短程硝化—厌氧氨氧化工艺处理模拟氨氮废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类活动对自然界生态系统的破坏,打破了氮素在自然界中的循环,使得水体中氮素浓度过高。传统的硝化反硝化脱氮工艺,虽然能达到一定的脱氮效果,但是因为其工艺流程复杂、动力消耗大、抗冲击能力弱、并且必须外加有机碳源、处理成本高,对高氨氮废水氨氮脱除效果并不理想,因此寻找新的高效、低耗生物脱氮工艺显得尤为重要。而短程硝化-厌氧氨氧化联合工艺能节省能耗、节省碳源、污泥产量少、运行费用低等优点,国内外学者对其进行大量的研究,并取得了一定的成果。
     本试验采取SBR和UASB反应器来分别启动短程硝化反应和厌氧氨氧化反应,并探讨某些关键因素(如DO、pH、氮素负荷等)对两者的影响,最后在两者稳定运行的基础上考察了联合工艺对模拟氨氮废水的处理情况,所获试验主要成果如下:
     (1)在硝化反应成功运行的基础上,降低DO为0.8~1.3mg·L-1,可迅速获得NO2--N的积累,经过68d的运行成功实现了短程硝化反应,NO-2-N的积累率达84%以上。低浓度的DO能够抑制NOB的生长,因此采取控制DO浓度的方式可以实现短程硝化。本试验结果表明,DO在0.5~1.3mg·L-1的范围内,能够启动并维持短程硝化反应,并且获得较高的NO-2-N的积累率。
     (2)控制SBR反应器8h一周期,曝气量为100L·h-1,进水NH4+-N浓度为300~350mg·L-1,CODCr为300mg·L-1,以NaHCO3为碱度,并且将其控制在半碱度左右(即NaHCO3浓度为2g·L-1左右),在此条件下可获得部分亚硝化反应,出水的NH4+-N/NO2--N为1:1.40左右。
     (3)在进水NH4+-N和NO-2-N浓度为165mg·L-1和220mg·L-1,HRT为73h的条件下运行反应器,经过39d的运行就启动了ANAMMOX反应,出水NH4+-N和NO-2-N的浓度都在5mg·L-1以下,去除率也有90%以上。采取同步升高进水氮素浓度和降低HRT的方法来提高ANAMMOX反应器的氮素容积负荷,经过154d的运行,进水NH4+-N和NO-2-N浓度为250.4mg·L-1和320.7mg·L-1左右,HRT为2.7,氮素容积负荷去除率为4.8kg TN/(m3d)以上,并在133d达到整个试验的最高值,为4.883kg TN m-3d-1。
     (4)采用模拟氨氮废水作为短程硝化-厌氧氨氧化联合工艺的进水进行研究,在CODCr为300mg·L-1的情况下,工艺CODCr的去除率基本上在88%以上。在工艺运行稳定条件下,NH4+-N浓度350mg·L-1左右,工艺处理水量为21L·d-1,短程硝化反应器出水NH4+-N和NO-2-N浓度平均为132.3mg·L-1和173.6mg·L-1,ANAMMOX反应器处理效果很好,其出水NH4+-N和NO-2-N浓度平均3.9mg·L-1和6.1mg·L-1,联合工艺的总氮平均去除率为85.4%。
     (5)联合工艺的处理效果受限于ANAMMOX反应器进水的NO-2-N/NH4+-N。当NO-2-N/NH4+-N为1.26~1.45时,工艺的总氮去除率在80%以上,出水中NH4+-N和NO2--N浓度基本上都在10mg·L-1以下;当NO-2-N/NH4+-N为1.1~1.26时,工艺的总氮去除率仍有81.5%,但出水中有一定的NH4+-N积累;当NO-2-N/NH4+-N为1.0左右时,工艺的脱氮效果明显变差,NH4+-N积累迅速,浓度甚至高达130mg·L-1,出水NO-2-N浓度也随之升高。
The nitrogen cycle in nature is broken by the destruction of human activities on naturalecological systems, and nitrogen concentration in water is getting too high. So it is necessaryto work on the experimental and full-scale research of the treatment of high-ammoniaconcentration wastewater. Though the traditional nitrogen removal processe(nitrification-denitrification processe) can achieve the purpose of normal nitrogen removal, itcan’t meet the requirement of treatment of the high-ammonia concentration wastewaterbecause of the weakness of the traditional nitrogen removal processe such as complexity onprocess, large power consumption, weakness of impact resistance, organic carbon addition,high operating cost. Therefore, it is necessary to study on new nitrogen removal processewhich is efficient and has low energy consumption. The partial nitritation-anaerobic ammoniaoxidation (ANAMMOX) has the advantages of low power consumption, no organic carbonaddition, less sludge production and low operating cost, plenty of investigators are workingon this process, and have brought out a lot of results.
