串联机器人多目标轨迹优化与运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业自动化水平的不断提高,工业机器人的安装量迅猛增长,应用领域日益广泛,工业机器人已经成为一种标准的设备在工业现场得到了广泛的应用。据专家预测,国内工业机器人的安装量将以每年25%的速度递增。然而国内的机器人市场的基本都被国外公司,如ABB、FANUC、YASKAWA、MOTOMAN、KUKA、AdeptTechnology、COMAU等所垄断,国产机器人市场份额不到1%,且在运动速度、精度和可靠性等方面与国外同类产品相比存在较大差距。同时机器人技术是机械、电子、计算机、控制、信息、人工智能、仿生等多学科知识交叉融合的高新技术,理论研究也非常活跃。因此立足国内基础,研究机器人的通用共性技术和重点关键技术,尤其是研究高速高精度运动的相关理论及技术,一方面可以在理论上提高我国机器人研究的水平,另一方面在技术上促进我国工业机器人的整体性能的提高。
     本文以自行研制SCARA (Selective Compliance Assembly Robot Arm选择顺应性装配机械臂)机器人为研究对象,以信号分析技术、现代控制理论、系统辨识技术及非线性动力学等多学科交叉为基础,采用理论分析、数值仿真和实验验证相结合的方法,开展工业机器人多目标轨迹优化及高性能运动控制相关研究工作。在系统实现方面,立足国内现有的技术基础,尝试了全部使用国产的器件,通过系统优化及软件算法弥补器件本身的缺陷,保证机器人整体性能。在控制系统设计方面,主控制器采用了ARM9平台,移植Linux操作系统,完成人机交互与运动规划,运动控制器采用了DSP+CPLD架构,完成插补与运动控制,一方面降低了成本,另一方面提高系统的稳定性。在结构设计方面上,选用国产谐波减速器组件,设计传动、抗弯、对心机构,通过高级运动控制算法补偿谐波减速器本身非线性摩擦等因素。在理论研究方面针对机器人高速、高精度运动性能,分别从运动规划、运动控制、柔性关节控制等方面展开相关研究,最终当机器人各关节最大运动速度在额定转速90%以上时,跟踪精度达到传感器分辨率的10倍以内,最终在SCARA机器人上得到的各关节平均跟踪误差小于0.005°,单关节的平均跟踪误差甚至达到了0.003°,为高性能国产化工业机器人的实现在关键理论技术和整机开发实践上做出了相应的探索。
     本论文共分七章,主要的研究内容如下:
     第一章,介绍了课题的研究背景,调研了国外先进机器人的相关产品及技术包括工业机器人技术上的最新进展,分析了国内工业机器人技术及产业发展的现状。在查阅相关文献的基础上,从机构优化、控制系统、轨迹规划、运动控制、柔性关节等方面对机器人理论研究现状进行了综述。最后阐明了本课题来源及研究内容。
     第二章,介绍自行研制SCARA机器人的系统实现及关键技术,包括了结构设计、控制系统、驱动系统等。在结构上,采用谐波减速器组件,设计相应的传动、抗弯及对中机构。在控制系统架构上,基于ARM9平台设计示教规划器,并在Linux系统下开发相应的人机交互界面及运动规划算法,完成机器人示教规划功能,基于DSP设计运动控制器,完成运动插补及高速、高精度运动控制算法,实现了完全国产化的低成本的样机设计。
     第三章,研究机器人多目标轨迹优化算法。首先采用高次B样条曲线,构造关节空间高阶连续轨迹,保证机器人关节的运动的连续性和启停运动参数的可配置性,并根据B样条曲线的凸包性质,将关节运动学约束转换为B样条曲线的控制顶点约束。以运动时间最短、轨迹最平滑、能耗最小,驱动力矩变化最小等指标为优化目标,采用改进NSGA-Ⅱ求解多目标优化的轨迹,得到了Pareto最优解集,为用户提供一组优化的解集,并在通用的六自由度机器人上进行研究分析。结果表明,与单目标优化算法相比,在另外的一个或几个目标的优化值近似的情况下,就比较的目标而言,多目标优化算法得到的优化结果更好。
     第四章,研究了机器人的无模型控制算法。首先在PID控制的基础上提出了监督自适应PID控制算法,其中自适应PID部分使可达性条件最小,保证滑模态的发生,同时设计监督控制部分保证系统的稳定性。在此基础上设计监督自适应RBF网络控制算法,采用RBF网络逼近系统的理想控制器,采用同样的方法设计自适应律及监督控制器。提出了鲁棒PID输出反馈控制算法,在PD控制的基础上,设计非线性积分控制部分,提高系统的动态响应性能和鲁棒性,同时设计观测器,避免位置微分带来的高频噪声干扰,仿真及实验结果在不需要机器人模型参数信息的情况下,取得了较好的控制性能。
     第五章,研究机器人模型参数辨识及基于模型信息的鲁棒自适应控制算法。首先建立机器人动力学模型并线性化,进一步考虑机器人动态约束,设计优化的激励轨迹,以充分激励机器人的动力学特性,减少系统辨识数值解带来的误差,采用极大似然参数估计算法,得到精确的参数辨识结果,仿真及实验结果表明辨识算法的有效性。进一步基于模型设计控制算法,考虑了谐波驱动的位置相关摩擦,采用未知参数的正余弦函数结合的形式表征位置相关摩擦,在期望补偿自适应鲁棒控制算法基础上,针对自适应律学习“慢”的局限性,提出改进自适应鲁棒控制算法,将积分型参数估计改为比例积分型参数估计,有效的抑制了系统的高频干扰。单关节及多关节机器人轨迹跟踪实验,得到了良好的跟踪性能。
     第六章,针对谐波驱动机器人的柔性关节控制问题,提出了动态面backstepping控制算法及饱和模糊动态面backstepping控制算法。首先采用传统backstepping设计柔性关节控制器,进一步设计动态面backstepping控制器,采用动态面技术,引入一阶低通滤波器估计backstepping方法所设计的虚拟控制律,避免了对虚拟控制量的多次求导,解决了backstepping方法所引起的“计算膨胀”问题。在此基础上,考虑到力矩输出的受限问题,设计饱和模糊动态面backstepping控制算法,采用模糊系统逼近饱和非线性,提高系统在力矩受限情况下的跟踪精度。
     第七章,总结了论文的主要研究工作、结论及创新点,并对以后的研究工作做了展望。
With the remarkable improvement of domestic industrial automation, robot manipulator installations are increasing greatly in our country, the robot manipulators have become standard equipments and have been widely used in the industrial fields. Experts predict that the amount of domestic robot manipulators will be increased by 25% every year. However, some foreign companies, such as ABB, FANUC, YASKAWA, MOTOMAN, KUKA, AdeptTechnology, COMAU, etc. have an overwhelmingly large share of our market while domestic companies have less than 1%. Moreover, there is a big gap of these likewise products between China and other countries on the performance such as speed, accuracy, reliability etc. The technology of robot manipulator is a cross-disciplinary integration, including mechanical, electronic, computer, control, information, artificial intelligence, bionics and other of high-tech field. The theoretical research of robot manipulators is very active. Hence, based on the domestic technological foundation, deep research on the general technology and the key technology of robot manipulators especially the research on the high-speed and high-precision technology can not only improve the theory research level of robot, but also will promote the overall technology of robot manipulators in China.
     This dissertation addresses the study of our self-made SCARA (Selective Compliance Assembly Robot Arm) robot. Based on the knowledge of many disciplinary, such as signal analysis, modern control, system identification, nonlinear system and so on, with the help of combination of theoretical analysis, numerical simulation and experimental validation, high-speed and high-precision motion of robot manipulators and its related area are studied. For the system realization, based on the domestic existing technology, the robot manipulator design use all the domestic devices, and in order to guarantee the overall performance of the robot manipulator, The system design is optimized and advanced control