蚀变岩特性及其工程响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坝肩抗力体作为拱坝直接的承载地质体,是否稳定直接制约着水电工程的安全运营,其中的软弱结构面通常构成抗力体长期稳定的关键。小湾水电站是目前国内在建的第二高拱坝,巨大的工程荷载将在抗力体内形成强大的附加应力。而抗力体内所发育的蚀变岩,部分具有孔洞发育、结构疏松等特性。显然,蚀变岩的分布及性状如何,特别是其赋存环境发生变化后,其工程特性如何,将影响坝基的变形及稳定性,甚至影响大坝的安全。因此,“蚀变岩物理力学特性及其工程响应”是小湾水电站能否安全运营的关键性工程地质问题。针对此问题,本文进行了系统性的研究,取得的主要成果如下:
     (1)对处于关键部位的特殊岩类-蚀变岩,秉承“地质过程机制分析-量化评价”的学术思想,从现场第一手基础资料入手,分析了其产出状态、发育特征、空间分带性,借助岩矿试验确定了蚀变岩成因类型、岩矿特征:采用常规岩体力学试验分析了蚀变岩强度、变形特性。在此基础上,对含蚀变岩的工程岩体在施工开挖及蓄水条件下的整体稳定性进行了数值模拟研究,分析了蚀变岩在不同阶段的力学响应,最终进行了坝肩抗力体长期稳定性分析评价。本文研究成果丰富了重大水电工程中特殊岩类研究及其工程响应分析方法,研究成果直接服务于工程实践,与现场监测资料配套分析,可作为大坝长期稳定性评价依据。
     (2)查明了蚀变岩的成因及岩体结构特征,认为小湾水电站蚀变岩属热液蚀变成因,断裂构造是热液上升的通道,蚀变岩的规模仅仅局限于断裂破碎带及其两侧;蚀变岩本身岩体结构较为均一化,但其周围岩体由于热液上升时的冲击、挤压作用,岩体结构较破碎。据蚀变、风化特征可将蚀变岩划分成五类:Ⅰ类强蚀变、强风化,Ⅱ类强蚀变、中风化,Ⅲ类强蚀变、微风化,Ⅳ类中蚀变、微风化,Ⅴ类弱蚀变、微风化。据岩矿特征可将蚀变岩分为六大类:A不等粒钠长石岩、B不等粒石英钠长石岩、C粘土化不等粒钠长石岩、D碳酸盐化不等粒钠长石岩、E蚀变黑云花岗片麻岩、F细粒钠长石岩。其中A类据孔隙度(n)的大小可划分出四亚类:A1多孔洞状(n>20%)、A2孔洞状(20%>n>10%)、A3少孔状(10%>n>5%)、A4块状(n<5%)不等粒钠长石岩;D类以与A类相同的界限孔隙度值同样可划分出四亚类:D1多孔洞状、D2孔洞状、D3少孔状、D4块状碳酸盐化不等粒钠长石岩,故蚀变岩据其岩矿特征共可分为六大类十二亚类。
     (3)全面认识了蚀变岩的工程地质特性。蚀变岩为低吸水率的弱膨胀性岩石,其强度、变形特性分别受蚀变程度、风化程度及岩石性质共同影响,表现为:随蚀变程度的增强,抗压强度、抗剪强度及模量值降低,峰值应变量及泊松比则增加;蚀变程度相同时,蚀变岩强度值与模量值受风化程度的控制,风化程度越高,强度、模量值越低;蚀变、风化程度均相同的蚀变岩,其强度、模量值受蚀变岩性质的影响。蚀变作用以降低岩石的粘聚力为主;水对蚀变岩的作用也是以降低粘聚力为主,随蚀变程度的增加,水的弱化作用增强。
     (4)首次提出将孔隙度作为蚀变岩软硬程度分级新标准。以已有软硬岩划分标准为基础,结合蚀变岩孔洞发育的特点,通过分析计算,提出小湾水电站蚀变岩软硬程度孔隙度划分标准为:孔隙度(n)大于30%时为极软岩,n介于18%~30%时为软岩,n介于12%~18%时为较软岩,n小于12%时为硬岩。同时,补充了割线模量作为软硬岩划分标准的分级范围,提出割线模量小于0.5GPa时为极软岩、介于0.5~2GPa时为软岩、介于2~5GPa时为较软岩、大于5 GPa时为硬岩。
     (5)采用多标准对蚀变岩软硬程度进行了划分,新老标准划分结果基本一致,证明孔隙度、饱和单轴抗压强度及割线模量共同作为蚀变岩软硬程度划分标准的有效性。蚀变岩的软硬程度综合分级结果为:Ⅳ、Ⅴ类蚀变岩均为硬岩,Ⅲ类蚀变岩中A3为较软岩、D3及B为硬岩,Ⅱ类蚀变岩为较软岩,Ⅰ类蚀变岩中C、F为极软岩,A1、D1为软岩。
     (6)对蚀变岩破坏类型有了充分的认识:蚀变程度越低(强度越大),其脆-延转换压力越大,反之则其脆-延转换压力越小。反映岩石脆、延性破坏类型的参数延性度变化较为复杂,在孔隙度较低(小于16%)时,延性度随孔隙度增加有增大趋势,但在试验所给围压范围内都不会大于3%,即属于脆性破坏;只有孔隙度大于16%,围压大于4MPa时延性度才有大于3%的可能,即进入脆—延转换状态。
     (7)采用分段拟合的方法很好的拟合了蚀变岩的蠕变试验曲线,建立了蚀变岩分段流变模型并求取了相应的流变参数,为数值计算参数取值提供了依据。用两种典型方法求取了蚀变岩的长期强度,结果表明:蚀变岩的长期强度随孔隙度增加而降低。
     (8)采用三维数值模拟技术全面系统的分析了坝肩开挖对蚀变体应力、形变及塑性区的响应,结果表明开挖施工扰动引起蚀变体应力、形变场改变量小,不会导致蚀变岩体力学性质的改变。
     (9)首次对大型水电工程蓄水后工况进行了考虑时间效应的整体三维稳定性数值模拟研究,对含蚀变岩体(带)的抗力体稳定性进行模拟评价,得出6个月后抗力体内应力、形变响应基本完成的结论。表明小湾水电站大坝及抗力体的整体稳定性不会因蚀变体的存在受到影响,但局部稳定性较差的部位,需进行工程处理,主要分布在右岸蚀变体E1、E9下游侧与F5断层所围的三角形地带剪切破坏区,左岸蚀变体E8南端出露于地表高高程部位。
     (10)对蚀变体处理(实际为置换,模型中提高计算参数)效果进行了模拟分析,结果表明:处理后抗力体部位主应力表现为σ_1、σ_3均增加,σ_3拉应力范围减小、量值降低;总位移随参数提高倍数的增加而减小,最大总位移位置移向拱端面下游侧,左、右两岸总位移差减小;抗力体及蚀变体内塑性区面积大幅度降低。这些现象都说明蚀变体经工程处理后,抗力体整体、局部稳定性均得到增强。
