical, 2007, 264(1-2): 227-236.
    [95] Mahfud F H, Bussemaker S, Kooi B J, et al. The application of water-soluble ruthenium catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model compounds in a two phase aqueous-organic system[J]. Journal of Molecular Catalysis A: Chemical, In Press, Corrected Proof: 1810.
    [96] Bridgwater A V. Catalysis in thermal biomass conversion[J]. Applied Catalysis A: General (1994), 1994. 116:5-47.
    [97] Chen N Y, Walsh D E, Koenig L R. Fluidized bed upgrading of wood pyrolysis liquids and related compounds[A]. 193. national meeting of the American Chemical Society; 5 Apr 1987;[C]. Denver, CO, USA: 1987. 264~275.
    [98] Chen N Y, Walsh D E, Koenig L R. Pyrolysis oils from biomass, producing, analysing and upgrading[A]. Soltes J, Milne T A. ACS Symp. Ser. 396[C]. Washington DC: American Chemical Society, 1988.
    [99] Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil[J]. Energy & Fuels, 1993, 7(2): 306-314.
    [100] Adjaye J D, Bakhshi N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways[J]. Biomass and Bioenergy, 1995, 8(3): 131 — 149.
    [101] Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts[J]. Fuel Processing Technology, 1995,45(3): 161 — 183.
    [102] Adjaye J D, Bakhshi N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: Comparative catalyst performance and reaction pathways[J]. Fuel Processing Technology, 1995, 45(3): 185-202.
    [103] Horne P A, Williams P T. The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours[J]. Journal of Analytical and Applied Pyrolysis, 1995,34(1): 65—85.
    [104] Home P A, Williams P T. Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields[J]. Fuel, 1996, 75(9): 1043—1050.
    [105] Williams P T, Home P A. The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils[J]. Fuel, 1995, 74(12): 1839-1851.
    [106] Home P A, Nugranad N, Williams P T. Catalytic coprocessing of biomass-derived pyrolysis vapours and methanoI[J]. Journal of Analytical and Applied Pyrolysis, 1995,34(1): 87—108.
    [107] Williams P T, Home P A. Polycyclic aromatic hydrocarbons in catalytically upgraded biomass pyrolysis oi!s[J]. J. Inst. Energy, 1996, 481: 176-191.
    [108] Vitolo S, Bresci B, Seggiani M, et al. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles[J]. Fuel, 2001, 80(1): 17—26.
    [109] Wilson N G, Williams P T. Investigation into the potential of a novel superacid catalyst for the catalytic upgrading of pyrolytic bio-oil[J]. International Journal of Energy Research, 2003,27(2): 131 — 143.
    [110] Gayubo A G, Aguayo A T, Atutxa A, et al. Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons[J]. Energy Fuels. 2004. 18(6): 1640-1647.
    [111] Czernik S, Evans R, French R. Hydrogen from biomass-production by steam reforming of biomas? pyrolysis oil[J]. Catalysis Today, 2007, 129(3-4): 265—268.
    [112] Bleeker M F, Kersten S R, Veringa H J. Pure hydrogen from pyrolysis oil using the steam-iron process[.I]. Catalysis Today, In Press, Corrected Proof: 1086.
    [113] Basagiannis A C. Verykios X E. Catalytic steam reforming of acetic acid for hydrogen production[J] International Journal of Hydrogen Energy, 2007, 32(15): 3343—3355.
    [114] Basagiannis A C. Verykios X E. Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts[J].Catalysis Today,2007,127(1-4):256-264.
    [115]Ramos M C,Navascues A I,Garcia L,et al.Hydrogen Production by Catalytic Steam Reforming of Acetol,a Model Compound of Bio-Oil[J].Industrial & Engineering Chemistry Research,2007,46(8):2399-2406.
    [116]张春梅.生物质热裂解液化物质平衡分析及液体产物精制的试验研究[硕士].沈阳:沈阳农业大学,2003.
    [117]张素平.生物质制液体燃料的研究[博士].华东理工大学,2002.
    [118]Zhang S,Yan Y,Li T,et al.Upgrading of liquid fuel from the pyrolysis of biomass[J].Bioresource Technology,2005,96(5):545-550.
