中温高磷化学镀镍工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高磷化学镀镍层具有非晶态构型,不但具有优良的耐蚀性和耐磨性,还具有稳定的非磁性、高电阻率、低温度系数及耐热等性能,是一种优良的功能性镀层,广泛应用于计算机硬盘、磁屏蔽设备、电子工业、石油化工管道设备、汽车零部件等方面。但是通常酸性高磷化学镀镍的施镀温度较高,降低镀液温度不仅可以提高镀液稳定性、降低生产成本,而且可以减少镀液挥发量,从而起到节约能源和保护环境的双重功效。中温高磷化学镀镍工艺的研究具有重要的实际意义和良好的应用前景。
     课题通过对镀液组分(主要是稳定剂、络合剂、加速剂及光亮剂)及操作条件(温度、pH)进行系统的研究,考察其对镀层沉积速度、磷含量以及镀层性能(孔隙率、结合力、耐蚀性等)的影响,对各个组分的种类及含量进行优选,以提高镀层沉积速度,最后通过正交实验得到中温高磷化学镀镍的最优配方。最佳工艺配方为:主盐和还原剂摩尔比为0.34;20.4g/L三水合乙酸钠为缓冲剂;10 mg/L KI为稳定剂;8 mL/L乳酸+0.02 mol/L柠檬酸+0.04 mol/L苹果酸+0.05 mol/L丙二酸为复合络合剂;0.06 mol/L丁二酸+0.04 mol/L对甲苯磺酸钠为复合加速剂;温度75±1℃;pH 4.70。最优工艺组成条件下,镀液PdCl2加速实验稳定时间达1650s,镀层沉积速度7.18μm/h,镀层磷含量10.89 w.t.%,镀片外观光亮平整、细致平滑,结合力良好,硬度高,孔隙率低至0.24个/cm2,镀层耐硝酸色变时间为180s,耐中性盐雾时间24h以上,所得到的中温高磷试片整体性能优良。光亮剂的加入可以使镀层外观更光亮细致,但同时也使镀层耐蚀性下降,应选择性使用。周期实验表明,中温高磷化学镀镍镀液稳定,镀液寿命可达8MTO以上,浓缩液组分及周期添加方式对镀液使用寿命、镀速及镀层性能均会产生影响。将中温高磷化学镀镍液与市场上某高温高磷化学镀镍产品性能进行了详细的对比,中温高磷镀层的整体性能占优,可以以较薄的镀层实现与高温高磷较厚镀层一样的性能,应用前景良好。课题通过系统的研究得到了镀层性能良好、实际可行的中温酸性高磷化学镀镍工艺,为实现工业应用提供有参考价值的可行性工艺方案。
The high-phosphorous electroless nickel deposits have amorphous structure. Besides the excellence in wearing and corrosion resistance, Ni-P electroless plating deposits also have non-magnetism, high resistivity, the low resistance temperature coefficient and thermal stability, etc.So that they are widely applied in computer hard, magnetic shielding equipment, electronic industry, petrochemical industry and auto industry etc. But the operation temperature in high-phosphorous electroless nickel plating is usually high. The lower temperature will not only enhance the stability of plating solution,save energy source and reduce production cost, but also decrease the volatilization of solution and relieve environment pollution. Therefore, middle-temperature and high-phosphorus electroless nickel plating technology has a great significance of theory and practice.