Dam abutment is the directly loading geology body of arch dam, so its stability is important to insure the safety of water and electricity engineering, and the soft structural plane of it is the key factor to insure long time stability of the dam abutment. Among these arch dams under construction, Xiao Wan hydropower Station arch dam is the second highest in our country. There will form tremendous additional stress in the stressed body behind the dam because of the huge engineering load. Furthermore, some altered-rocks in this part have the characteristics of porosity and incompactness. Obviously, the distribution and characteristics of the altered-rocks, especially after the environment changed, will affect dam abutment deformation and stability, even the whole dam safety. Therefore, the physical-mechanical characteristics and engineering respondences of altered-rocks is the key geology problem to insure the power station safe operation. In this paper, the author has systematically studied this question, and acquired the main achievements as follows:
     (1) The academic thought that geological process mechanism analysis and quantitative evaluation has been used to study the altered-rocks of key part in the dam abutment. On the basis of the in situ foundation data, the morphogenesis, developed characteristics, and the distribution have been analyzed. According to the rock and mineral test results, the cause of formation types and mineral characteristic of the altered-rocks have been confirmed. By means of conventional rock mass mechanical test, the altered-rock strength, and deformation character have been acquired. Using the above data, the integral stability of the dam containing altered-rocks during excavation and reservoir impounding has been studied with numerical simulation, and the altered-rocks mechanical respondences in different phases have been studied. At last, the long time stability of stressed body behind the dam has been evaluated. The research results established the especial rock mass and its engineering respondences studying methods in important water and electricity engineering, and the research results can be directly used in the practice engineering. Combined with the in situ monitoring data, it can be used as the evaluation rules for the dam long time stability.
