浮力摆式波浪能发电装置关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类生存和从事一切生产活动的物质基础。经济发展与能源短缺的矛盾;传统能源过度开发与环境急剧恶化的因果关系;国际能源冲突与能源安全等重大问题已引起国内外越来越高的关注。波浪能由于具有可再生、绿色环保和储量丰富的特点,日益受到世界许多国家的重视。科学地、更大规模地利用波浪能对促进国民经济的可持续发展具有重要的深远意义。针对波浪随机波动的不确定性和恶劣的海洋环境等不利因素,能否制造出科学合理、经济适用的能源机械装备不仅直接影响到波浪能转化效率和成本的高低,而且往往决定着实际利用波浪能总体技术的成败。
     作为一种系统集成创新的利用波浪能来发电的海洋能源利用装备,浮力摆式波浪能发电装置的研制存在若干关键技术难题,本文试图通过理论分析、仿真试验并结合实验样机厂房试验、现场试验等手段以期研究论证浮力摆式波浪能发电装置双行程全周期做功的可行性,大幅提高其工作效率和在不确定波况等恶劣海况下的生存能力和可靠性,优化浮力摆翼型结构,通过对机组的功率控制实现最大能量捕获和功率稳定输出等。
     论文首先通过波浪理论对浮力摆在波浪上的运动规律进行分析,并在流体动力学理论的基础上运用有限元法流固耦合多物理场建模仿真对浮力摆翼形进行水动力学特性的研究及优化设计。在传动系统方面,重点研究了双行程全周期做功的液压式能量传动方案,通过对液压传动方案的仿真试验和厂房的半物理仿真试验的结果分析,表明采用蓄能器的双行程全周期做功的液压传动系统在提高系统效率及输出功率稳定性方面性能良好。论文还对浮力摆式波浪能发电系统的功率控制技术进行了研究,对控制器系统结构及其控制算法进行了仿真研究,结果表明基于负载控制的最大能量捕获可以使浮力摆式波浪能发电系统功率较好地稳定在最大功率点附近。
     论文各章内容分述如下:
     第一章在调研查阅了大量的国内外相关文献的基础上,论述了波浪能发电装置研究的背景、目的和意义;介绍了国内外各种波浪能发电技术的研究进展及取得的成果;总结了当前浮力摆式波浪能发电装置研究方面亟待解决的一些关键技术问题。
     第二章运用波浪理论、流体动力学理论分析了波浪流体质点的运动特性,随后介绍了浮力摆在波浪上的运动理论基础,最后介绍了浮力摆在波浪能发电装置的组成结构及工作原理。
     第三章分述了浮力摆式波浪能发电装置的若干关键技术问题。首先利用理论分析对浮力摆翼型水动力学特性进行流固耦合有限元法多物理场模拟仿真;在分析研究仿真结果的基础上对浮力摆翼型进行设计计算;在比较了波浪能发电装置各种传动方式优缺点的基础上,引申出本课题提出的带蓄能器的双行程全周期做功的液压能量传动系统方案;最后对机组的电气及负载控制系统等也进行了设计介绍。
     第四章着重研究了双行程全周期做功的液压传动系统在浮力摆式波浪能发电装置中的应用,包括双行程全周期做功的液压传动系统的工作原理及设计、液压元器件的计算与选型等;联合软件AMESim及Matlab/Simulink对双行程全周期做功的液压传动系统进行系统建模,并进行蓄能稳压恒频及功率稳定等方面的联合仿真验证,并进行分析总结。
     第五章首先对浮力摆式波浪能发电装置运行工况进行分析,由此对浮力摆式波浪能发电系统结构进行研究,并提出基于负载控制的最大能量捕获及改进的自适应变步长扰动观测功率控制策略,根据系统运行功能需求对控制器做了系统软硬件设计,并对控制器系统结构及控制算法进行了建模仿真研究验证。
     第六章介绍了5kW浮力摆式波浪能发电装置原理样机的厂房原理可行性验证试验及双行程全周期做功试验,并根据试验结果对机组整体性能进行了分析及总结。
     第七章对本文的研究工作及成果进行了归纳总结,并指出本课题今后进一步的工作内容与研究方向。
Energy is the material basis of human existence and production. The important problems such as the contradiction between Economic development and energy supply shortage, the causal relationship between traditional energy development and environmental degradation, International energy conflicts and energy security have attracted widespread attention all over the world. As a kind of ocean energy, wave energy is an abundant and renewable energy, which has drawn more and more attentions in many countries. The scientific large-scale exploitation of wave energy has important and far-reaching significance in the promotion of the sustainable development of national economy. The exploitation of wave energy has the unfavorable factors such as uncertainty, random fluctuations and the harsh marine environment, so the production of scientific,rational and economical wave energy converters not only affects the conversion efficiency and the cost directly, but also often determines the success of wave energy exploitation technology.