     Nitritation reactor and ANAMMOX reactor were start up in SBR and UASB reactorrespectively, and the influence factors were studied, such as DO, pH, nitrogen loading rateand so on. Then the combined process of the two reactors was operated by synthetic ammoniawastewater. The main results were as follows:
     (1) On the basis of nitrification, NO-2-N accumulation was quickly obtained bydecreasing DO to0.8~1.3mg·L-1, and nitritation was achieved in68days while NO-2-Naccumulation was more than84%. Nitrite-oxidizing bacteria (NOB) were inhibited at low DOconcentration, nitritation could be achieved by controlling DO concentration. This studyshowed that nitritation was start up and operated stablely when DO was at0.5~1.3mg·L-1,moreover, NO-2-N accumulation was at a high level.
     (2) When an operation period was8hours, aeration flow was100L·h-1, NH4+-Nconcentration was300~350mg·L-1, CODCrwas300mg·L-1, partial nitritation was achievedby using half-alkalinity, while the ratio of NH4+-N/NO-2-N was around1:1.40.
     (3) When NH-4+-N and NO2-N concentration were165mg·L-1and220mg·L-1respectively, HRT was73hours, ANAMMOX reactor was start up in39days, while NH4+-Nand NO-2-N concentration were both below5mg·L-1, and the removal efficiency were bothmore than90%. In154days, NH4+-N and NO-2-N concentration were around250.4mg·L-1and320.7mg·L-1respectively, HRT was2.7hours, the removed nitrogen loading was morethan4.8kg TN/m-3d-1after raising nitrogen loading of ANAMMOX reactor by raisingnitrogen concentration of influent and shortening HRT. Futhermore, the topmost removednitrogen loading was4.883kg TN/m-3d-1in the day of133.
     (4) The combined process of nitritation and ANAMMOX was operated by syntheticammonia wastewater, when CODCrwas300mg·L-1, the removal efficiency of CODCrwasmostly more than88%. After the combined process was stable, NH4+-N and NO-2-Nconcentration were around132.3mg·L-1and173.6mg·L-1respectively in the effluent of thenitritation reactor, and NH4+-N and NO-2-N concentration were around3.9mg·L-1and6.1mg·L-1respectively in the effluent of ANAMMOX reactor when NH4+-N concentrationin the inlfuent of the combined process was aroud350mg·L-1, treated water was21L·d-1. Theaverage removal efficiency of total nitrogen was85.4%.
     (5) The effect of the combined process was limited by the ratio of NO-2-N/NH4+-N inthe influent of ANAMMOX reactor. When NO-2-N/NH4+-N was at1.26~1.45, the removalefficiency of total nitrogen was above80%, and NH4+-N and NO-2-N concentration were bothbelow10mg·L-1; When NO-2-N/NH4+-N was at1.1~1.26, the removal efficiency of totalnitrogen was still81.5%, but there was a certain amount of NH4+-N accumulation; When NO2--N/NH4+-N was around1.0, nitrogen removal effect is significantly worse, NH4+-N wasaccumulated rapidly, the NH4+-N concentration in the effluent reached highly at130mg·L-1,and NO-2-N concentration get higher as the same.