     (2) According to its cause of formation and structure characteristics, the altered-rocks of Xiao Wan Hydropower Station belongs to hydrothermal alteration, and the rupture conformation becomes the ascending channels of the heat liquid . The distribution of altered-rocks just is located in the rupture zone and its adjacent zone. The structure of these altered-rocks is relatively homogeneous, but the structure of its periphery rock mass is relatively fracture because the ascending heat liquid compacts and presses. According to its alteration and weathering degree, the altered-rocks can be divided five types, that is, type I , which is strong alteration and strong weathering; type II, strong alteration and medium weathering; type III, strong alteration and feeble weathering; type IV, medium alteration and feeble weathering; type V, feeble alteration and feeble weathering. According to the characteristics of rock and mineral, the altered-rocks can be divided six types, that is, un-isogranular albite rock (A), un-isogranular quartz albite rock (B), clay un-isogranular albite rock (C), carbonate un-isogranular albite rock (D), altered biotite granite gneiss rock (E), fine-grained albite rock(F). According to the porosity, the type of A can be divided into the porosity more than 20% (A1), porosity between 10% and 20% (A2), porosity between 5% and 10% (A3), and porosity less than 5% (A4). Similarly, the type of D can also be divided four sub-types: D1, D2, D3 and D4. Therefore, the altered-rock can be divided six types and twelve sub-types according to its rock and mineral characteristics.
     (3) The engineering characteristics of altered-rocks have been completed cognized. The hydro-physical characteristics test illustrated that the altered-rocks was low water absorption and feeble expandability rock. And the results have been acquired that the strength and deformation characteristics of altered-rocks are affected by the alteration degree, weathering degree and rock quality. The exhibition is that along with the alteration degree increase, the compressive strength, shearing strength and module values are decreased, but the peak value strain and Poisson's ratio is increased. When the alteration degree is same, the strength and module value are controlled by the weathering degree, the stronger weathering degree, the lower strength and module value. When the alteration and weathering degree is same, the strength and module value are affected by altered-rocks quality. The alteration mainly reduces the rock cohesive strength, and the water has the same function. Along with the alteration increase, the weathering affect of water is increased.
     (4) The porosity is firstly presented as a new criterion to classify the altered-rocks soft and hard degree. On the basis of soft and hard rock classification criterion and the altered-rocks pore growth character, after evaluation and calculation, the soft and hard degree porosity classification criterion of Xiao Wan Hydropower Station has been presented as: porosity more than 30%, the altered-rock is deep soft rock; porosity between 18% and 30%, soft rock; porosity between 12% and 18%, sub-soft rock; porosity less than 12%, hard rock. On the same time, the secant modulus has also been supplied as the soft and hard degree classification criterion. The results have been presented as that when secant modulus≤0.5GPa, the altered-rock is deep soft rock; secant modulus between 0.5 and 2GPa, soft rock; secant modulus between 2 and 5GPa, sub-soft rock; secant modulus more than 5GPa, hard rock.
     (5) The several criterions have been used to classify the altered-rock soft and hard degree. The new and old criterion classification results are approximately same, which proved that the porosity, saturation uniaxial compressive strength and secant modulus together can be took as the altered-rock soft and hard degree classification criterion. The synthetical classification result of altered-rocks soft and hard degree is that IV、V type altered-rock is hard rock; among III type altered-rock, A3 is sub-soft rock, D3 is hard rock; II type altered-rock is sub-soft rock; and among I type altered-rock, C、F is deep soft rock, A1、D1 is soft rock.
     (6) The destroyed types of altered-rock have been well cognized: the lower alteration (higher strength), the higher brittle and ductile transition stress, contrarily, the lower brittle and ductile transition stress. The rock brittle and ductile failure classification parameter is complex. When the porosity is lower (less than 16%), there will be the trend that the ductile failure degree increases along with the increasing porosity. But it can not be more than 3% under the indoor test confining press scope, that is, it belongs to brittle destroy. Only when the porosity is more than 16% and confining pressure is more than 4MPa, can the ductile failure degree be more than 3%, which is the transition state of brittle and ductile.
     (7) The subsection fitting creep test curve method has been used to get rheologic parameter, which is the foundation of numerical calculation parameter selection. The long-time strength was acquired by two representative methods. The test result shows that the long-time strength of altered-rock decrease along with the porosity increase.
     (8) The stress-strain and plastic zone respondences of altered-rocks during the dam abutment excavation and dam body construction process has been completely and systemically analyzed by 3D numerical simulation technique. The result illustrated that the change value of altered-rock body stress and strain field was low under excavation and construction process, and the altered-rocks body mechanical property could not been changed.