algorithms are adopted to compensate for the lower performance of the devices themselves. In the electric system, ARM9 platform with Linux embedded are adopted in the design of main controller to realize human-computer interaction and motion planning. DSP+CPLD platform is used for the motion controller. These will help to reduce the cost and improve the stability of the system. In the design of mechanical structure, domestic harmonic reducer has been chosen, and corresponding transmission, bending and centering device are designed. With the help of advanced motion control algorithms, the flexibility and nonlinear friction factors of harmonic reducer are compensated. To obtain high-speed and high-precision motion performance of robot manipulator, some theory such as motion planning, motion control and flexible joints control, etc. are discussed. The maximum speed of each joint has reached more than 90% of the rated speed of robot manipulator, the tracking accuracy still reach less than 10 times of the sensor precision. Eventually the tracking error on each joint is less than 0.005°for multi-axis motion control and even less than 0.003°for uniaxial motion control. Such work is a exploration in realizing high-performance localized robot manipulator on the key technologies and the practice of overall unit.
     This dissertation is divided into seven chapters, the main contents are as follows:
     The first chapter introduces the research background, research topics related to the foreign advanced robot products and industrial robot technology, analyzes the latest progress of domestic robot manipulators and the present situation of the technology and industry. Literatures of the robot theories, including structural optimization, control system, trajectory planning, motion control and flexible joints, are reviewed. At last the support and the background of this research are clarified.
     In chapterⅡ, the system realization and key technologies of the self-made SCARA robot are introduced, including the structure design, control system and drive system, etc. In the structure design, harmonic reducer components are adopted, corresponding transmission, bending and centering device are designed. In the control system, Teaching and planning system based on ARM9 platform is designed, and corresponding human-machine interface and motion planning algorithm are developed under Linux system, the function of robot demonstration and teaching planning are completed. Motion interpolation, high-speed and high-accuracy motion control algorithm are implemented on motion controller based on DSP. At last low cost prototype design are completed.
     In chapterⅢ, the multi-objective trajectory optimization for manipulators is studied. The high degree B-splines are adopted to construct a continuous trajectory in joint space which guarantees the continuity of motion, as well as free configuration of motion parameters of starts and stops. According to the convex-hull property, kinematic constraints are transformed to the constraints on control points of B-splines. With minimum time, smooth trajectory, lowest energy consumption and the least torque variation as our optimizing objectives, firstly, the improved non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)is applied, then the Pareto optimization solution set is obtained, which provided many choices for users. The results on the general six degrees of freedom manipulator show that compared with the single-objective optimizations, the multi-objective optimization algorithm is better.
     In chapter IV, some model free controllers are studied for trajectory tracking of robot manipulators. Firstly, a supervisory adaptive PID controller is proposed based on the traditional PID controller. Then the adaptive PID algorithm is designed to minimize the accessibility conditions to precipitate the sliding mode occur. At the same time, a supervisory adaptive RBF neural network controller is presented, the RBF neural network approximates the ideal controller and the supervisory controller guarantees the system stability. Then a robust nonlinear PID output feedback controller is designed. The PD part stabilizes the system, the nonlinear integration part is designed to improve the dynamic response and the robustness. A linear observer is proposed to estimate the actual joint velocity to avoid the high frequency disturbance generated by differential computing the position value. The experimental and simulation results show that the controller can achieve the favorable tracking performance without the model parameter information.
