基于小波变换和傅立叶变换的电能质量分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的迅速发展以及电力市场的逐步形成,电能质量问题在许多国家已经引起电力部门和用户的广泛关注,供电质量不高将引起产品质量下降,甚至导致某些重要的生产过程中断,从而造成严重的经济损失。
     为了采取合理的措施提高电能质量,必须建立电能质量监测分析系统,对其进行正确地检测、评估和分类。本文从电能质量在线监测的角度出发,提出了一种基于小波变换和傅立叶变换的分析方法,对大量典型的电能质量信号用MATLAB软件进行了仿真分析,取得了令人满意的结果,验证了该方法的实用性和可行性。
     实际的电能质量信号可能含有高频突变部分和噪声。小波变换的自适应性使其对电能质量扰动信号的消噪有着传统的低通滤波器无法比拟的优点。本文引入小波消噪方法对信号进行预处理,获得了良好的效果。用多分辨分析进行扰动的检测和提取是本文的重点。基于信号的奇异性检测理论,提出用Mallat分解算法第一层和第二层的高频系数作为区分稳态和非稳态现象的判据,进而确定扰动的持续时间。根据多分辨分析的频带划分原理,利用Mallat重构算法提取暂态扰动的波形。为了进一步区分短期变化扰动的类型,还编制了相应的扰动识别子程序,可以准确地判别电压骤降、电压骤升和断电等扰动。针对电力系统的稳态现象,本文利用快速傅立叶变换方法对谐波、闪变和纯正弦波电压等典型现象进行了分析,由傅立叶频谱作为区分谐波和闪变的一种手段。
     本文首先系统地介绍了电能质量现象及其理论基础,对各种电能质量扰动的分类、定义、特征及其产生的原因进行了详细的阐述,并简要地介绍了我国
    
    的电能质量标准以及电能质量监督管理体系;其次,对傅立叶变换、短时傅立
    叶变换和小波变换这三种方法的基本原理及其在电能质量分析领域的应用现状
    作了深入的探讨和比较,阐明了各种方法的特点及其适用条件;进而,对本文
    提出的方法的原理及其实现作了详尽的说明;最后,以若干典型信号的仿真分
    析为例验证了该方法的优越性。
With the rapid development of national economics and electricity markets,
     power quality issues have captured considerable attention from both utility
     companies and their customers in many countries, in part due to the proliferation of
     sensitive electronic equipment. A poor supply quality can degrade the quality of
     products, interrupt important industrial processes and therefore lead to economic
     losses.
    
     To improve the electric power quality, a monitoring and analyzing system must
     be established to detect, estimate and classify different disturbances. As a
     consequence, it must be supported by suitable measurement methods and apparatus.
    
     The paper presents an on-line measurement method based on wavelet transform
     and Fourier transform for power quality analysis in electric power systems. The
     comparison of wavelet denoising with low-pass filtering is performed before the
     wavelet is introduced as a pre-processing tool for power quality signals. The key of
     this paper is to detect and extract disturbances with multi-resolution analysis (MRA).
     The detection of the non-steady state disturbance and its duration are attained by a
     proper application, on the sampled and denoised signal, of the Mallat decomposition
     algorithm. And the modulus local maxima properties of the first-level and
     second-level detail versions can be used as a criterion to classify steady and
     non-steady state phenomena. The disturbance waveform is extracted by
     reconstructing, in an optimized way, the signal in frequency subbands by means of
     the MalIat reconstruction algorithm. To classify short-duration variations further, a
     program is designed so that sags, swells and interruptions can be identified exactly.
     As to steady state phenomena, the traditional signal analysis tool FFT is used for
     harmonic analysis, which is also conceived for a means to distinguish harmonic and
    
    
    
     flicker. The proposed method is characterized by its real-time property and it is
     designed for an agile disturbance classification.
    