引文
[1]张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京:中国建筑工业出版社,1998
    [2] Halling-Sorensen B J S E. The removal of nitrogen compounds from wastewater.[M].Elsevier Science Publisher B. V.,1993
    [3]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004
    [4]周少奇.生物脱氮的生化反应计量学关系式[J].华南理工大学学报(自然科学版),1998,26(3):124-126
    [5] EPA U. Nitrogen Control[M]. Lancaster, Pennsylvania17604: Technomic PublishingCompany, Inc.,1991
    [6]乔顺风,李红顺.水体生物急性氨中毒的成因和调控技术[J].河北渔业,2005,02):27-29
    [7]周少奇.环境生物技术[M].北京:科学出版社,2003
    [8] Ahn Y H. Sustainable nitrogen elimination biotechnologies: A review[J]. ProcessBiochemistry,2006,41(8):1709-1721
    [9] Staley J T, Bryant M. P., Pfenning N., Holt J. G. Bergey's manual of systematicbacteriology[M]. Williams&Wilkins,1989
    [10]王建龙.生物固定化技术与水污染控制[M].北京:科技出版社,2002
    [11] McCarty PL B L, Amant PS. Biological denitrification of wastewater by addition oforganic materials[C]. Proceedings of the Proceedings of the24th annual Purdueindustrial waste conference, Purdue University, Lafayette,1969:1271
    [12]康淑琴.短程硝化一厌氧氛氧化工艺处理高氮废水的研究[D].武汉;武汉理工大学,2008
    [13] Bortone G, Libelli S M, Tilche A, et al. Anoxic phosphate uptake in the DEPHANOXprocess[J]. Water Science and Technology,1999,40(4-5):177-185
    [14]张杰,李相昆,黄荣新,等.连续流双污泥系统反硝化除磷实验研究[J].现代化工,2005,25(S1):115-118
    [15] Van Veldhuizen H M, Van Loosdrecht M C M, Heijnen J J. Modelling biologicalphosphorus and nitrogen removal in a full scale activated sludge process[J]. WaterResearch,1999,33(16):3459-3468
    [16]刘志强,苗群,张建.城市污水生物脱氮除磷应用技术[J].青岛建筑工程学院学报,2003,03):64-68
    [17]彭金,杨义飞,赵新.新型生物脱氮工艺的研究进展[J].水科学与工程技术,2009,06):23-26
    [18] Mulder J W, van Loosdrecht M C M, Hellinga C, et al. Full-scale application of theSHARON process for treatment of rejection water of digested sludge dewatering[J].Water Science and Technology,2001,43(11):127-134
    [19] Hellinga C, Schellen A, Mulder J W, et al. The SHARON process: An innovative methodfor nitrogen removal from ammonium-rich waste water[J]. Water Science andTechnology,1998,37(9):135-142
    [20] Wett B, Rauch W. The role of inorganic carbon limitation in biological nitrogen removalof extremely ammonia concentrated wastewater[J]. Water Research,2003,37(5):1100-1110.