     In chapter V, the research is focused on the parameter identification and adaptive robust control based on the model information. Firstly, the dynamic model of the robot manipulator is constructed and linearized. Then in consideration of the dynamic constraints, the optimized exciting trajectory is designed to excite the dynamic characteristics of the manipulator, so as to reduce the identification error, and the maximum likelihood method is used to get the precise parameters. It's shown that the proposed technique is effective according to the simulation and experimental results. A controller based on the model is proposed, position-dependent friction is expressed as the combining sine and cosine function with unknown coefficient, based on the desired compensation adaptive robust control, an improved adaptive robust control (IARC) is proposed. The controller replaces the integral parametric estimations law with the proportional-integral parametric estimations law considering the "slow" learning rate to suppress the high-frequency noise. The experimental results on the single-joint and multi-joint manipulator show that the controller can achieve good tracking performance.
     In Chapter VI, dynamic surface backstepping control and saturated fuzzy dynamic surface backstepping control are proposed to deal with the flexible joint robot derived by harmonic gear reducer. Firstly, the traditional backstepping controller is designed for the flexible joint, and then the dynamic surface technique is introduced to design the dynamic surface backstepping controller. A first-order low-pass filter is proposed to approximate the virtual controller generated by backstepping so as to avoid the derivation of the controller. Thus the problem of 'explosion of complexity'in backstepping design procedure is solved. Based on the controller a saturated fuzzy dynamic surface backstepping controller is proposed to deal with the problem of limited torque, fuzzy system is used to approach the saturation nonlinearity to improve tracking precision under the limited torque.
     In chapter VII, the main work, results and innovations of the thesis are summarized. And the future research is also prospected.
引文
[1]朱世强,王宣银.机器人技术及其应用[M].杭州:浙江大学出版社,2001.
    [2]Ifr. Executive summary of world robotics.2010.
    [3]神原伸介.日本工业机器人最新发展动向[J].机器人技术与应用,2008,(4):23-25.
    [4]刘明尧,谈大龙.可重构模块化机器人现状和发展[J].机器人,2001,23(3):275-27.
    [5]孙立宁.我国机器人发展战略的思考[C].第六届全国先进制造装备与机器人技术高峰论坛,昆明,2010.
    [6]刘进长.抓住时机,促成飞跃-我国机器人产业发展的若干思考[J].机器人技术与应用,2007,(2):7-9.
    [7]王田苗.国家863计划先进制造与自动化技术领域机器人技术主题发展战略的若干思考[J].机器人技术与应用,2002,(3):2-7.
    [8]徐方.发展我国工业机器人产业的思考[J].机器人技术与应用,2010,(5):5-6.
    [9]于靖军.机器人机构学的数学基础[M].北京:机械工业出版社,2008.
    [10]杨廷力,刘安心,罗玉峰,杭鲁滨,沈惠平,石志新.机器人机构结构综合方法的基本思想、特点及其发展趋势[J].机械工程学报,2010,46(9):1-11.
    [11]Sen D, Singh B N. A Geometric Approach for Determining Inner and Exterior Boundaries of Workspaces of Planar Manipulators[J]. Journal of Mechanical Design,2008,130(2):022306.
    [12]Ottaviano E, Husty M, Ceccarelli M. Identification of the Workspace Boundary Of a General 3-R Manipulator[J]. Journal of Mechanical Design,2006,128(1):236-242.
    [13]Yang X, Wang H, Zhang C, et al. A method for mapping the boundaries of collision-free reachable workspaces[J]. Mechanism and Machine Theory,2010,45(7):1024-1033.
    [14]徐文福,李立涛,梁斌,李成,强文义.空间3R机器人工作空间分析[J].宇航学报,2007,28(5):1389-1394.
    [15]Bergamaschi P R, Nogueira A C, De Fatima Pereira Saramago S. Design and optimization of 3R manipulators using the workspace features[J]. Applied Mathematics and Computation, 2006,172(1):439-463.
    [16]Ceccarelli M, Lanni C. A multi-objective optimum design of general 3R manipulators for prescribed workspace limits[J]. Mechanism and Machine Theory,2004,39(2):119-132.
    [17]Gosselin C A J. The optimum kinematic design of a planar three-degree-of- freedom parallel manipulator[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design,1988, 110(1):35-41.
    [18]Gosselin C, Angeles J. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators [J]. Journal of Mechanical Design,1991,113(3):220-226.
    [19]郭希娟,耿清甲.串联机器人加速度性能指标分析[J].机械工程学报,2008,44(9):56-60.
    [20]郭希娟.机构性能指标理论与仿真[M].北京:科学出版社,2010.
    [21]石志新,罗玉峰.机器人机构的全域性能指标分析[J].机器人,2005,27(5):38-40.
    [22]孙斌,杨汝清.开放式机器人控制器综述[J].机器人,2001,23(4):374-378.
    [23]Hong K-S, Choi K-H, Kim J-G, et al. A PC-based open robot control system:PC-ORC[J]. Robotics and Computer-Integrated Manufacturing,2001,17(4):355-365.
    [24]Short M, Burn K. A generic controller architecture for intelligent robotic systems[J]. Robotics and Computer-Integrated Manufacturing,2011,27(2):292-305.
    [25]Gu J S, De Silva C W. Development and implementation of a real-time open-architecture control system for industrial robot systems[J]. Engineering Applications of Artificial Intelligence,2004,17(5):469-483.
    [26]王天然,曲道奎.工业机器人控制系统的开放体系结构[J].机器人,2002,24(3):256-261.