     There are several key technologies should be solved for the wave energy converter of inverse pendulum, which could be regarded as an integrated innovative system using wave energy to generate electricity. This paper attempts to demonstrate the feasibility of the dual-stroke acting hydraulic drive system, the substantially increase in the system efficiency, the viability and the reliability under the uncertainty wave conditions, the optimization of buoyancy swing wing structure, the realization of maximum energy capture and the stability of output power by means of theoretical analysis, simulations and experimental prototype plant tests.
     The main research content of the paper is summarized as follows:
     Based on the access to a large number of domestic and foreign literature, the first chapter discusses the background, purposes and the significance of the wave energy converters, then introduces the wave power generation technology and the achievements of the wave energy converter of inverse pendulum home and abroad. At last, the problems and the key technical issues needed to be solved immediately in the current research and the commercialization are presented.
     The second chapter analyses the fluid motion characteristics of wave fluid particles by means of the wave theory and the fluid dynamics theory, then the pitch movement theory of the buoyant swing in the zone of bottom waves is introduced. And the working principle and the structure components of the wave energy converter of inverse pendulum are also presented.
     The third chapter analyzes the key technologies of the wave energy converter of inverse pendulum. Firstly, a theoretical analysis of the hydrodynamic characteristics of the buoyant swing wing and the fluid-structure interaction multi-physics simulations using finite element method have been made., and then the design and calculation of the buoyant swing wing has been done based on the analysis of simulation results. Secondly, the dual-stroke acting hydraulic drive system is introduced briefly based on the comparison of the advantages and disadvantages of the various fluid power transmission system. Lastly, the electrical control system of the wave energy converter of inverse pendulum is designed.
     The fourth chapter focuses on the dual-stroke acting hydraulic drive system of the wave energy converter of inverse pendulum, including its design and working principle, the calculation and selection of hydraulic components and so on. And then the dual-stroke acting hydraulic drive system is modeled and co-simulated in the joint software AMESim and Matlab/Simulink, and the simulation results about the pressure-maintaining storage, constant frequency and the stability of output power have been analyzed and summarized.
     The fifth chapter firstly analyzes the operating conditions of the wave energy converter of inverse pendulum, and then studies the structure of the power system. Secondly, the maximum energy capture based on load control and the improved adaptive variable disturbulent step power observer control strategy is proposed. Lastly, the hardware and software of the controller system has been designed according to the operating functional requirements, and its structure and control algorithm has been modeled and obtains simulation verification.
     The sixth chapter introduces the 5kW prototype plant test and the semi-physical simulation test, the operating principle and the feasibility of the wave energy converter of inverse pendulum has been verified. And the conclusions including the whole performance has been summarized according to the analysis of the test results.
     The seventh chapter summarizes the whole paper's research work and the achievements, and also points out the the directions for further research.
引文
1. 中华人民共和国国家发展和改革委员会,《可再生能源中长期发展规划》白皮书.2007.