     (9) The time effect has been firstly took into account in huge water and electricity engineering stability 3D numerical simulation. The stability of stressed body containing altered-rock behind the dam has been simulated and evaluated. The result have been acquired that the stress and strain respondences have been stopped after six month, and the dam body and stressed body behind the dam integral stability can not be influenced. But part of unstable rock mass must be treated with engineering method. The triangle zone of altered-rock body E1, E9 lower river part along with F5 fault might appear partly shear failure phenomenon in right bank.The high elevation south of altered-rock body E8 which exposed on surface might appear breakage phenomenon in left bank.
     (10) After the altered-rock zone has been disposed (actually, the calculation parameters have been improved), the calculation result shows that the main stress in stressed body behind the dam has the characteristics as follows: with theσ1 andσ3 increase, the scope of tension stress decrease and its value reduce; The total displacement decrease along with the parameters improve. The position of max total displacement has been changed to the downstream side of the arc dam, and the total displacement D-value of left and right bank decreases; The plastic zone area of the stressed body behind the dam and altered-rock zone have been greatly decrease. These phenomena shows that the whole and local stability of the stressed body behind the dam are all improved after the altered-rocks zone been engineering disposed.
引文
[1] 潘家铮,何璟.中国大坝50年[M].中国水利水电出版社,北京:2000.
    [2] 高拱坝的拱座稳定分析方法浅析.混凝土坝稳定分析及基础处理专集[EB].水利水电技术情报网,1992.10.3
    [3] 何显松.高拱坝坝肩稳定三维地质力学模型破坏试验研究[D].四川大学硕士学位论文,2002.
    [4] 朱伯芳,高季章,陈祖煜,等.拱坝设计与研究[M].中国水利水电出版社,北京,2002,
    [5] 傅树红,陈雪珍.澜沧江小湾水电站概况[J].水力发电,1997,(1):38-41.
    [6] 黄润秋,王士天,胡卸文,等.澜沧江小湾水电站——高拱坝坝基重大工程地质问题研究[M].成都:西南交通大学出版社,1996.
    [7] 陈雪珍,傅树红.澜沧江小湾水电站枢纽布置[J].水力发电,,1996,(1):43-51.
    [8] 谢红强.小湾坝肩槽开挖高边坡卸荷特性三维非线性有限元分析及加同措施研究[D].四川大学(硕士论文),2002.
    [9] 汤献良,冯汉斌,杨海江,等.小湾水电站枢纽区工程地质条件[J].水力发电,2004,30(10):42-44.
    [10] 方占垒,冯汉斌.小湾水电站枢纽区工程地质条件简介[J].云南水力发电,1996,12(1):28-34.
    [11] 谢培忠.对小湾工程几个重大施工技术问题的认识[J].水力发电,1997,(12):19-23.
    [12] 徐明毅,陈胜宏,张勇传 小湾拱坝坝基开挖及加固的三维弹粘塑性有限元分析[J].武汉大学学报(工学版),2004,37(1):1-5.
    [13] 李雪春,陈平,陈重华,等.小湾拱坝与地基联合作用的分析研究[J].云南水力发电,1998,14(3):1-5.
    [14] 朱维申,张玉军,邱祥波.小湾水电站坝前堆积体三维有限元加固分析[J].岩石力学与工程学报,2000,19(4):459~463.
    [15] 董泽荣,赵.华,邱小弟,等.小湾水电站高边坡安全稳定监测综述[J].水力发电,2004,30(10):74-78.
    [16] 马洪琪.小湾水电站枢纽工程关键技术综述[J].水力发电,2004,30(10):13-16.
    [17] 马洪琪.小湾水电站枢纽工程特点及关键技术[J].云南水力发电,2002,18(1):7-9.
    [18] 李仕成.小湾水电站施工总进度安排浅析[J].云南水力发电,2001,17(3):77-79.
    [19] 陈惠玲.小湾水电站泄洪雾化问题研究[J].云南水力发电,1998,14(4):51-55.
    [20] 邹丽春,喻建清,李青.小湾拱坝设计及基础处理[J].水力发电,2004,30(10):21-23.
    [21] 谢培忠.小湾工程重大施工技术问题专家咨询综述[J].水力发电,2003,29(2):52-56.