     In the paper firstly the theoretical background of power quality phenomena is
     expounded. Secondly, three transform-based methods (Fourier transform, short-time
     Fourier transform and wavelet transform, respectively) and their applications are
     discussed. Then, the proposed method is described in detail. Finally, some case
     studies are examined in order to highlight the performance of the method.
引文
[1] Dugan R C, McGranaghan M F, Beaty H W. Electrical Power Systems Quality. New York: McGraw-Hill, 1996
    [2] TC 77 WG6 (Secretary) 110-R5, Draft Classification of Electromagnetic Environment, January 1991
    [3] IEEE Standard 1159, IEEE Recommended Practices for Monitoring Electric Power Quality, New York, 1995
    [4] IEEE Standard 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, New York, 1992
    [5] Barker P, Mancao R, Kvaltine D, et al. Characteristics of Lighting Surges Measured at Metal Oxide Distribution Arresters. IEEE Trans on Power Delivery, 1993, 8(4) : 301-310
    [6] Greenwood A. Electrical Transients in Power Systems, 2nd ed. New York: John Wiley & Sons, Inc., 1991
    [7] Adams R A, Middlekauff S W, Camm E H, et al. Solving Customer Power Quality Problems Due to Voltage Magnification. IEEE Trans on Power Delivery, 1998, 13(4) : 1515-1520
    [8] Warren C M. The Effect of Reducing Momentary Outages on Distribution Reliability Indices. IEEE Trans on Power Delivery, 1993, 8(3) : 1610-1617
    [9] Heydt G T. Electric Power Quality, 2nd ed. West Lafayette, IN: Stars in a Circle Publications, 1991
    [10] Burke J. Power Distribution Engineering: Fundamentals and Applications. New York: Marcel Dekker, 1994
    [11] Tang L, Lamoree J, McGranaghan M, et al. Distribution System Voltage Sags: Interaction with Motor and Drive Loads. Proceedings of the IEEE Transmission and Distribution Conference, Chicago, April 10-15, 1994, pp. 1-6
    [12] McGranaghan M F, Mueller D R, Samotyj. Voltage Sags in Industrial Systems. IEEE Trans on Industry Applications, 1993, 29(2)
    [13] 马维新.电力系统电压.北京:中国电力出版社,1998
    
    
    [14] 林海雪.电力系统的三相不平衡.北京:中国电力出版社,1998
    [15] Dugan R C. Simulation of Arc Furnace Power Systems. IEEE Trans on Industry Application, 1980, 16(6): 813-818
    [16] 吕润馀.电力系统高次谐波.北京:中国电力出版社,1998
    [17] 张一中.电力谐波.成都:成都科技大学出版社,1990
    [18] 水利电力部.电力系统谐波管理暂行规定(SD 126-84).北京:水利电力出版社,1985
    [19] 国家技术监督局.电能质量 公用电网谐波(GB/T 14549-93).北京:标准出版社,1993
    [20] 寇慧珍,张遵运.谐波对山西化工厂 10kV 补偿电容器运行影响的分析.电网技术,1996,20(7):42-44
    [21] 肖湘宁,徐永海.电力系统谐波及其综合治理.中国电力,1998,31(4):59-61
    [22] Girgis A A, Chang W B, Makram E B. A Digital Recursive Measurement Scheme for On-line Tracking of Power System Harmonics. IEEE Trans on Power Delivery, 1991, 6(3): 1153-1160
    [23] Mendis S R, Gonzalez D A. Harmonics and Transient Overvoltage Analysis in Arc Furnace Power Systems. IEEE Trans on Industry Applications, 1992, 28(2): 336-342
    [24] Daponte P, Falcomata A, Testa A. A Multiple Attenuation Frequency Window for Harmonic Analysis in Power Systems. IEEE on Trans on Power Delivery, 1994, 9(2): 863-871
    [25] Massey G. Estimation Methods for Power System Harmonic Effect on Power Distribution Transformers. IEEE Trans on Industry Applications, 1994, 30(2): 485-489
    [26] Mansoor A, Grady W M, Chowdhury A H, et al. An Investigation of Harmonics Attenuation and Delivery among Distributed Single-Phase Power Electronic Loads. IEEE Trans on Power Delivery, 1995, 10(1): 467-473
    [27] Xu W, Mansour Y, Siggers C, et al. Developing Utility Harmonic Regulations Based on IEEE Standard 519-BC Hydro's Approach. IEEE Trans on Power Delivery, 1995, 10(3): 1423-1431
    [28] Sabin D D, Brooks D L, Sundaram A. Indices for Assessing Harmonic Distortion from Power Quality Measurements:Definitions and Benchmark Data.IEEE Trans on Power Delivery,1999,14(2):489-496
    