    2. 周凌云,世界能源危机与我国的能源安全.中国能源,2001.1:p.12-13.
    3. 刘庆华,可再生能源资源与开发利用.决策咨询通讯,2008.3:p.29-33.
    4. 中华人民共和国国务院新闻办公室,《中国的能源状况与政策》白皮书.2007.
    5. 郝菁,海洋要素垂直剖面测量系统控制电路研究,环境工程.2007,中国科学院海洋研究所:天津.
    6. 张登霞,双浮子海浪发电装置参数分析以及结构优化设计,机械工程学系.2001,燕山大学:秦皇岛.
    7. 王传昆,海洋能资源分析方法及储量评估.2009,北京:海洋出版社.
    8. 王传昆,施伟勇.中国海洋能资源的储量及评价.中国可再生能源学会海洋能专业委员会第一届学术讨论会文集.2008.杭州.
    9. http://www.emec.org.uk/wave_site_projects.asp.
    10.游亚戈,吴必军,盛松伟.我国海洋波浪能技术发展建议.中国可再生能源学会海洋能专业委员会第一届学术讨论会文集.2008.杭州.
    11.余志,海洋能源利用技术进展与展望(上).中国科技信息,2002.04(02).
    12. Westwood, A., Ocean power:Wave and tidal energy review. Refocus,2004.5(5):p.50-55.
    13. Kamizuru, Y., M. Liermann, and H. Murrenhoff. Simulation of an ocean wave energy converter
    using hydraulic transmission.in 7th International Fluid Power Conference.2010. Aachen.
    14. Thorpe, T.W., A Brief Review of Wave Energy. A report produced for the UK Department of Trade and Industry,1999.ETSU-R120:p.1-200.
    15. Thorpe, T.W., An Overview of Wave Energy Technologies:Status,Performances and Costs.1999. 30.
    16.平丽,振荡浮子式波能转换装置性能的研究,港口、海岸及近海工程.2005,大连理工大学:大连.
    17. http://www.awsocean.com/archimedes_waveswing.aspx.
    18. http://www.oceanpowertechnologies.com/tech.htm.
    19. http://www.orecon.com/en/the-technology/power-take-off/.
    20. Zhang, D., W. Li, and Y. Lin, Wave energy in China:Current status and perspectives. Renewable Energy,2009. Volume 34,(Issue 10):p. Pages 2089-2092.
    21.林江波,浮子式海浪发电船的动态分析与仿真,机械工程学院.2005,燕山大学:秦皇岛.
    22. Ocean Energy Conversion in Europe. Centre for Renewable Energy Sources,2006.
    23. http://www.pelamiswave.com/content.php?id=142.
    24. http://www.bwea.com/marine/index.html.
    25.游亚戈,我国海洋能产业状况.高科技与产业化,2008.7:p.38-41.
    26.郑艳娜,波浪与浮式结构物相互作用的研究,港口、海岸与近海工程.2006,大连理工大学.
    27.李仕成,振荡浮子式波能转换装置性能的实验研究,港口、海岸与近海工程.2006,大连理工大学:大连.
    28.王凌宇,海洋浮子式波浪发电装置结构设计及试验研究,船舶与海洋结构物设计制造.2008,大连理工大学:大连.
    29.范航宇,一种新型漂浮式波浪发电系统研究,电机工程与应用电子技术系.2005,清华大学.
    30. H.C.Soerensen, E.Friis-Madsen, and W.Panhauser, Development of Wave Dragon from scale 1:50 to prototype, in Fifth European wave energy conference.2003:Cork Ireland.
    31. http://www.wavedragon.co.uk/technology.html.
    32. http://www.wavedragon.net/index.php?option=com_content&task=view&id=6&Itemid=5.
    33.李继刚,摆式波力电站中几个重要参数的设计.海洋技术,1998.17(1):p.59-63.