    [22] 成都理工大学,昆明勘测设计研究院,云南华能澜沧江水电开发公司联合课题组.小湾工程阶段报告(1-6)[R].2002-2004
    [23] 昆明勘测设计研究院.澜沧江小湾水电站可研究报告(工程地质部分)[R].2000
    [24] 朱继良.大型岩石高边坡开挖的地质-力学响应及其评价预测——以小湾水电站工程高边坡为例[D].成都理工大学博士论文,2006.
    [25] 吴蓂高.世界上坝高在200m以上的双曲拱坝.水利水电科技进展[J].2001,21(2):64.
    [26] E.Hoek,J.W.Bray,(卢世宗译).岩石边坡工程[M].北京:冶金工业出版社,1983.
    [27] 刘高.高地应力区结构性流变围岩稳定性研究[D].成都理工大学(博士论文),2001.
    [28] 中国岩石力学与工程学会主编.西部大开发中的岩石力学与工程问题[A]:见:第八次全国岩石力学与工程学术会议论文集[C].北京:科学出版社,2004,1-9.
    [29] [苏]CC.维亚洛夫.土力学的流变原理[M].北京:科学出版社,1987.
    [30] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [31] Perzyna. Fundamental Problems in viscoplasticity [J]. Advancdes.in.App.Mech., 1966,(9):243-377.
    [32] 《煤炭科学技术》编辑部.软岩分类及支护形式选择学术讨论会总结[J].煤炭科学技术,1987,(3):2-8.
    [33] 中华人民共和国水利部.中华人民共和国国家标准《工程岩体分级标准》(GB50218-94)[S].北京:中国计划出版社,1995.
    [34] 中华人民共和国建设部.中华人民共和国国家标准《岩土工程勘探规范》(GB50021-94)[S].北京:中国建筑工业出版社,1995.
    [35] 中华人民工和国建设部.中华人民共和国国家标准《水利水电工程地质勘察规范》(GB50287-99)[S].北京:中国建筑工业出版社,1999.
    [36] 中华人民工和国建设部.中华人民共和国国家标准《建筑边坡工程技术规范》(GB50330-2002)[S].北京:中国建筑工业出版社,2002.
    [37] 《矿山压力》编辑部.软岩工程的发展[J].矿山压力,1987,(2):1-3.
    [38] 何满朝,景海河,孙小明.软岩工程力学[M].北京:科学出版社,2002.
    [39] 何满朝.软岩的概念、分类及劫掠对策[J].峰煤科技,1992,(2):7-10.
    [40] 何满朝,晏玉书,王同良等.软岩的概念及其分类.世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999:37-47
    [41] 何满潮.软岩巷道变形力学机制的探讨[J].软岩工程,
    [42] 何满潮.软岩膨胀力学机制[J].广西煤炭,
    [43] Mesri G. et. al. Shear.stress-strain-time.behavior.of.clays[J]. Geotechnique, 1981,,31 (4):545-552.
    [44] 王思敬.西部大开发中的岩石力学与工程问题[A].见:第八次全国岩石力学与工程学术会议论文集[C].北京:科学出版社,2004,1-9.
    [45] 陈建叶.锦屏一级高拱坝坝肩稳定三维地质力学模型破坏试验研究[D].四川大学硕士学位论文,2004.
    [46] 姜小兰,赖跃强,岳登明.构皮滩双曲拱坝三维地质力学模型试验研究[J].湖北水力发电,1997,26(3):57-62.
    [47] 邵宗平,二滩水电站坝址区纤闪石化玄武岩软弱岩带的工程地质究研[J].水电站设计,1986(1):28~32
    [48] 酆文清,二滩水电站坝区岩石学研究,水电站设计.1988年第1期:55~63
    [49] 刘克远,邵宗平.二滩水电站岩体力学特性研究[J].水电站设计.1989.1:1~4
    [50] 石豫川,张倬元.二滩水电站右坝肩纤闪石化玄武岩软弱岩带流变特性的研究[J].成都地质学院学报,1991,18(2):72 81,
    [51] 陈昌平,陈卫东.二滩水电站工程勘察综述[J].水电站设计,2006,22(2):8~12
    [52] 朱允中,卢旭初,刘学山.广州抽水蓄能电站地下工程布置及地下厂房喷锚支护[J].水力发电,1990年第10期:10~13
    [53] 罗绍基,广州抽水蓄能电站介绍[J].水力发电,1990年第10期:3-7
    [54] 孙世宗,高建理,丁建民.广州抽水蓄能电站水压致裂应力测量[J],岩石力学与工程学报,1991,10(4):374~381.