    [27]Xiaoyin S, Dong S, Mills J K. A new motion control hardware architecture with FPGA-based IC design for robotic manipulators[C]. Robotics and Automation,2006. ICRA 2006. Proceedings 2006 IEEE International Conference on,2006:3520-3525.
    [28]Xuecai Z, Liu S, Weiping L. Implementation of a high performance stand-alone motion controller[C]. Advanced Intelligent Mechatronics,2009. AIM 2009. IEEE/ASME International Conference on,2009:269-273.
    [29]Ying-Shieh K, Rong-Fong F, Ting-Yu T. Realization of a Motion Control IC for X-Y Table Based on Novel FPG A Technology [J]. Industrial Electronics, IEEE Transactions on,2009,56(1): 43-53.
    [30]Jung Uk C, Quy Ngoc L, Jae Wook J. An FPGA-Based Multiple-Axis Motion Control Chip[J]. Industrial Electronics. IEEE Transactions on,2009,56(3):856-870.
    [31]曹建福.嵌入式柔性开放式数控系统的研究[J].自动化博览,2010,(10):5-10.
    [32]Seul J, Sung Su K. Hardware Implementation of a Real-Time Neural Network Controller With a DSP and an FPGA for Nonlinear Systems[J]. Industrial Electronics, IEEE Transactions on,2007,54(1):265-271.
    [33]许哲志.关节型机器臂系统整合晶片之研制[D].台湾:南台科技大学,2005.
    [34]Osornio-Rios R A, De Jesus Romero-Troncoso R, Herrera-Ruiz G, et al. FPGA implementation of higher degree polynomial acceleration profiles for peak jerk reduction in servomotors[J]. Robotics and Computer-Integrated Manufacturing,2009,25(2):379-392.
    [35]刘松国,朱世强,王宣银,王会方.基于四元数和B样条的机械手平滑姿态规划器[J].浙江大学学报(工学版),2009,43(7):1192-1196.
    [36]朱世强,刘松国,王宣银,王会方.机械手时间最优脉动连续轨迹规划算法[J].机械工程学报,2010,46(3):47-52.
    [37]Gasparetto A, Zanotto V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing,2008,24(3):415-426.
    [38]Gasparetto A, Zanotto V. A new method for smooth trajectory planning of robot manipulators[J]. Mechanism and Machine Theory,2007,42(4):455-471.
    [39]Lianfang Tian C C. An effective robot trajectory planning method using a genetic algorithm[J]. Mechatronics,2004,14(5):455-470.
    [40]Valero F, Mata V, Besa A. Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour[J]. Mechanism and Machine Theory,2006,41(5): 525-536.
    [41]Chettibi T. Synthesis of dynamic motions for robotic manipulators with geometric path constraints[J]. Mechatronics,2006,16(9):547-563.
    [42]谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划[J].中南大学学报,2005,36(1):102-107.
    [43]Tan Guanzheng W Y. Theoretical and experimental research on time-optimal trajectory planning and control of industrial robots[J]. Control Theory & Applications,2003,20(2): 185-192.
    [44]Soonkyum Kim P, F.C. Fast Robot Motion Generation Using Principal Components: Framework and Algorithms[J]. IEEE Transactions on Industrial Electronics,2008,55(6): 2506-2516.
    [45]龚振邦,汪勤悫、陈振华.机器人机械设计[M].北京:电子工业出版社,1995.
    [46]丁学恭.机器人控制研究[M].杭州:浙江大学出版社,2006.
    [47]Takegaki M, Arimoto S. A New Feedback Method for Dynamic Control of Manipulators [J]. Journal of Dynamic Systems, Measurement, and Control,1981,103(2):119-125.
    [48]Kelly R. Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions[J]. Automatic Control, IEEE Transactions on,1998,43(7):934-938.
    [49]S. Arimoto T N, V. Parra-Vega, and L. Whitcomb. A quasi- natural potential and its role in design of hyper-stable PID servo-loop for robotic systems[C]. in Proc. CAI Pacific Symp. Control and Industrial Automation Application, Hong Kong,1994:110-117.
    [50]苏玉鑫.非线性机器人系统控制理论[M].北京:科学出版社2008.
    [51]Moreno-Valenzuela J, Santibanez V, Campa R. A Class of OFT Controllers for Torque-Saturated Robot Manipulators:Lyapunov Stability and Experimental Evaluation[J]. Journal of Intelligent & amp; Robotic Systems,2008,51(1):65-88-88.
    [52]Zavala-Rio A, Santibanez V. A Natural Saturating Extension of the PD-With-Desired-Gravity-Compensation Control Law for Robot Manipulators With Bounded Inputs[J]. Robotics, IEEE Transactions on,2007,23(2):386-391.
    [53]Yazarel H, Cheah C C, Liaw H C. Adaptive SP-D control of a robotic manipulator in the presence of modeling error in a gravity regressor matrix:theory and experiment[J]. Robotics and Automation, IEEE Transactions on,2002,18(3):373-379.
    [54]Chen P C, Mills J K. Synthesis of Neural Networks and PID Control for Performance Improvement of Industrial Robots[J]. Journal of Intelligent & Robotic Systems,1997, 20(2):157-180.
    [55]Alonge F, D'ippolito F, Raimondi F M. Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking[J]. Control Engineering Practice,2004,12(9): 1091-1100.
    [56]段学超,仇原鹰,段宝岩.宏微并联机器人系统自适应交互PID监督控制[J].机械工 程学报,2010,46(1):10-17.
    [57]Visioli A, Legnani G. On the trajectory tracking control of industrial SCARA robot manipulators[J]. Industrial Electronics, IEEE Transactions on,2002,49(1):224-232.