     The primary composition (stabilizer, complexing agent, accelerator, brightener, etc.) of eleetroless nickel plating bath,the condition of operation (temperature, pH) ,which influence the technology of middle-temperature and high-phosphorus eleetroless nickel-phosphorus alloy, are studied systematically with condition experiments and the orthogonal experiments in this article. Based on the analysis of deposition rate, phosphorus content, microhardness, adhesive strength, porosity and corrosion-resistant property of Ni-P alloy coating, the preferable conditions of the bath composition and condition of operation are screened out.The research results show that all of primary composition in the electroless nickel solution may influence the technology; complexing agent and accelerator are the most important factors. The most promising choice is the use of appropriate complexing agents or accelerators to design the procedures of eleetroless plating at medium or low temperature. In the proeess of operation,temperature and pH value may influence the technology greatly . The questing for middle-temperature and high-phosphorus eleetroless nickel technology leads to the optimal formula as follows:
     Proportion of nickel su1phate and sodium hypophosphate 0.34; Sodium acetate 20.4 g/L; Stabilizer KI 10 mg/L;Composite complexing agents: lactic acid 10ml/L , citric acid 0.02 mol/L, malic acid 0.04 mol/L, malonic acid 0.05 mol/L; Composite aeeelerators: succinic acid 0.06 mol/L, toluene sulfonic acid 0.04 mol/L; Temperature 75±1℃; pHvalue 4.70. Under the optimal formulation, the bath stabilization time is up to 1650 s, the deposition rate is 7.18μm/h,and phosphorus content is 10.89 w.t.%; The deposit is bright and level, porosity is only 0.24 pore/cm~2,and has 180s plus spot corrosion time in nitrate solution and 24h of salt spray corrosion resistance. In sum,the integrated properties of coating is very excellent.The addition of brightener makes the coating appearance brighter and meticulous, but also decreases the corrosion resistance of the coating, it should be selectively used.
     The metal turnover test experiments show that the middle-temperature and high-phosphorus electroless nickel plating bath is stability, plating bath life is up to 8MTO, the composition of concentrate and supplement method will largely affect the deposition rate, bath life and deposit properties.A detailed comparison between middle-temperature and high-phosphorus electroless nickel plating bath and high-temperature and high-phosphorus electroless nickel plating product of market is carried out,the integrated properties of the former