    [55] 罗绍基,叶冀升.广蓄电站建设中若干重大技术问题的决策[J].水力发电,1993年第3期:9~13
    [56] 张辅纲,涂希贤.粘土化蚀变花岗岩的工程地质特性[J].广东地质,1994,9(3):25~34
    [57] 张定邦,马自有.广州抽水蓄能电站地下厂房工程地质特征和喷锚支护分析[J].珠江现代 建设,1996,71(3):9~15
    [58] 廖建强.广州抽水蓄能电站地下洞室区蚀变岩的工程处理,地下工程.2002,5(9):48~50
    [59] 臧军昌.花岗岩体云英化蚀变体的工程地质特征,水利水电技术,1981年10期:33~39
    [60] 李天斌.拱坝坝肩稳定性的地质力学模拟研究[J].岩石力学与工程学报,2004,23(10):1670~1676.
    [61] 姜小兰,黄薇,操建国.江口双曲拱坝整体稳定地质力学模型试验研究.湖北水力发电,2001,41(1):35-40.
    [62] 刘小强.小湾高拱坝坝肩稳定分析及复杂地质缺陷概化模拟研究[D].四川大学硕士学位论文,2005.
    [63] 蔡元奇,朱以文,李金光.地质缺陷对拱坝及坝基力学行为的影响[J].岩石力学与工程学报,2002,21(12):1805-1809
    [64] 向能武.软弱夹层对构皮滩高拱坝变形影响分析[D].武汉大学工程硕士学位论文,2004.
    [65] 周维垣,陈欣.锦屏双曲拱坝整体稳定分析[J].华北水利水电学院学报,2001,22(3):31-34
    [66] 黄国军.拱坝整体稳定的物理模型和数学模型研究,硕士学位论文,河海大学.2004
    [67] 仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-339
    [68] 张燎军,翟利军,曹去修.构皮滩双曲拱坝坝基三维渗流场分析[J].贵州水力发电,2002,16(4):18-21.
    [69] 葛修润,丰定祥.岩体工程中流变问题的有限元分析,岩土力学,1980年12月,第3期:1~14
    [70] 黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究,成都:成都科技大学出版社,1991
    [71] 丁秀丽,徐平,夏熙伦.三峡船闸高边坡岩体开挖卸荷变形及流变分[J].1995,12(4):37~63.
    [72] 夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报.1996,15(4):312~322.
    [73] 章根德,剡公瑞.岩体高边坡流变学性状有限元分析[J].岩土工程学报,1999,21(2),166~170.
    [74] 孙钧.岩土材料流变及其工程应用[M],中国建筑工业出版社,北京,1999年.
    [75] 曹文贵,速宝玉.岩体蠕变大变形有限元分析及其在金川矿的应用[J].矿冶工程,1999,19(3):22~24.
    [76] 徐平,甘军,丁秀丽.三峡工程船闸高边坡岩体长期变形及稳定性有限元分析[J].长江科学院院报,1999,16(2):31-34.
    [77] 徐平,杨挺青,徐春敏等.三峡船闸高边坡岩体时效特性及长期稳定性分析[J].岩石力学与工程学报,2002,21(2):163~168.
    [78] 刘建华,朱维申,李术才.小浪底水利枢纽地下厂房岩体流变与稳定性FLAC3D数值分析[J].岩石力学与工程学报,2005,24(14):2484~2489.
    [79] 丁秀丽,付敬,刘建等.软硬互层边坡岩体的蠕变特性研究及稳定性分析[J],岩石力学与工程学报,2005,24(19)P:3410-3418.
    [80] 尹雪英,杨春和,陈剑文.金坛盐矿老腔储气库长期稳定性分析数值模拟[J].,岩土力学,2006,27(6),869~874.
    [81] 陈卫忠,伍国军,戴永浩等.废弃盐穴地下储气库稳定性研究[J]岩石力学与工程学报.2006,25(4),848~854.
    [82] 刘建华.岩体力学行为拉格朗日分析方法研究与工程应用[D].山东大学博士论文,2006.国外
    [83] 国家电力公司昆明勘测设计研究院.澜沧江小湾水电站可研报告(工程地质)[R],2000
    [84] 杨绪波,大型岩质边坡开挖的岩体结构特征效应研究—以云南澜沧江小湾水电站4#山梁边坡为例[D],成都理工大学硕士论文,2005
    [85] 国家电力公司昆明勘测设计研究院,小湾水电站施工地质手册[R].2003
    [86] 王士天,黄润秋,尚岳全.澜沧江小湾水电站大跨度地下洞室群围岩稳定性研究.成都理工大学[R].1995.