    
    [29] Mcgranaghan M F,Mueller D R.Designing Harmonic Filters for Adjustable-Speed Drives to Comply with IEEE-519 Harmonic Limits. IEEE Trans on Industry Applications,1999,35(2):312-318
    [30] 杨万开,肖湘宁,杨以涵.电网中三相电压不对称谐波及负序电流检测方法的研究.电网技术,1997,21(11):45-48
    [31] 杨君,王兆安,邱关源.不对称三相电路谐波及基波负序电流实时检测方法的研究.西安交通大学学报,1996,30(3)
    [32] 叶忠明,董伯藩,钱照明.谐波电流的提取方法比较.电力系统自动化,1997,21(12):21-40
    [33] 王建赜,冉启文,纪延超,等.谐波检测中小波变换频域特性分析.电力系统自动化,1998,22(7):40-43
    [34] 王建赜,冉启文,纪延超,等.基于小波变换的时变谐波检测.电力系统自动化,1998,22(8):52-55
    [35] 王群,吴宁,王兆安.一种基于人工神经网络的电力谐波测量方法.电力系统自动化,1998,22(11):35-39
    [36] 王群,吴宁,王兆安.一种基于人工神经网络的谐波测量方法.电网技术,1999,23(1):29-32
    [37] 危韧勇,李志勇.基于人工神经网络的电力系统谐波测量方法.电网技术,1999,23(12):20-23
    [38] 吴笃贵,徐政.电力系统谐波状态估计的发展与展望.电网技术,1998,22(1):75-77
    [39] 习新魁,卢朝晖,孟立会.谐波与负序数据实时监测系统.电力系统自动化,1998,22(1):70-72
    [40] 孟昭勇,梁军,李仁俊,等.一种高性能电力监控仪.电力系统自动化,1998,22(1):65-66
    [41] 周箭,陈隆道.新型电力参数测试与分析系统.中国电力,1998,31(11):18-36
    [42] 李焕明,郭建忠,张京,等.配电网电能质量控制方法的研究.中国电力,1998,31(8):49-54
    
    
    [43] 廖泽龙.电能质量综合测试系统的设计.电网技术,2000,24(2):42-44
    [44] 王建赜,李威,纪延超,等.电能质量监测算法研究及实现.继电器,2001,29(2):29-41
    [45] 水利电力部.电力设备接地设计技术规程(SDJ 8-79).北京:水利电力出版社,1980
    [46] 孙树勤.电压波动与闪变.北京:中国电力出版社,1998
    [47] 国家技术监督局.电能质量 电压允许波动和闪变(GB 12326-90).北京:标准出版社,1990
    [48] 王越,刘晋平,李向荣.用新型静止无功发生器抑制电压闪变之研究.电网技术,1998,22(9):61-64
    [49] 祁碧茹,肖湘宁.IEC闪变仪仿真.华北电力大学学报,2000,27(1):19-24
    [50] 雷林绪.对电压波动闪变仪校验的一点看法.电网技术,1999,23(3):41-43
    [51] 蔡邠.电力系统频率.北京:中国电力出版社,1998
    [52] 肖遥,李澍森.供电系统的电压下凹.电网技术,2001,25(1):73-77
    [53] 国家技术监督局.电能质量 供电电压允许偏差(GB 12325-90).北京:标准出版社,1990
    [54] 国家技术监督局.电能质量 三相电压允许不平衡度(GB/T 15543-1995).北京:标准出版社,1995
    [55] 国家技术监督局.电能质量 电力系统频率允许偏差(GB/T 15945-1995).北京:标准出版社,1995
    [56] Heydt G T, Fjeld P S, Liu C C, et al. Application of the Windowed FFT to Electric Power Quality Assessment. IEEE Trans on Power Delivery, 1999, 14(4): 1411-1416
    [57] Chui C K. An Introduction to Wavelets. New York: Academic Press, 1992
    [58] 胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计—小波分析.西安:西安电子科技大学出版社,1999
    [59] 胡广书.数字信号处理—理论、算法与实现.北京:清华大学出版社,1997
    [60] 陈行禄,秦永元.信号分析与处理.北京:北京航空航天大学出版社,1993
    [61] 李庚银,陈志业,宁宇.快速傅里叶变换的两种改进算法.电力系统自动化,1997,21(12):37-40
    [62] 张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法.中国电机工程学报,1999,19(3):63-66
    
    
    [63] 赵渊,钟岷秀,周念成,等.电力系统谐波分析仪算法研究.华东电力,1999,27(4):15-17
    [64] Gu J C, Yu S L. Removal of DC Offset in Current and Voltage Signals Using a Novel Fourier Filter Algorithm. IEEE Trans on Power Delivery, 2000, 15(1): 73-79
    [65] 程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998
    [66] Daubechies I. The Wavelet Transform, Time-frequency Localization and Signal Analysis. IEEE Trans on Information Theory, 1990, 36(5): 961-1005
    [67] 秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994
    [68] Ribeiro P F. Wavelet Transform: An Advanced Tool for Analyzing Non-Stationary Harmonic Distortions in Power Systems. In: Proceeding of IEEE ICHPS Ⅵ. Bologna (Italy): 1994. 365-369
    [69] Huang S J. Hsieh C T, Huang C L. Application of Morlet Wavelets to Supervise Power System Disturbances. IEEE Trans on Power Delivery, 1999, 14(1): 235-241
    [70] Brito N S D, Souza B A, Pires F A C. Daubechies Wavelets in Quality of Electrical Power. In: Proceeding of IEEE ICHQP Ⅷ. Athens (Greece): 1998.511-515
    [71] Angrisani L, Daponte P, Apuzzo M D, et al. A Measurement Method Based on the Wavelet Transform for Power Quality Analysis. IEEE Trans on Power Delivery, 1998, 13(4): 990-998
    [72] Possion O, Rioual P, Meunier M. Detection and Measurement of Power Quality Disturbances Using Wavelet Transform. IEEE Trans on Power Delivery, 2000, 15(3): 1039-1044
    [73] Possion O, Rioual P, Meunier M. New Signal Processing Tools Applied to Power Quality Analysis. IEEE Trans on Power Delivery, 1999, 14(2): 561-566
    [74] Gaouda A M, Salama M M A, Sultan M R, et al. Power Quality Detection and Classification Using Wavelet-Multiresolution Signal Decomposition. IEEE Trans on Power Delivery, 1999, 14(4): 1469-1476
    [75] Gaouda A M, Salama M M A, Sultan M R, et al. Application of Multiresolution Signal Decomposition for Monitoring Short-Duration Variations in Distribution Systems. IEEE
    