    34.李继刚,用模糊方法评价摆式波力电站的性能设计问题.海洋技术,1998.17(3):p.31-36.
    35.李继刚,李殿森,杨庆保,从正反两个角度探讨摆式波力电站的吸能机制.海洋工程,1999.18(155-59).
    36. http://www.aw-energy.com/.
    37. http://www.aquamarinepower.com/technologies/.
    38. http://www.engineering.lancs.ac.uk/lureg/Research/wave/wraspa.asp.
    39. A.S.Bahaj, L.E.Myers, Fundamentals applicable to the utilisation of marine current turbines for energy production. Renewable energy,2003.28:p.2205-2211.
    40. V.Chaplin, R.G. A.Aggidis, An investigation into power from pitch-surge point-absorber wave energy converters, in IEEE International conference on Clean Electrical Power Renewable Energy Resources Impact.2007.
    41. Aggidis.GMingham.C, A joint numerical and experimental investigation of a point absorbing wave energy converter, in Proposal to Joule Centre.2007:Manbchester.
    42. Payne, G.S., et al., Efficiency and dynamic performance of Digital DisplacementTM hydraulic transmissionin tidal current energy converters. Proc.IMech,2006.221:p. Part A:Power and Energy:207-218.
    43. Orer, G.A. Ozdamar, An experimental study on the efficiency of the submerged plate wave energy converter. Renewable Energy,2007.32(8):p.1317-1327.
    44.邱大洪,波浪理论及其在工程上的应用。1985,北京:高等教育出版社.
    45.戴遗山,段文洋,船舶在波浪中运动的势流理论.2008,北京:国防工业出版社.
    46.左其华,水波相似与模拟.2006,北京:海洋出版社.
    47.M.E.麦考密克,海洋波浪能转换.1985,北京:海洋出版社.
    48.李远林,波浪理论及波浪载荷.1994,广州:华南理工大学出版社.179-186.
    49.邹志利,水波理论及其应用.2005,北京:科学出版社.
    50.刘应中,缪国平,船舶在波浪上的运动理论.1987,上海:上海交通大学出版社.
    51.刘应中,缪国平,海洋工程水动力学基础.1991,北京:海洋出版社.
    52.韩凌,应用时域格林函数方法模拟有限水深中波浪对结构物的作用,港口、海岸和近海工程.2005,大连理工大学:大连.
    53.王言英,格林函数与纳维——斯托克斯方程及其在船舶与海洋工程中的应用.2006,背景:国防工业出版社.
    54.蒋学炼,波浪作用下船舶运动的数值模拟,港口、海岸与近海工程.2003,天津大学:天津.
    55.张国庆,舰船在波浪中运动的水动力数值计算方法研究,船舶工程学院.2004,哈尔滨工程大学:哈尔滨.
    56.吴必军,波浪能独立稳定发电自动控制系统.电力系统自动化,2007.31(24):p.75-79.
    57.吴必军,邓赞高,游亚戈,基于波浪能的蓄能稳压独立发电系统仿真.电力系统自动化,2007.31(5):p.50-56.
    58.中仿科技公司,COMSOL Multiphysics有限元法多物理场建模与分析.2007,北京:人民交通出版社.
    59.韩涛,波浪与海床、结构物相互作用的数值模拟,in建筑工程学院.2005,天津大学:天津.
    60.中仿科技公司,基于COMSOL Multiphysics的二次燃烧炉设计.航空制造技术,2009(11):p.93-94.
    61. A.M.Alklaibi. Using Spacers in MD Channels. in the Proceedings of the COMSOL Users Conference 2006. Boston.
    62.刘天宝程兆雪,流体力学与叶栅理论.1990,北京:机械工业出版社.
    63.中仿科技公司,专业数值分析系统COMSOL Multiphysics. CAD/CAM与制造业信息化,2008(9):p.40-44.