is better than the latter’s,thinner coating can achieve the same performance as the thicker coating of high-temperature and high-phosphorus electroless nickel plating, the application prospects is good.A realistic middle-temperature and high-phosphorus electroless nickel plating technology with good performance is obtained by systematically studying, providing a reference value for industrial applications.
引文
[1]李宁,屠振密.化学镀实用技术[M].化学工业出版社,2004:1-3, 81
    [2]姜晓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社,2001:4-7, 8-20,46-53,54-57,66-67,181-182
    [3]沃尔夫冈·里德尔.化学镀镍[M].罗守福译.上海:上海交通大学出版社, 1996,4-6
    [4]胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术[M].化学工业出版社,2004: 1-3
    [5]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M].哈尔滨工业大学出版社,2000:1-3,17-22
    [6]庄瑞舫.化学镀镍合金技术探讨(I)[J],材料保护,1997,30(9):41-43
    [7]郝小军.化学镀镍工艺及应用[J].电镀与涂饰,1997,16(4):48-49
    [8]欧阳新平,罗浩江.低温化学镀镍研究进展[J].电镀与涂饰, 2000, 19 (3):42-45
    [9]崔国峰.化学镀镍磷合金过程的析出及其对镀层性能的影响[D].哈尔滨:哈尔滨工业大学, 2006:7-9, 15-16,39
    [10] Kalantary M R,Holbrook K A, Wells P B.Optimisation of a bath for electroless plating and its use for the production of nickel-phosphorus-silicon carbide coating [J].Transactions of Institute of Metal Finishing,1993,71(2):55-61
    [11] Nishira M, Takano O.Fricition and wear characteristics of electroless Ni-P-PTFE composite coating [J].Plating &surface Finishing,1994,81(1):48-50
    [12] Cherkaoui M, Srhiri A, Chassaing E.Electroless deposition of Ni-Cu-P allays [J]. Plating &surface Finishing, 1992, 79(11):68-71
    [13]李北军,李昕,杨昌英.复合配位剂化学镀镍工艺的研究[J].电镀与环保,2006,26(6): 25-28
    [14]闰洪.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,1999,57-59
    [15]赵善芬,张振邦.低温化学镀镍中络合剂作用研究[J].表面技术,1996,25(5):24-25,28
    [16]韩克平,方景礼.氟离子对化学镀镍的加速机理[J] .电镀与环保,1996 , (3) :21-23
    [17]刘永健,王印培,陈进,等.中温化学镀镍商品镀液的研制[J].电镀与环保, 2000, 20 (5): 19-21, 32
    [18]安茂忠,杨哲龙,徐雪峰等.化学镀Ni-P合金中无机盐加速剂的影响[J].中国有色金属学报,1999 ,9 (1) :155-158
    [19]雷志刚,郑传明,韩荣生.四种稳定剂对化学镀镍液及镀层耐蚀性的影响[J].腐蚀与防护,2007,28(3):135-137
    [20]郑振,李宁,黎德育.稳定剂对低磷化学镀镍液及镀层的影响[J].电镀与环保,2009,29(1):30-33
    [21]孙克宁,张亦林.化学镀Ni-P工艺研究[J].电镀与环保.1998,18(3):18~22
    [22]徐瑞东,郭忠诚.新型化学镀镍光亮剂的研究[J].材料保护.2002,35(6):30-32
    [23]崔国峰,李宁,黎德育等.化学镀镍液的缓冲容量与沉积速度的关系[J].电镀与环保,2003,23(6):19-22
    [24]韩克平,方景礼.乙酸钠加速化学镀镍的研究[J] .表面技术,1997 , 26(2) :8-10
    [25]胡光辉.化学镀镍中添加剂作用和活化过程的机理研究[D].厦门:厦门大学, 2004:3-5
    [26]邹建平,刘贤泽,邢秋菊等.中温化学镀镍工艺的新进展[J].电镀与涂饰, 2009, 28(5): 23-26
    [27]方信贤.中温酸性化学镀镍磷合金组织和性能研究[J].表面技术,2007, 36 (4): 25-27
    [28]李建三.低温化学镀镍工艺研究及机理探讨[D ].华南理工大学, 1997
    [29]梁志杰.现代表面镀覆技术[M].北京:国防工业出版社, 2005,21-23
    [30]黄岳山,蒙继龙,李异.低温化学镀镍工艺的研究[J].电镀与环保,1998, 18 (2): 18-20