    [119]郭晓亚,颜涌捷,任铮伟,等.生物质裂解油催化裂解精制[J].过程工程学报,2003,3(1):91-95.
    [120]郭晓亚.生物质制液体燃料的研究.上海:华东理工大学,2003.
    [121]Wang Z,Pan Y,Dong T,et al.Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts[J].Applied Catalysis A:General,2007,320:24-34.
    [122]张琦.固体酸碱催化剂催化酯化改质提升生物油的研究[博士].中国科学技术大学,2006.
    [123]Rioche C,Kulkarni S,Meunier F C,et al.Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J].Applied Catalysis B:Environmental,2005,61(1-2):130-139.
    [124]Vagia E C,Lemonidou A A.Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction[J].International Journal of Hydrogen Energy,2007,32(2):212-223.
    [125]刘守新,张世润.生物质的快速热解[J].林产化学与工业,2004,24(3):95-101.
    [126]Zhang H G.Preparative separation of chemicals from wood vacuum pyrolysis oils by liquid chromatography[MSc].Quebec City,Canada:Laval University,1990.
    [127]Pakdel H,Roy C.Separation and characterization of steroids in biomass vacuum pyrolysis oils[J].Bioresource Technology,1996,58(1):83-88.
    [128]Ozbay N,Putun A E,Uzun B B,et al.Biocrude from biomass:pyrolysis of cottonseed cake[J].Renewable Energy,2001,24(3-4):615-625.
    [129]Ozcimen D,Karaosmanoglu F.Production and characterization of bio-oil and biochar from rapeseed cake[J].Renewable Energy,2004,29(5):779-787.
    [130]李世光,徐绍平,路庆花,等.快速热解生物油柱层析分离与分析[J].太阳能学报,2005,26(4):549-555.
    [131]Scholze Britta.Long-term Stability,Catalytic Upgrading,and Application of Pyrolysis Oils -Improving the Properties of a Potential Substitute for Fossil Fuels[PHD].Hamburg,2002.
    [132]Gallivan R M,Matschei P K.Fractionation of oil obtained by pyrolysis of lignocellulosic materials to recover a phenolic fraction for use in making phenol-formaldehyde resins[P].
    [133]Chum H L,Black S K.Process for fractionating fast-pyrolysis oils and products derived therefrom[P].USA:Patent 4,942,269,.
    [134]徐绍平,刘娟,李世光,等.杏核热解生物油萃取-柱层析分离分析和制备工艺[J].大连理工大学学报,2005,(04):.
    [135]李大鹏,吴伯千.超临界CO2萃取薏苡仁油工艺条件优化[J].中国现代应用药学.2005.22(01):17-20.
    [136]孙昌波,钟海雁,高春花,et al.华中五味子果实超临界CO2萃取及挥发性成分GC-MS分析[J].食品与机械,2007,23(3):59-64.
    [137]李晓银,岳红,朱峰.天然色素提取和分析技术研究进展[J].林产化学与工业,2006,26(03):118-122.
    [138]邱坚,李坚.杨燕.木材的超临界气化和液化与木本生物质能源转化[J].云南化工.2007.34(1):1-4.
    [139]Chaala A,Ba T,Garcia-Perez M,et al.Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark:Aging and Thermal Stability[J].Energy Fuels,2004,18(5):1535-1542.
    [140]Murwanashyaka J N,Pakdel H,Roy C.Seperation of syringol from birch wood-derived vacuum pyrolysis oil[J].Separation and Purification Technology,2001,24(1-2):155-165.
    [141]Carazza F,Rezende M E A,Pasa V M D,et al.Fractionation of wood tar[A].A.V.Bridgwater.Advances in Thermochemical Biomass Conversion[C].1994.1465-1474.
    [142]杨村,于宏奇,冯武文,等.分子蒸馏技术[M].,北京:化学工业出版社,2003.
    [143]Zhang H G.Preparative separation of chemicals from wood vacuum pyrolysis oils by liquid chromatography[MSc thesis].Quebec City,PQ,Canada,:Laval University,1990.
    [144]胡德荣,张新位.分子蒸馏浅释[J].首都师范大学学报(自然科学版),2006,27(3):45-47.