    [58]Antonelli G, Caccavale F, Chiacchio P. A systematic procedure for the identification of dynamic parameters of robot manipulators[J]. Robotica,1999,17(4):427-435.
    [59]Capisani L M, Ferrara A, Magnani L. MIMO identification with optimal experiment design for rigid robot manipulators[C]. Advanced intelligent mechatronics,2007 IEEE/ASME international conference on,2007:1-6.
    [60]Kostic D, Bram De J, Steinbuch M, et al. Modeling and identification for high-performance robot control:an RRR-robotic arm case study[J]. Control Systems Technology, IEEE Transactions on,2004,12(6):904-919.
    [61]刘晓平,彭朝阳,刘玉刚.基于模糊优化辨识模块化机器人关节动力学[J].机械工程学报,2003,39(4):66-70.
    [62]Naerum E, Cornella J, Elle O J. Wavelet networks for estimation of coupled friction in robotic manipulators[C]. Robotics and Automation,2008. ICRA 2008. IEEE International Conference on,2008:862-867.
    [63]Kemal Ciliz M, Tomizuka M. Friction modelling and compensation for motion control using hybrid neural network models[J]. Engineering Applications of Artificial Intelligence,2007, 20(7):898-911.
    [64]Patino H D, Carelli R, Kuchen B R. Neural networks for advanced control of robot manipulators[J]. Neural Networks, IEEE Transactions on,2002,13(2):343-354.
    [65]Miguel A. Llama R K, And Victor Santibanez. Stable Computed-Torque Control of Robot Manipulators via Fuzzy Self-Tuning[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B:CYBERNETICS,2000,30(1):143-150.
    [66]周兵,许艳.并串联复合机器人的鲁棒控制[J].机械工程学报,2006,42(5):229-232.
    [67]Jean-Jacques Slotine W L应用非线性控制[M].北京:机械工业出版社,2009.
    [68]申铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社,2000.
    [69]Torres S, Mendez J A, Acosta L, et al. On improving the performance in robust controllers for robot manipulators with parametric disturbances [J]. Control Engineering Practice,2007, 15(5):557-566.
    [70]Burkan R, Uzmay I. Variable Upper Bounding Approach for Adaptive-Robust Control in Robot Control[J]. Journal of Intelligent & Robotic Systems,2003,37(4):427-442.
    [71]Yao B. Advanced Motion Control:From Classical PID to Nonlinear Adaptive Robust Control [M]. The 11th IEEE International Workshop on Advanced Motion Control. Nagaoka, Japan.2010:815-829.
    [72]胡楚雄.基于全局任务坐标系的精密轮廓运动控制研究[D].杭州:浙江大学,2010.
    [73]Liu S, Yao B. Coordinate Control of Energy-Saving Programmable Valves[J]. ASME Conference Proceedings,2003,2003(37173):123-131.
    [74]朱笑丛.气动肌肉并联关节高精度位姿控制研究[D].杭州:浙江大学,2009.
    [75]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [76]Yau H-T, Chen C-L. Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems[J]. Chaos, Solitons & Fractals,2006,30(3):709-718.
    [77]Roopaei M, Zolghadri Jahromi M. Chattering-free fuzzy sliding mode control in MIMO uncertain systems[J]. Nonlinear Analysis:Theory, Methods & Applications,2009,71(10): 4430-4437.
    [78]Liu J K, Sun F C. Global Sliding Mode Control with Adaptive Fuzzy Chattering Free Method for Nonlinear System[C]. Computational Engineering in Systems Applications, IMACS Multiconference on,2006:541-546.
    [79]Yangmin L, Qingsong X. Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator[J]. Control Systems Technology, IEEE Transactions on,2010,18(4):798-810.
    [80]Buckner G D. Intelligent bounds on modeling uncertainty:applications to sliding mode control [J]. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on,2002,32(2):113-124.
    [81]林雷,王洪瑞,任华彬.基于模糊变结构的机械臂控制[J].控制理论与应用,2007,24(4):643-646.
    [82]Li T-H S, Huang Y-C. MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators [J]. Information Sciences,2010,180(23):4641-4660.
    [83]Chuan-Kai L. Nonsingular Terminal Sliding Mode Control of Robot Manipulators Using Fuzzy Wavelet Networks[J]. Fuzzy Systems, IEEE Transactions on,2006,14(6):849-859.
    [84]Maolin J, Jinoh L, Pyung Hun C, et al. Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control [J]. Industrial Electronics, IEEE Transactions on,2009,56(9):3593-3601.
    [85]李思益,罗为.NURBS曲线高速高精度插补及加减速控制方法研究[J].计算机集成制造系统,2008,14(6):1142-1147.
    [86]Chuang H-Y, Chien K-H. A real-time NURBS motion interpolator for position control of a slide equilateral triangle parallel manipulator[J]. The International Journal of Advanced Manufacturing Technology,2007,34(7):724-735.
    [87]Lin M-T, Tsai M-S, Yau H-T. Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm[J]. International Journal of Machine Tools and Manufacture, 2007,47(15):2246-2262.
    [88]Tsai M-S, Nien H-W, Yau H-T. Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery[J]. Computer-Aided Design,2008,40(5): 554-566.
    [89]Nam S-H, Yang M-Y. A study on a generalized parametric interpolator with real-time jerk-limited acceleration[J]. Computer-Aided Design,2004,36(1):27-36.
    [90]杜道山,燕存良,李从心.一种实时前瞻的自适应NURBS插补算法[J].上海交通大学学报.2006,40(5):843-847.