    64. L.Engvik. The Motion of Submerged Objects falling down an inclined plane. in the proceedings of the 2006 Nordic COMSOL Conference.
    65. L, M.A.S.Bahaj, Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy,2005.30(11):p.1713-1731.
    66.谷汉斌,波浪与建筑物作用的数学模型研究与应用,建筑工程学院.2005,天津大学:天津.
    67.中仿科技公司,COMSOL中文使用手册.2008.
    68.马慧,王刚,COMSOL Multiphysics基本操作指南和常见问题解答.2009,北京:人民交通出版社.
    69.李玉成,滕斌,波浪对海上建筑物的作用.2002,北京:海洋出版社.
    70.黄祥鹿,陆鑫森,海洋工程流体力学及结构动力响应.1992,上海:上海交通大学出版社.
    71.郭秉荣,线性与非线性波导论.1990,北京:气象出版社.
    72.唐友刚,海洋工程结构动力学.2008,天津:天津大学出版社.
    73.张伟社,机械原理.2001,西安:西北工业大学出版社
    74.刘宏伟,水平轴海流能发电机械关键技术研究,机械系.2009,浙江大学:杭州.
    75.刘国良,刘洛麒,Solidworks 2006完全学习手册——图解COSMOSWorks.2006,北京:电子工业出版社.
    76.代宇,李淮,CosmosWorks在提梁机设计中的应用.建筑机械化,2009(10).
    77.张荣卫,王褚,基于CosmosWorks的托盘往复提升机框架结构分析.物流技术与应用,2009(11).
    78.裴均晔,基于COSMOSWorks下的静态应力分析.机械管理开发,2008.23(4).
    79.应有,海流能发电装置电液控制系统研究,机械电子工程.2008,浙江大学:杭州.
    80.宋建安,赵铁栓,液压传动.2004,西安:世界图书出版社.
    81.王棥瑶,液压传动与控制教程.1985,天津:天津大学出版社.
    82.杨曙东,李壮云,海水液压传动技术及其在海洋开发中的应用.海洋工程,2000.18(1):p.81-85.
    83.贺小峰,黄国勤,朱碧海,海水液压动力驱动的水下作业工具系统.液压与气动,2004.8:p.49-51.
    84. http://www.condat-lubricants.com/.
    85.郭继高,小型风能发电用永磁同步发电机.电世界,2000.41(1):p.2.
    86.叶杭冶,风力发电机组的控制技术.2007,北京:机械工业出版社.
    87.黄方平,变频闭式液压动力系统的设计及应用研究,机械电子工程.2005,浙江大学:杭州.
    88.黄方平,一种新型变频液压动力单元的设计与应用.液压与气动,2004(10):p.14-16.
    89.徐兵,采用蓄能器的液压电梯变频节能控制系统研究,机械电子控制工程.2001,浙江大学:杭州.
    90.林建杰,液压电梯闭式回路节能型电液控制系统研究,机械电子工程.2005,浙江大学:杭州.
    91.成大先,机械设计手册.2007,北京:化学工业出版社.
    92. Falcao, A.F.d.O., Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator. Ocean engineering,2007.34(14-15):p.2021-2032.
    93.张大海,et al.,基于液压传动的海流能蓄能稳压发电系统仿真.电力系统自动化,2009.33(70-74).
    94. Bryden, I.G.D.M. Macfarlane, The utilization of short term energy storage with tidal current generation systems. Renewable Energy,2000.25:p.893-907.
    95.张大海,李伟,林勇刚,基于AMESim的海流能发电装置液压传动系统的建模与仿真.太阳能学报,2010.31(2):p.222-227.
    96.付永领,祁晓野,AMESim系统建模和仿真--从入门到精通.2006,北京:北京航空航天大学出版社.
    97.贺益康,交流电机调速系统计算机仿真.1993,杭州:浙江大学出版社.