    [145]卓震,巢建伟,许进文,等.旋转刮膜式分子蒸馏器[J].轻工机械,2005,23(4):134-138.
    [146]王勇,吴长年,蒋腾,等.聚氨酯固化剂清洁生产技术分析[J].环境科学与技术,2006,29(10):92-94.
    [147]皮丕辉,文秀芳,程江,等.分子蒸馏技术研究现状及在精细化工中的应用[J].精细化工,2003,20(07):399-402.
    [148]何小瑜,周丽.全氟聚醚的合成及应用[J].化工生产与技术,2003,10(02):5-7.
    [149]王建中.分子蒸馏技术在游离TDI分离上的应用[J].中国涂料,2003,(5):42-44.
    [150]王秀华,谷克仁.分子蒸馏提取天然维生素E研究[J].中国油脂,2006,31(09):72-74.
    [151]韩荣伟,庄桂东,安桂香,等.利用SFE-MD技术分离提纯玫瑰精油及其成分分析[J].精细化工.2006.23(06):553-557.
    [152]刘振香,陈鋆.分子蒸馏技术在医药工业中的应用[J].齐鲁药事,2007,26(02):.
    [153]闫广,李庆生,尹侠.刮膜式分子蒸馏过程的研究[J].南京工业大学学报:自然科学版,2005,27(2):67-71.
    [154]王华,刘荣厚,张春梅,等.卡尔费休方法测定生物油含水量的试验研究[J].可再生能源,2005,(03):17-20
    [155]Boucher M E,Chaala A,Roy C.Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines.Part Ⅰ:Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase[J].Biomass and Bioenergy,2000,19(5):337-350.
    [156]徐保江,鲁楠.生物质热解液化生物质油的试验研究[J].农业工程学报,1999,15(3):177-181.
    [157]Oasmaa A,Czernik S.Fuel Oil Quality of Biomass Pyrolysis Oils-State of the Art for the End Users[J].Energy & Fuels,1999,13(4):914-921.
    [158]Sipila K,Kuoppala E,Fagernas L,et al.Characterization of biomass-based flash pyrolysis oils[J].Biomass and Bioenergy,1998,14(2):103-113.
    [159]Ba T,Chaala A,Garcia-Perez M,et al.Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark.Characterization of Water-Soluble and Water-Insoluble Fractions[J].Energy & Fuels,2004.18(3):704-712.
    [160]Ba T,Chaala A,Garcia-Perez M,et al.Colloidal Properties of Bio-Oils Obtained by Vacuum Pyrolysis of Softwood Bark.Storage Stability[J].Energy & Fuels,2004,18(1):188-201.
    [161]张素萍,颜涌捷.李庭琛,等.生物质裂解焦油的燃烧特性及动力学模型[J].华东理工大学学报.2002,28(01):104-106.
    [162]陈明强,王君,王新运.等.喷动流化床生物质裂解液体产物的燃烧特性[J].安徽理工大学学报(自然科学版).2005.25(04):69-73.
    [163]Branca C,Blasi C D.Elefante R.Devolatilization and Heterogeneous Combustion of Wood Fast Pyrolysis Oils[J].Ind.Eng.Chem.Res..2005,44(4):799-810.
    [164]Branca C,DiBlasi C.Multistep Mechanism for the Devolatilization of Biomass Fast Pyrolysis Oils[J].Ind.Eng.Chem.Res.,2006,45(17):5891-5899.
    [165]Branea C,DiBlasi C,Elefante R.Devolatilization of Conventional Pyrolysis Oils Generated from Biomass and Cellulose[J].Energy Fuels,2006,20(5):2253-2261.
    [166]栾礼侠,许松林,任艳奎.分子蒸馏技术提纯天然维生素E的工艺研究[J].中国粮油学报.2006.21(01):100-103.
    [167]傅红,裘爱泳.分子蒸馏法富集鱼油ω-3脂肪酸[J].中国粮油学报,2006,21(03):156-159.
    [168]时钧.化学工程手册[M].北京:化学工业出版社,1996.
    [169]蔡正千.热分析[M].,北京:高等教育出版社,1993.
    [170]陈镜泓,李传儒.热分析及其利用[M].,北京:科学出版社,1985.
    [171]李余增.热分析[M].北京:清华大学出版社,1987.