    Trans on Power Delivery, 2000,15(2) : 478-485
    [76] Santoso S, Powers E J, Grady W M. Power Quality Disturbance Data Compression Using Wavelet Transform Methods. IEEE Trans on Power Delivery, 1997, 12(3) : 1250-1255
    [77] Littler T B, Morrow D J. Wavelets for the Analysis and Compression of Power System Disturbances. IEEE Trans on Power Delivery, 1999, 14(2) : 358-364
    [78] Santoso S, Powers E J, Grady W M. Power Quality Disturbance Identification Using Wavelet Transforms and Artificial Neural Networks. In: Proceeding of IEEE ICHQP VII? Las Vegas (USA): 1996. 615-618
    [79] Perunicic B, Mallini M, Wang Z, et al. Power Quality Disturbance Detection and Classification Using Wavelets and Artificial Neural Networks. In: Proceeding of IEEE ICHQP Ⅷ?. Athens (Greece): 1998. 77-82
    [80] Santoso S, Powers E J, Grady W M, et al. Power Quality Disturbance Waveform Recognition Using Wavelet-Based Neural Classifier-Part 1: Theory Foundation. IEEE Trans on Power Delivery, 2000,15(1) : 222-228
    [81] Santoso S, Powers E J, Grady W M, et al. Power Quality Disturbance Waveform Recognition Using Wavelet-Based Neural Classifier-Part 2: Application. IEEE Trans on Power Delivery, 2000,15(1) : 229-235
    [82] Robertson D C, Camps O I, Mayer J S, et al. Wavelets and Electromagnetic Power System Transients. IEEE Trans on Power Delivery, 1996, 11(2) : 1050-1056
    [83] Heydt G T, Galli A W. Transient Power Quality Problems Analyzed Using Wavelets. IEEE Trans on Power Delivery, 1997,12(2) : 908-915
    [84] Zheng T, Makram E B, Girgis A A. Power System Transient and Harmonic Studies Using Wavelet Transform. IEEE Trans on Power Delivery, 1999, 14(4) : 1461-1468
    [85] Meliopoulos APS, Lee C H. An Alternative Method for Transient Analysis via Wavelets. IEEE Trans on Power Delivery, 2000,15(1) : 114-120
    [86] Santoso S, Powers E J, Grady W M, et al. Power Quality Assessment via the Wavelet Transform Analysis. IEEE Trans on Power Delivery, 1996, 11(2) : 924-930
    [87] Pillay P, Bhattacharjee A. Application of Wavelets to Model Short-term Power System Disturbances. IEEE Trans on Power Systems, 1996, 11(4) : 2031-2037
    
    
    [88] Santoso S, Grady W M, Powers E J, et al. Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms. IEEE Trans on Power Delivery, 2000,15(1) : 247-254
    [89] Hlawatsch F, Boudreaux-Bartels G F. Linear and Quadratic Time-frequency Signal Representations. IEEE Signal Processing Magazine, 1992, 9(2)
    [90] Dash P K, Mishra S, Salama M M A, et al. Classification of Power System Disturbances Using a Fuzzy Expert System and a Fourier Linear Combiner. IEEE Trans on Power Delivery, 2000,15(2) : 472-477
    [91] Parsons A C, Grady W M, Powers E J, et al. A Direction Finder for Power Quality Disturbances Based Upon Disturbance Power and Energy. IEEE Trans on Power Delivery, 2000,15(3) : 1081-1086
    [92] 贾清泉,宋家骅,兰华,等.电能质量及其模糊评价方法.电网技术,2000,24(6) :46-49
    [93] Oppenheim A V, Willsky A S, Young I T. Signals and Systems. Prentice-Hall, Inc., 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700