    98.应有,李伟,刘宏伟,海流能发电装置功率控制技术研究.电气自动化,2008.30(5):p.5-9.
    99. Payne, G.S.,A.E.K, and M. Ehsan, Efficiency and dynamic performance of Digital DisplacementTM hydraulic transmission in tidal current energy converters. Power and Energy, 2006(221 (Part A)):p.12.
    100. Falcao, A.F.d.O., Phase control through load control of oscillating-body wave energy converters with hydraulic PTO systems. Ocean Engineering,2008.35(3-4):p.358-366.
    101. Henderson, R., Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy,2006.31(2):p.271-283.
    102.Babarit, A.A.H. Clement, Optimal latching control of a wave energy device in regular and irregular waves. Applied Ocean Research,2006.28(2):p.77-91.
    103.王鹏宇,et al.,基于Simulink-AMESim联合仿真的混合动力客车再生制动系统分析.吉林大学学报(工学版)2008.s1.
    104.杨海峰,罗璟,李留柱,基于AMESim和Simulink的气动位置伺服系统PID控制.流体传动与控制,2009(04).
    105.吴根茂,邱敏秀,王庆丰,新编实用电液比例控制技术.2006,杭州:浙江大学出版社.
    106. Livingstone, M.A. Plummer. The design,simulation and control of a wave energy converter power take off in 7th International Fluid Power Conference.2010. Aachen.
    107.吴必军,李春林,游亚戈,波浪能独立稳定电站负载抗冲击研究.可再生能源,2009.27(1):p.77-80.
    108.史志国,离网型风力发电智能充放电控制器的设计,电力电子与电力传动.2009,内蒙古工业大学:呼和浩特.
    109.房泽平,独立运行小型风力发电系统功率控制技术研究,检测技术与自动化控制.2007,内蒙古工业大学:呼和浩特.
    110.赵强,独立运行小型风力发电系统负载跟踪和充放电集成控制,控制理论与控制工程.2006,内蒙古工业大学:呼和浩特.
    111.李华德,电力拖动控制系统(运动控制系统).2006,北京:电子工业出版社.
    112.wu, w., et al., DSP-based multiple peak power tracking for expandable power system in IEEE Applied Power Electronics Conference and Exposition.2003. p.525-530.
    113.李华德,李擎,白晶,电力拖动自动控制系统.2009,北京:机械工业出版社.
    114.i, G., Advantage of boost vs buck topology for maximum power point tracker in photovoltaic system, in Nineteenth convention of electrical and electrionics engineer.1996. p.335-358.
    115.叶杭冶,大型并网风力发电机组控制算法研究,机械电子工程.2008,浙江大学:杭州
    116. T, B., et al., Wind energy handbook.2001, Chichester:John Wiley & Sons Ltd.
    117.李建林,许洪华,风力发电中的电力电子变流技术.2008,北京:机械工业出版社.
    118.陈学顺,许洪华,双馈电机变速恒频风力发电运行方式研究.太阳能学报,2004.25(5):p.582-586.
    119.李建林,许洪华,邵桂平,1.5MW双馈式变速恒频风电机组控制系统研究.电力设备,2008.9(11):p.9-12.
    120.任丽娜,焦晓红,邵立平,双馈型变速恒频风力发电系统的鲁棒控制.控制理论与应用,2009.26(4):p.377-382.
    121.刘其辉,贺益康,赵仁德,变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003.27(20):p.62-67.
    122.赵栋利,郭金东,许洪华,变速恒频双馈风力发电机有功、无功解耦控制研究与实现.太阳能学报,2006.27(2):p.174-179.
    123.贾要勤,曹秉刚,杨仲庆,风力发电系统的H_∞鲁棒控制.太阳能学报,2004.25(1):p.85-91.
    124.许洪华,倪受元,独立运行风电机组的最佳叶尖速比控制.太阳能学报,1998.19(1):p.30-35.