    [91]Chieh-Li C, Kuan-Chen L. Observer-Based Contouring Controller Design of a Biaxial Stage System Subject to Friction[J]. Control Systems Technology, IEEE Transactions on,2008, 16(2):322-329.
    [92]Peng C-C, Chen C-L. Biaxial contouring control with friction dynamics using a contour index approach[J]. International Journal of Machine Tools and Manufacture,2007,47(10): 1542-1555.
    [93]Fang R-W, Chen J-S. Cross-Coupling Control for a Direct-Drive Robot[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2002,45(3):749-757.
    [94]Cheng M-Y, Su K-H, Wang S-F. Contour error reduction for free-form contour following tasks of biaxial motion control systems[J]. Robotics and Computer-Integrated Manufacturing, 2009,25(2):323-333.
    [95]Su K-H, Cheng M-Y. Contouring accuracy improvement using cross-coupled control and position error compensator[J]. International Journal of Machine Tools and Manufacture,2008, 48(12-13):1444-1453.
    [96]Uchiyama N. Robust contouring control for biaxial feed drive systems[J]. International Journal of Machine Tools and Manufacture,2008,48(11):1234-1241.
    [97]Nakamura M, Munasinghe S R, Goto S, et al. Enhanced contour control of SCARA robot under torque saturation constraint[J]. Mechatronics, IEEE/ASME Transactions on,2000,5(4): 437-440.
    [98]Munasinghe S R, Nakamura M, Goto S, et al. Optimum contouring of industrial robot arms under assigned velocity and torque constraints [J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,2001,31(2):159-167.
    [99]Zhang T, Nakamura M, Goto S, et al. Highly accurate contour control of an articulated robot manipulator using a Gaussian neural network[J]. Industrial Robot:An International Journal, 2005,32(5):408-418.
    [100]Lozano R, Valera A, Albertos P, et al. PD control of robot manipulators with joint flexibility, actuators dynamics and friction[J]. Automatica,1999,35(10):1697-1700.
    [101]De Luca A, Siciliano B, Zollo L. PD control with on-line gravity compensation for robots with elastic joints:Theory and experiments [J]. Automatica,2005,41(10):1809-1819.
    [102]Lee H H, Prevost J. A coupled sliding-surface approach for the trajectory control of a flexible-link robot based on a distributed dynamic model[J]. International Journal of Control, 2005,78(9):629-637.
    [103]Taghirad H D, Rahimi H. Composite QFT controller design for flexible joint robots[C]. Control Applications,2005. CCA 2005. Proceedings of 2005 IEEE Conference on, 2005:583-588.
    [104]Elmaraghy H A, Lahdhiri T, Ciuca F. Robust Linear Control of Flexible Joint Robot Systems[J]. J. Intell. Robotics Syst.,2002,34(4):335-356.
    [105]刘业超,金明河,刘宏.柔性关节机器人基于柔性补偿的奇异摄动控制[J].机器人2008,30(5):460-466.
    [106]Abdollahi F, Talebi H A, Patel R V. A stable neural network-based observer with application to flexible-joint manipulators[J]. Neural Networks, IEEE Transactions on,2006, 17(1):118-129.
    [107]Chatlatanagulchai W, Meckl P H. Model-Independent Control of a Flexible-Joint Robot Manipulator[J]. Journal of Dynamic Systems, Measurement, and Control,2009,131(4):041003.
    [108]彭济根,倪元华,乔红.柔性关节机操手的神经网络控制[J].自动化学报,2007,33(2):175-180.
    [109]Liu C, Cheah C C, Slotine J-J E. Adaptive task-space regulation of rigid-link flexible-joint robots with uncertain kinematics[J]. Automatica,2008,44(7):1806-1814.
    [110]Lightcap C A, Banks S A. An Extended Kalman Filter for Real-Time Estimation and Control of a Rigid-Link Flexible-Joint Manipulator[J]. Control Systems Technology, IEEE Transactions on,2010,18(1):91-103.
    [111]Ford W E. What is an open architecture robot controller?[C]. Intelligent Control,1994., Proceedings of the 1994 IEEE International Symposium on,1994:27-32.
    [112]刘松国.六自由度串联机器人运动优化与轨迹跟踪控制研究[D].杭州:浙江大学,2009.
    [113]丁渊明.6R型串联弧焊机器人结构优化及其控制研究[D].杭州:浙江大学,2009.
    [114]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. Evolutionary Computation, IEEE Transactions on,2002,6(2):182-197.
    [115]Pires E J S, De Moura Oliveira P B, Machado J a T. Manipulator trajectory planning using a MOEA[J]. Applied Soft Computing,2007,7(3):659-667.
    [116]Saravanan R, Ramabalan S. Evolutionary Minimum Cost Trajectory Planning for Industrial Robots[J]. Journal of Intelligent & Robotic Systems,2008,52(1):45-77.
    [117]Saravanan R, Ramabalan S, Balamurugan C. Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles[J]. Engineering Applications of Artificial Intelligence,2009,22(2):329-342.
    [118]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社, 2001.
    [119]郑强.带精英策略的非支配排序遗传算法的研究与应用[D].杭州:浙江大学,2006.
    [120]Srinivas N D K. Multiobjective function optimization using nondominated sorting genetic algorithms[J]. Evolutionary Computation,1995,2(3):221-248.
    [121]Liao G-C, Tsao T-P. Application embedded chaos search immune genetic algorithm for short-term unit commitment [J]. Electric Power Systems Research,2004,71(2):135-144.
    [122]Rudolph G. Convergence analysis of canonical genetic algorithms[J]. Neural Networks, IEEE Transactions on,1994,5(1):96-101.