    [87] 胡受奚,叶瑛,方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社,2004年6月
    [88] P.亨德森编,田丰施乂等译.稀土元素地球化学[M],北京:地质出版社,1989.
    [89] 何更生.油层物理[M].北京:石油工业出版社,1994.
    [90] 陈杰,周改英,赵喜亮等.储层岩石孔隙结构特征研究方法综述[J].特种油气藏,2005,12(4):12~14
    [91] 于炳松,赖兴运.克拉2气田储集岩中方解石胶结物的溶解及其对次生孔隙的贡献.[J].矿物岩石,2006,26(2):74~79
    [92] 小湾水电站施工地质手册(试行),家电力公司昆明勘测设计研究院[R],2001年
    [93] 蔡美峰,何满潮,刘东燕,岩石力学与工程,北京:科学出版社,2002年
    [94] 水利水电科学研究院,水利水电规划设计总院,水利电力情报研究院等编.岩石力学参数手册[M]..北京:水利电力出版社.1991.
    [95] 何沛田,吴相超,黄志鹏.岩石膨胀特性和机理研究[J].矿山压力与顶板管理,2005(3):52~54
    [96] 曾伟雄,林国赞.岩石单轴饱和抗压强度的点荷载试验方法设计与探讨[J].岩石力学与工程学报,2003,22(4):566-568.,
    [97] 郭曼丽.试论岩石点荷载试验的适用性[M].岩土力学.2003,24(3):488-489,494.
    [98] 兴伦电子学习,工程岩石力学课件[EB/OL].http://developer.hanluninfo.com/2005/rock/Content/main_01.htm
    [99] Colmenares L B, Zobck M D. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(6):695~729
    [100] Chang C, Haimson B. True triaxial strength and deformability of the German continental deep drilling program(KTB) deep hole amphibolite[J]. J Geophys. Res., 2000,105(8):18 999~19 013
    [101] MogiK·, Igarashi K·and Mochizuki H·,Defomation and Fracture of Rocks under General Triaxial Stress State-Anisotropic Dilatancy·J MateHai Sci·Japan, 1978,27:148~154.
    [102] Aysayed M I. Utilising the Hock triaxial cell for multiaxial testing of hollow rock cylinders[J]. International Journal of Rock Mechanics and Mining Sciences, 2002,39(3):355~366
    [103] 许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985,(1):72~80
    [104] 许东俊.高孔隙软弱砂岩在一般三轴应力状态下的力学特性[J].岩土力学,1982,(1):13~25.
    [105] 张金铸,林天健·三轴试验中岩石的压力状态和破坏性质[J]·力学学报,1979,(2):99~105.
    [106] 许东俊,耿乃光.中等主应力变化引起的岩石破坏与地震[J].地震学报,1984,6(2):159-16
    [107] 尤明庆,岩石的强度准则及中间主应力的影响[J].焦作工学院学报(自然科学版),2001.20(6):474~478
    [108] 徐德欣,岩石中间主应力效应的理论分析[J].山地学报,2003,21(2):246~251
    [109] 李小春,许东俊.中间主应力对岩石强度的影响程度和规律[J].岩土力学,1991,12(1):9~16
    [110] 孔德坊.工程岩土学,北京:地质出版社.1992
    [111] 封志军,周德培,周应华,等.红层软岩三轴应力—应变全过程试验研究[J].路基工程,2005,123(6):32-35
    [112] 张定邦,张振捷.蓄能电站地下厂房岩体现场变形试验成果分析[J].中山大学学报论丛.2006,26(6):182~186.
    [113] 张振南,茅献彪,葛修润.松散岩块侧限压缩模量的试验研究[J].岩石力学与工程学报,2004,23(18):3049~3054.
    [114] 陈杰,周改英,赵喜亮等.储层岩石孔隙结构特征研究方法综述[J].特种油气藏,2005,12(4):12~14;
    [115] 于炳松,赖兴运.克拉2气田储集岩中方解石胶结物的溶解及其对次生孔隙的贡献[J].矿物岩石,2006,26(2):74~79
    [116] 何满潮,黄福昌,闫吉太.世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999
    [117] 周应华,周德培,封志军,三种红层岩石常规三轴压缩下的强度与变形特性研究[J].工程地质学报,2005,13(4):
    [118] 邓小亮.三轴压缩下大理岩应力—应变全过程的力征试验研究[J].桂林冶金地质学院学报,1993,13(3):273-277
    [119] 肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1986
    [120] 杨圣奇,苏承东,徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究[J],岩土力学,2005,26(3):475-478.