    125.杨金明,吴捷,董萍等,基于无源性理论的风力机最大风能捕获控制.太阳能学报,2003.24(5):p.724-728.
    126.邱阿瑞,柴建云,孟朔,现代电力传动与控制.2004,北京:电子工业出版社.
    127. SC, J., R. GJ, and J. HS, New control method of maximum power point tracking for tidal energy generation system, in Proceeding of International Conference on Electrical Machines and Systems.2007, 165-168:Seoul, Korea.
    128. A, M., R. X, and R. F, Architecture Complexity and Energy Efficiency of Small Wind Turbines. IEEE Transactions on Industrial Electronics,2007.54(1):p.660-670.
    129. Femia, N., G. Petrone, and G. Spagnuoloe, Optimization of perturb and observe maximum power point tracking method IEEE trans.on power electronics,2005.20(4):p.963-973.
    130. Jung, Y., et al., Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power system, in Photovoltaic specialists conference.2005. p.1788-1791.
    131. Xiao, W.D. W.G, A modified adaptive hill climbing MPPT method for photovoltaic power systems, in Power electronics specialists conference.2004. p.20-25.
    132.春兰,独立运行光伏发电系统功率控制研究,控制理论与控制工程.2007,内蒙古工业大学:呼和浩特.
    133. C.AlippiC.Galperti, An adaptive maximum power point tracker for maximizing solar cell efficiency in wireless sensor nodes, in Proc.ISCAS2006.2006:Kos,Greece. p.3722-3725.
    134.王夏楠,独立光伏发电系统及其MPPT的研究,交通信息工程与控制.2008,南京航空航天大学:南京.
    135.koutroulis, E.K. kalaitzakis, Design of a maximum power tracking system for wind-energy-conversion application. IEEE Trans. on industrial electronics,2006.53(2):p.486-494.
    136.R.DattaV.T.Ranganathan, A method of tracking the peak power points for a variable speed wind energy conversion system. IEEE Trans.on energy conversion,2003.18(1):p.163-168.
    137.王厦楠,独立光伏发电系统及其MPPT的研究,交通信息工程与控制.2008,南京航空航天大学:南京.
    138.Babarit, A., H.B. Ahmed, and A.H. Clement, Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy converters associated with a medium scale local energy storage. Renewable Energy,2006.31(2):p.153-160.
    139.夏安俊,风力发电机组最大功率点跟踪控制系统的研究,电力电子与电力传动.2008,江南大学:无锡.
    140. N., H.J. M., Measurements and simulation of a PV pumoing systems parameters using MPPT and PWM control strategies. Electro technical conference,2006:p.885-888.
    141.齐发,离网型风力发电机组的控制技术研究,电力电子与电力传动.2005,合肥工业大学:合肥.
    142.乔朝瑛,独立式小型风力发电机及其控制器的研究,电力电子与电力传动.2008,西安科技大学:西安.
    143.Hua, C.J.R. Lin, DSP-based controller application in battery storage of photovoltaic system industrial electronics,control, and instrumentation, in Proceedings of the 1996 IEEE IECON 22nd international conference on volume 3.1996. p.1705-1710.
    144. Chatzakis, J., K. Kalaitzakis, and Nicholas, Designing a new generalized battery management system. IEEE Trans. Ind.Electron,2003.50:p.990-999.
    145.项若轩,智能光伏充电控制系统的研究,电力电子与电力传动.2009,合肥工业大学:合肥.
    146. L, C.H., A new battery model for use with battery energy storage systems and electric vehicles power systems, in Power engineering society winter meeting.2000.
    147.朱小同,赵桂先,孟样适,蓄电池快速充电的原理与实践.2004,北京:煤炭工业出版社.
    148.朱松然,铅酸蓄电池技术第二版.2004,北京:机械工业出版社.
    149. German, J.C., An electronic controller to maximize efficiency of battery charging from a wind generator, in Electrical integration and utilization conference.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700