    [123]W.-G.W.-G K T-Y T-Y H. An adaptive PID learning control of robot manipulators[J]. Automatica,2000,36(5):717-725.
    [124]Jafarov E M, Parlakci M N A, Istefanopulos Y. A new variable structure PID-controller design for robot manipulators [J]. Control Systems Technology, IEEE Transactions on,2005, 13(1):122-130.
    [125]Pyung Hun C, Je Hyung J. A Systematic Method for Gain Selection of Robust PID Control for Nonlinear Plants of Second-Order Controller Canonical Form[J]. Control Systems Technology, IEEE Transactions on,2009,17(2):473-483.
    [126]Kikuuwe R, Yasukouchi S, Fujimoto H, et al. Proxy-Based Sliding Mode Control:A Safer Extension of PID Position Control[J]. Robotics, IEEE Transactions on,2010,26(4):670-683.
    [127]Kelly R, Santibanez Davila, Victor, Loria Perez, Julio Antonio. Control of Robot Manipulators in Joint Space[M]. Berlin:Springer-Verlag,2005.
    [128]刘华山.旋转关节串联机器人多轴运动控制技术研究[D].杭州:浙江大学,2010.
    [129]Peng L, Peng-Yung W. Neural-fuzzy control system for robotic manipulators [J]. Control Systems Magazine, IEEE,2002,22(1):53-63.
    [130]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11).
    [131]Jje Slotine W L. Applied nonlinear control[M]. Beijing:China Machine Press,2006.
    [132]Min-Jung L, Young-Kiu C. An adaptive neurocontroller using RBFN for robot manipulators [J]. Industrial Electronics, IEEE Transactions on,2004,51(3):711-717.
    [133]孙富春,孙增圻,张钹.机械手神经网络稳定自适应控制的理论和方法[M].北京:高 等教育出版社,2004.
    [134]刘金坤.机器人控制系统的设计及matlab仿真[M].北京:清华大学出版社,2008.
    [135]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,2003.
    [136]Bass E, Lee K Y. Robust control of nonlinear systems using norm-bounded neural networks[C]. Neural Networks,1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on,1994:2524-2529 vol.4.
    [137]Hartman E, Keeler J D. Predicting the Future:Advantages of Semilocal Units[J]. Neural Computation,1991,3(4):566-578.
    [138]Vesanto J, Alhoniemi E. Clustering of the self-organizing map[J]. Neural Networks, IEEE Transactions on,2000,11(3):586-600.
    [139]Kohonen T. The self-organizing map[J]. Proceedings of the IEEE,1990,78(9): 1464-1480.
    [140]Chen S, Billings S A, Grant P M. Recursive hybrid algorithm for non-linear system identification using radial basis function networks[J]. International Journal of Control,1992, 55(5):1051-1070.
    [141]Hwang Y-S, Bang S-Y. An Efficient Method to Construct a Radial Basis Function Neural Network Classifier[J]. Neural Networks,1997,10(8):1495-1503.
    [142]Fuchun S, Zengqi S, Peng-Yung W. Stable neural-network-based adaptive control for samplcd-data nonlinear systems[J]. Neural Networks, IEEE Transactions on,1998,9(5): 956-968.
    [143]Terra M H, Tinos R. Fault detection and isolation in robotic manipulators via neural networks:A comparison among three architectures for residual analysis[J]. Journal of Robotic Systems,2001,18(7):357-374.
    [144]Schilling R J, Carroll J J, Jr., Al-Ajlouni A F. Approximation of nonlinear systems with radial basis function neural networks[J]. Neural Networks, IEEE Transactions on,2001,12(1): 1-15.
    [145]Pati Y C, Krishnaprasad P S. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations[J]. Neural Networks, IEEE Transactions on,1993,4(1): 73-85.
    [146]Becerikli Y. On three intelligent systems:dynamic neural, fuzzy, and wavelet networks for training trajectory[J]. Neural Computing & Applications,2004,13(4):339-351.
    [147]刘山,吴铁军.基于小波逼近的非线性系统鲁棒迭代学习控制[J].自动化学报,2004,30(2):270-276.
    [148]王晔.基于函数逼近的柔性机械臂变轨迹迭代学习控制[D].杭州:浙江大学,2008.
    [149]Chaio-Shiung C. Dynamic Structure Neural-Fuzzy Networks for Robust Adaptive Control of Robot Manipulators [J]. Industrial Electronics, IEEE Transactions on,2008,55(9): 3402-3414.
    [150]Shiqian W, Meng Joo E. Dynamic fuzzy neural networks-a novel approach to function approximation [J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on, 2000,30(2):358-364.
    [151]Park K-J. Fourier-based optimal excitation trajectories for the dynamic identification of robots[J]. Robotica,2006,24(5):625-633.
    [152]Mayeda H, Yoshida K, Osuka K. Base parameters of manipulator dynamic models[J]. Robotics and Automation, IEEE Transactions on,1990,6(3):312-321.
    [153]Calafiore G, Indri M, Bona B. Robot dynamic calibration:Optimal excitation trajectories and experimental parameter estimation[J]. Journal of Robotic Systems,2001,18(2):55-68.
    [154]Swevers J, Ganseman, Chris, Bilgin, Dilek, De Schutter, Joris Van Brussel, Hendrik. Optimal Robot Excitation and Identification[J]. IEEE Transactions on Robotics and Automation 1997,13(5):730-747.
    [155]Olsen M M, Swevers J, Verdonck W. Maximum Likelihood Identification of a Dynamic Robot Model:Implementation Issues[J]. The International Journal of Robotics Research,2002, 21(2):89-96.