    [172]郑赟.基于组分分析的生物质热裂解动力学机理研究[硕士].杭州:浙江大学,2006.
    [173]谭洪.生物质热裂解机理试验研究[博士].浙江大学,2005.
    [174]Ba T,Chaala A,Garcia-Perez M,et al.Colloidal Properties of Bio-Oils Obtained by Vacuum Pyrolysis of Softwood Bark.Storage Stability[J].Energy & Fuels,2004,18(1):188-201.
    [175]Chaala A,Ba T,Garcia-Perez M,et al.Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark:Aging and Thermal Stability[J].Energy Fuels,2004,18(5):1535-1542.
    [176]胡荣祖,史启祯.热分析动力学[M].,北京:科学出版社,2001.
    [177]Agrawal R K.On the compensation effect[J].J.Thermal Analysis,1986,31:73-86.
    [178]Capener E L,Low J M.Method and apparatus for convening solid organic material to fuel oil and gas[P].U.S.Patent:4,344,770,.
    [179]Zhang Q,Chang J,Wang T J,et al.Upgrading Bio-oil over Different Solid Catalysts[J].Energy Fuels,2006,20(6):2717-2720.
    [180]植中强,李红缨,杨海贵,等.微波在乙酸乙酯制备实验中的应用[J].肇庆学院学报,2005,26(02):33-34.
    [181]贺博.生物油的分级分离和初步改性[硕士].浙江大学,2006.
    [182]Bridgwater A V,Meier D,Radlein D.An overview of fast pyrolysis of biomass[J].Organic Geochemistry.1999,30(12):1479-1493.
    [183]Czernik Stefan,Johnson David K.,Black Stewart.Stability of wood fast pyrolysis oil[J].Biomass and Bioenergy,1994,7(1-6):187-192.
    [184]Radlein D S A,Piskorz J K,Majerski P A.Method of upgrading biomass pyrolysis liquids for use as fuels and as a source of chemicals by reaction with alcohols[P].EP:0 718 392 A1,.
    [185]陈学恒.载体强酸催化合成柠檬醛二乙缩醛[J].现代化工.2000,20(06):36-38.
    [186]魏荣宝,梁娅.离子交换树脂催化法合成缩醛(酮)[J].离子交换与吸附,1992,8(2):171-174.
    [187]Okumura Y,Enatsu H.Catalyst for the synthesis of α,β-unsaturated ether,and synthesis of a.b-unsaturated ether.[P].JP:2006-82685,.
    [188]钟邦克.精细化工过程催化作用[M]..北京:中国石化出版社.2002.
    [189]Basagiannis A C,Verykios X E.Catalytic steam reforming of acetic acid for hydrogen production[J].International Journal of Hydrogen Energy.In Press.Corrected Proof:1086.
    [190]Regino G R.Polymerization of furfuryl alcohol with trifluoroacetic acid.2.The formation of difurfuryl ether[J].Die Makromolekulare Chemic.Rapid Communications,1992,13(11):517-523.
    [191]陈宏博.有机化学(第二版)[M].大连:大连理工大学出版社.2003.
    [192]Salvini A,Frediani P,Giannelli C,et al.On the behaviour of Ru(Ⅰ) and Ru(Ⅱ) carbonyl acetates in the presence of H2 and/or acetic acid and their role in the catalytic hydrogenation of acetic acid[J].Journal of Organometallic Chemistry,2005,690(2):371-382.
    [193]Carnahan J E,Ford T A,Gresham W F,et al.Ruthenium-catalyzed Hydrogenation of Acids to Alcohols[J].J.Am.Chem.Soc.,1955,77(14):3766-3768.
    [194]横山寿治,朴明福.芳族羧酸加氢制芳族醛的技术开发及工业化[J].石油化工译丛,1992,13(1):25-30.
    [195]真木隆夫,浦洪培.芳醛合成技术的最新进展[J].石油化工译丛,1992,13(2):41-45.
    [196]施良和.凝胶色谱法[M].北京:科学出版社,1980.
    [197]Oasmaa A,Sipila K,Solantausta Y,et al.Quality Improvement of Pyrolysis Liquid:Effect of Light Volatiles on the Stability of Pyrolysis Liquids[J].Energy & Fuels,2005,19(6):2556-2561.