    [31]邹建平,贺子凯,黄鑫,等.中温酸性化学镀镍络合剂的研究[J].电镀与涂饰, 2004, 23 (5): 19-21.
    [32]蒋伏广.中温化学镀镍工艺[J].电镀与环保,2004, 24 (1): 25-27.
    [33]亢淑梅,王琳,李成威,等.中温酸性化学镀Ni–P合金耐蚀性能研究[J].表面技术, 2008, 37 (3): 27-29
    [34] MALLORY G O, PARKER K. The effect of monovalent cations on electroless nickel plating [J]. Plating and Surface Finishing, 1994, 81 (12):55-57
    [35]夏承钰.酸性化学镀镍沉积速度的研究[J].材料保护,1996,29(1):4-7
    [36]邹建平,贺子凯,黄鑫,等.中温化学镀镍加速剂的研究[J].电镀与环保, 2004, 24 (6): 27-29
    [37]邹建平.中温酸性化学镀镍–磷合金工艺的研究[D].昆明:昆明理工大学, 2004: 10
    [38]王琳.中温化学镀–-磷合金工艺研究[D].鞍山:辽宁科技大学, 2007:12-14
    [39] JOHN S, SHANMUGHAM N V, SHENOI B A. A low temperature autocatalytic(electroless) nickel plating process [J]. Metal Finishing, 1982, 80 (4): 47-52
    [40]刘永健,王印培,陈进,等.中温化学镀镍商品镀液的研制[J].电镀与环保, 2000, 20 (5): 19-21, 32
    [41]严易舒,黄树坤.中温酸性化学镀镍[J].材料保护, 1996, 29 (5): 24-25
    [42]牛振江,胡钟霆,陈萍,等.柠檬酸盐体系低温化学镀镍的研究[J].电镀与涂饰, 2005, 24 (9): 9-11
    [43] KOBAYASHI K, CHIBA A, MINAMI N. Effects of ultrasound on both electrolytic and electroless nickel depositions [J]. Ultrasonics, 2000, 38 (1/8):676-681
    [44]崔宁,杨连喜,杨熙珍,等.超声波对化学镀Ni–P非晶态合金性能的影响[J].山东工业大学学报, 1994, 24 (2): 121-126
    [45]高叔轩,刘贵昌,赵瑜.超声波辅助下中温化学镀镍工艺的研究[J].材料保护, 2004, 37 (3): 28-30
    [46]张颖,陶珍东,等.超声振荡辅助化学镀镍及其性能研究[J].电镀与涂饰, 2008, 28 (10): 18-21
    [46]朱瑞安.脉冲电镀[M].北京:电子工业出版社,1987:29
    [47]胡茂圃,王宝珏.脉冲化学镀镍磷合金及其性能[J].北京科技大学学报,1990,12(2): 109-113
    [48]丁学谊,吕龙云,朱立群.脉冲化学镀镍磷合金层性能研究[J].电镀与涂饰,1999,18 (2):1-6
    [49]王昆林.激光诱导沉积技术及其应用[J].表面技术, 1993, 22 (6):237-241
    [50] GUTFELD R J, GELCHINSKI M H, ROMANKIW L T. Maskless laser patterning for gold plating of microelectronic materials [J]. Journal of the Electrochemical Society, 1983, 130 (9): 1840-1844
    [51]杨玉国,孙冬柏,杨德钧.光敏剂诱导化学镀镍的研究[J].腐蚀科学与防护技术, 1998, 10 (1): 33-36
    [52]仵亚婷,汤义武,胡文彬,等.化学镀镍液稳定性测试评估方法[J].电镀与环保, 2004, 24 (2): 27-29
    [53]胡波年,李亭憬,余刚,等.镁合金化学镀镍溶液稳定性[J].化工学报,2009,60(3):696-701
    [54]王勇,曾振欧,张晓明,等.中温高磷化学镀镍促进剂的研究[J].电镀与涂饰,2010,29(12):25-28
    [55]孙华,冯立明.化学镀Ni-P合金稳定剂的研究[J].表面技术,2004,33(4):26-27,32
    [56]刘海萍,李宁,毕四富.稳定剂对化学镀镍液及镀层性能的影响[J].电镀与环保,2006,26(2):20-23
    [57]李北军,李昕,杨昌英.复合络合剂化学镀镍工艺的研究[J].电镀与环保,2006,26(6):25-28
    [58]宋仁军,赵永武.复合络合剂在化学镀镍中的作用[J].材料保护,2008,41(3):40-43,79
    [59]杨昌英,李昕,代忠旭等.选择合适的添加剂改善化学镀镍层的性能[J].化学与生物工程, 2008 , 25(4):28-30
    [60]冯立明,李伟等.促进剂及其优化对化学镀Ni-Sn-P层性能的影响[J].材料保护,2006,39(2):17-19
    [61]刘永健,王印培.次亚磷酸钠体系化学镀镍沉积机理探讨[J].华东理工大学学报,2001,27(3):301-315
    [62]贺雪峰,应华根,严密.光亮化学镀镍-磷合金性能研究[J].电镀与精饰,2006.28(5):4-7
    [63]罗建东,张远霞,明树平.铝材灯饰零件化学镀光亮Ni-P合金镀层[J].电镀与精饰,2009,31(10):12-14
    [64]M.RedaGad, A.El-Magd.Additives for Electroless Nickel Alloy Coating Processes.Metal Finishing,2001,(2):77-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700