    [121] 徐松林,吴文,王广印.大理岩等围压三轴全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报,2001,20(6):763-767
    [122] 成都理工大学,昆明勘测设计研究院,云南华能澜沧江水电开发公司联合课题组.澜沧江小湾水电站坝基(肩)软弱岩带物理力学特性试验研究.[R],2007年
    [123] 周维垣.高等岩石力学[M].北京:水利电力出版社,1996
    [124] 杨圣奇,岩石流变力学特性的研究及其工程应用[D].河海大学博士论文,2003
    [125] 胡斌,冯夏庭,王国峰.龙滩水电站左岸高边坡泥板岩体蠕变参数的智能反演[J].岩石力学与工程学报,2005,9;24(19):3064-3070
    [126] 李化敏,李振华,苏承东.大理岩蠕变特性试验研究[R].岩石力学与工程学报2004,23(22):3745~3749
    [127] 张忠亭,罗居剑.分级加载下岩石蠕变特性研究[J].岩石力学与工程学报,2004,23(2):218-222
    [128] 余启华.岩石流变破坏过程及有限元分析[J]水利学报.1985,(1):55~61
    [129] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.[3]Ladanyi B. In-situ determination of creep properties of rock salt[A].In:Proc, of the 5th Conference of ISRM[C].[s.l.]:[s. n.], 1983.
    [130] Ito H,Sasajima S. A ten-year creep experiment on small rock specimens[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1987,24(2):113-121.
    [131] Ito H. The phenomenon and examples of rock creep[A]. In: Hudson J A ed. Comprehensive Rock Engineering(Vol.3)[C]. Oxford:Pergamon Press, 1993.693-708.
    [132] Matsumoto M,Tatsuoka F. Study of rheological modeling of creep behavior for sedimentary sift rock[A]. In:Proc. of the 51st Annual Conference of the Japan Society of Civil Engineers[C]. [s. l.]:[s. n.],1996. 660-661.
    [133] Boitnott G N. Experimental characterization of the nonlinear rheology of rock[J]. Int. J. Rock Mech. and Min. Sci.,1997,34(3):33-36.
    [134] Malan D F. An investigation into the identification and modeling of time-dependent behaviour of deep level excavations in hard rock[Ph.D. Thesis][D]. Johannesburg, South Africa: University of the Witwatersrand, 1998.
    [135] Maranini E, Brignoli M. Creep behaviour of a weak rock: experimental characterization[J]. Int. J. Rock Mech. and Min. Sci.,1999,36(1):127-138.
    [136] 石豫川,张倬元.二滩水电站右坝肩纤闪石化玄武岩软弱岩带流变特性的研究[J].成都地质学院学报,1991,18(2):72-81,
    [137] 王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):55~60.
    [138] 朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报.2002,24(5):77~79.
    [139] 张学忠,王龙,张代钧.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J]重庆大学学报(自然科学版).1999,22(5):99~103.
    [140] 刘晶辉,王山长,杨洪海.软弱夹层流变试验长期强度确定方法[J].勘察科学技术1996年长5期:3~7.
    [141] 许东俊.软弱岩体流变特性及长期强度测定法[J].岩土力学,1980年1月,第一期:37~50.
    [142] 刘沐宇,徐长佑.硬石膏的流变特性及其长期强度的确定[J].中国矿业,2000年第2期
    [143] 黄润秋.中国西部地区典型岩质滑坡机理研究[J].第四纪研究,2003,(6)
    [144] 曹运江.含软岩高边坡稳定性的系统工程地质研究——以岷江紫坪铺水利枢纽工程为例,[D].成都理工大学博士论文,2006年
    [145] 巨能攀.大跨度高边墙地下洞室群围岩稳定性研究及支护的系统工程地质研究[D].成都理工大学博士论文,2006年
    [146] 黄润秋,林峰,陈德基.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001,9(3):227~232.
    [147] Itasca Consulting Group, Inc.. FLAC3D(Version 2.1)Users Manual[M].[s.l.]:[s. n.],2002.
    [148] 丁秀丽,付敬,刘建等.软硬互层边坡岩体的蠕变特性研究及稳定性分析[J],岩石力学与工程学报,2005,24(19)P:3410-3418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700