    [198]Adjaye John D.,Sharma Ramesh K.,Bakhshi Narendra N.Characterization and stability analysis of wood-derived bio-oil[J].Fuel Processing Technology,1992,31(3):241-256.
    [199]吴祖良,高翔,骆仲泱,等.直流电晕放电单环VOC降解特性的实验研究[J].高技术通讯,2004,14(2):40-44.
    [200]陈兆旭.四唑衍生物及其配合物结构和性能的量子化学研究[博士].南京理工大学,1999.
    [201]Nagy A.Density functional.Theory and application to atoms and molecules[J].Physics Reports,1998,298(1):1-79.
    [202]Hohenberg P,Kohn W.Inhomogeneous Electron Gas[J].Physical Review,1964,136(3B):B864.
    [203]Levy M.Universal variational functionals of electron densities,first-order density matrices,and natural spin-orbitals and solution of the v-representability problem[J].Proc.Natl.Acad.Sci.USA,1979,76:6062-6065.
    [204]Slater,C J.Statistical exchange-correlation in the self-consistent field[J].Adv.Quantum Chem.,1973,:1-92.
    [205]Roothaan C C.New Developments in Molecular Orbital Theory[J].Rev.Mod.Phys.,1951,23(2):69-89.
    [206]Dewar M J.Development and status of MINDO/3 and MNDO[J].Journal of Molecular Structure,1983,100:41-50.
    [207]Pople J A,Nesbet R K.Self-Consistent Orbitals for Radicals[J].J.Chem.Phys.,1954,22(3):571-572.
    [208]Hedin L,I L B,Explicit local exchange-correlation potentials[J].J Phys C,1971,4(14):2064-2083.
    [209]Ceperley D M,Alder B J.Ground State of the Electron Gas by a Stochastic Method[J].Phys.Rev.Lett..1980,45(7):566-569.
    [210]Theory of the Inhomogeneous Electron Gas[M].New York:Plenum,1983.
    [211]林梦海.量子化学计算方法与应用[M].,北京:科学出版社,2004.
    [212]Kohn W,Sham L J.Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys.Rev..1965,140(4A):A1133.
    [213]Mulliken R S.Electronic Population Analysis on LCAOMO Molecular Wave Functions.Ⅱ.Overlap Populations,Bond Orders,and Covalent Bond Energies[J].J.Chem.Phys.,1955,23(10):1841-1846.
    [214]Mulliken R S.Electronic Population Analysis on LCAOMO Molecular Wave Functions.Ⅰ[J].J.Chem.Phys.,1955,23(10):1833-1840.
    [215]Parr R G,Yang W.Density-Functional Theory of Atoms and Molecules[M].New York:Oxford University Press,1989.
    [216]Perdew J P,Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys.Rev.B,1992,45(23):13244-13249.
    [217]Mortensen J J.Ganduglia-Pirovano M V,Hansen L B,et al.Nitrogen adsorption on Fe(111),(100).and (110) surfaces[J].Surface Science,1999,422(1-3):8-16.
    [218]莫依.黎乐民.密度泛函计数条件对结果精度的影响[J].高等学校化学学报.2001.22(1):81-85.
    [219]张士国,杨频.用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J].中国腐蚀与防护学报,2004,24(4):240-244.
    [220]江南,杨儒,邱瑾,等.2,2-二羟甲基丁醛的结构和性质的理论研究[J].北京化工大学学报:自然科学版,2006,33(1):46-49.
    [221]B D.Analytic energy derivatives in the numerical local-density-functional approach[J].J Chem Phys,1991,94:7245-7253.
    [222]杨颇,高孝恢.性能-结构-化学键[M].,北京:高等教育出版社,1987.
    [223]刘丹,张晓彤,桂建舟,等.Mo/HZSM-5催化剂表面活性中心的计算机模拟[J].兰州大学学报:自然科学版,2004,40(6):59-63.
    [224]Cruz J,Martinez-Aguilera L M R,Salcedo R,et al.Reactivity properties of derivatives of 2-imidaoline:an abinitio DFT Study[J].International Journal of Quantum Chemistry,2001,85(4):546-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700