    [156]Zhao-Hui Jiang H S. Dynamic Parameter Identification of Robot Arms with Servo-Controlled Electrical Motors[J]. Proc. of SPIE Vol.6042,604235, (2005),2005.
    [157]Yao B. Desired Compensation Adaptive Robust Control[J]. Journal of Dynamic Systems, Measurement, and Control,2009,131(6):061001-7.
    [158]Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica,1997,33(5):893-900.
    [159]Bin Y, Al-Majed M, Tomizuka M. High-performance robust motion control of machine tools:an adaptive robust control approach and comparative experiments[J]. Mechatronics, IEEE/ASME Transactions on,1997,2(2):63-76.
    [160]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [161]Ljung L. System Idenfication:Theory for the User[M]. New Jersey:Prentice-Hall,1987.
    [162]H. D. Taghirad P R B. Modeling and Parameter Identification of Harmonic Drive Systems[J]. Journal of Dynamic Systems, Measurement, and Control,1998,120(12):439-444.
    [163]Christopher W. Kennedy J P D. Modeling and Control of the Mitsubishi PA-10 Robot Arm Harmonic Drive System[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS,2005, 10(3):263-274.
    [164]刘梅.机械手关节减速器的合理选择[J].机床与液压,2007,35(4):56-58.
    [165]吴俊飞,周桂莲,付平.机器人关节驱动装置研究进展[J].青岛化工学院学报(自然科学版),2002,23(3):54-58.
    [166]邱志成,韩建达,谈大龙,王越超.谐波驱动系统的特性及控制策略研究[J].机器人1999,21(6):442-448.
    [167]Kennedy C W, Desai J P. Model-based control of the Mitsubishi PA-10 robot arm: application to robot-assisted surgery[C]. Robotics and Automation,2004. Proceedings. ICRA'04. 2004 IEEE International Conference on,2004:2523-2528 Vol.3.
    [168]Bompos N A, Artemiadis P K, Oikonomopoulos A S, et al. Modeling, full identification and control of the mitsubishi PA-10 robot arm[C]. Advanced intelligent mechatronics,2007 IEEE/ASME international conference on,2007:1-6.
    [169]Ghorbel F H, Gandhi P S, Alpeter F. On the Kinematic Error in Harmonic Drive Gears[J]. Journal of Mechanical Design,2001,123(1):90-97.
    [170]Gandhi P S, Ghorbel F H. Closed-loop compensation of kinematic error in harmonic drives for precision control applications [J]. Control Systems Technology, IEEE Transactions on, 2002,10(6):759-768.
    [171]Gandhi P S, Ghorbel F. High-speed precision tracking with harmonic drive systems using integral manifold control design[J]. International Journal of Control,2005,78(2):112-121.
    [172]Bridges M M, Dawson D M, Abdallah C T. Contril of rigid-link, flexible-joint robots:a survey of backstepping approaches[J]. Journal of Robotic Systems,1995,12(3):199-216.
    [173]孙汉旭,褚明,贾庆轩.柔性关节摩擦和不确定补偿的小波神经——鲁棒复合控制[J].机械工程学报,2010,46(13):68-75.
    [174]Melhem K, Wang W. Global Output Tracking Control of Flexible Joint Robots via Factorization of the Manipulator Mass Matrix[J]. Robotics, IEEE Transactions on,2009,25(2): 428-437.
    [175]Dixon W E, Zergeroglu E, Dawson D M, et al. Global adaptive partial state feedback tracking control of rigid-link flexible-joint robots[J]. Robotica,2000,18(3):325-336.
    [176]Macnab C J B, D'eleuterio G M T, Meng M. CMAC adaptive control of flexible-joint robots using backstepping with tuning functions[C]. Robotics and Automation,2004. Proceedings. ICRA'04.2004 IEEE International Conference on,2004:2679-2686 Vol.3.
    [177]Spong M W. Modeling and Control of Elastic Joint Robots[J]. Journal of Dynamic Systems, Measurement, and Control,1987,109(4):310-318.
    [178]Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. Automatic Control, IEEE Transactions on,2000,45(10):1893-1899.
    [179]Swaroop D, Gerdes J C, Yip P P, et al. Dynamic surface control of nonlinear systems[C]. American Control Conference,1997. Proceedings of the 1997,1997:3028-3034 vol.5.
    [180]Yang Z J, Miyazaki K, Kanae S, et al. Robust position control of a magnetic levitation system via dynamic surface control technique [J]. Industrial Electronics, IEEE Transactions on, 2004,51(1):26-34.
    [181]Wang D, Jie H. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form[J]. Neural Networks, IEEE Transactions on, 2005,16(1):195-202.
    [182]Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form[J]. Automatica,2008,44(7):1895-1903.
    [183]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [184]El-Hawwary M I, Elshafei A L, Emara H M, et al. Adaptive Fuzzy Control of the Inverted Pendulum Problem[J]. Control Systems Technology, IEEE Transactions on,2006,14(6): 1135-1144.
    [185]Emami M R, Goldenberg A A, Turksen I B. Fuzzy-logic control of dynamic systems: from modeling to design[J]. Engineering Applications of Artificial Intelligence,2000,13(1): 47-69.
    [186]Bezine H, Derbel N, Alimi A M. Fuzzy control of robot manipulators:some issues on design and rule base size reduction[J]. Engineering Applications of Artificial Intelligence,2002, 15(5):401-416.
    [187]Kim M S, Lee J S. Adaptive tracking control of flexible-joint manipulators without overparametrization[J]. Journal of Robotic Systems,2004,21(7):369-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700