    [21]谢天水,王舜和. SHARON工艺研究进展[J].给水排水,2009,35(S1):183-187
    [22]林涛,操家顺,钱艳.新型的脱氮工艺——SHARON工艺[J].环境污染与防治,2003,25(3):164-166
    [23] Van Loosdrecht M C M, Jetten M S M. Microbiological conversions in nitrogenremoval[J]. Water Science and Technology,1998,38(1):1-7
    [24] Blackburne R, Yuan Z, Keller J. Demonstration of nitrogen removal via nitrite in asequencing batch reactor treating domestic wastewater[J]. Water Research,2008,42(8-9):2166-2176
    [25] Park S, Bae W, Rittmann B E. Operational Boundaries for Nitrite Accumulation inNitrification Based on Minimum/Maximum Substrate Concentrations That IncludeEffects of Oxygen Limitation, pH, and Free Ammonia and Free Nitrous AcidInhibition[J]. Environmental Science&Technology,2010,44(1):335-342
    [26] Carrera J, Jubany I, Carvallo L, et al. Kinetic models for nitrification inhibition byammonium and nitrite in a suspended and an immobilised biomass systems[J]. ProcessBiochemistry,2004,39(9):1159-1165
    [27] Kornaros M, Dokianakis S N, Lyberatos G. Partial Nitrification/Denitrification Can BeAttributed to the Slow Response of Nitrite Oxidizing Bacteria to Periodic AnoxicDisturbances[J]. Environmental Science&Technology,2010,44(19):7245-7253
    [28] Chen J, Zheng P, Yu Y, et al. Enrichment of high activity nitrifers to enhance partialnitrification process [J]. Bioresource Technology,2010,101(19):7293-7298
    [29] B. Balmelle K M N, B. Capdeville, J. C. Cornier A. Deguin. Study of Factors ControllingNitrite Build-Up in Biological Processes for Water Nitrification[J]. Water Science&Technology1992,26(1017-1025
    [30]尚会来,彭永臻,张静蓉,等.温度对短程硝化反硝化的影响[J].环境科学学报,2009,29(3):516-520
    [31]杨庆,彭永臻,王淑莹,等. SBR法低温短程硝化实现与稳定的中试研究[J].化工学报,2007,58(11):2901-2905
    [32]李松良,林华东,王鹏.生物脱氮的短程硝化反硝化及影响因素[J].能源环境保护,2007,21(4):16-19
    [33]宋忠喜.短程硝化生物脱氮与反亚硝化除磷研究[D].天津;天津理工大学,2007
    [34]徐薇,谢水波,田发新.短程反硝化影响因素的研究[J].江苏环境科技,2007,86(S1):5-8
    [35]夏文文.好氧颗粒污泥短程硝化反硝化脱氮研究[D].南京;南京理工大学,2007
    [36] Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen withand without organic loading in a suspended-growth reactor[J]. Water Research,1990,24(3):297-302
    [37]王志盈,刘超翔,彭党聪,等.高氨浓度下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报(自然科学版),2000,32(1):1-7
    [38]王鹏,林华东.短程硝化反硝化影响因素分析[J].工业用水与废水,2007,38(2):12-15
    [39] Paredes D, Kuschk P, Mbwette T S A, et al. New Aspects of Microbial NitrogenTransformations in the Context of Wastewater Treatment–A Review[J]. Eng Life Sci,2007,7(1):13-25
    [40] Broda E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift für allgemeineMikrobiologie,1977,17(6):491-493
    [41] Mulder A V A A, Robertson L A, JG Kuenen. Anaerobic ammonium oxidationdiscovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995,16(3):177–184
    [42] van de Graaf A A, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonium is abiologically mediated process[J]. Applied and Environmental Microbiology,1995,61(4):1246-1251
    [43] vandeGraaf A A, deBruijn P, Robertson L A, et al. Metabolic pathway of anaerobicammonium oxidation on the basis of N-15studies in a fluidized bed reactor[J].Microbiology-Uk,1997,143(2415-2421
    [44]郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74-76
    [45] Thamdrup B, Dalsgaard T. Production of N-2through anaerobic ammonium oxidationcoupled to nitrate reduction in marine sediments[J]. Applied and EnvironmentalMicrobiology,2002,68(3):1312-1318
    [46] Engstr m P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite(anammox): Implications for N2production in coastal marine sediments[J]. GeochimicaEt Cosmochimica Acta,2005,69(8):2057-2065
    [47] Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as newplanctomycete[J]. Nature,1999,400(6743):446-449
    [48] Kartal B, van Niftrik L, Sliekers O, et al. Application, eco-physiology and biodiversity ofanaerobic ammonium-oxidizing bacteria[J]. REVIEWS IN ENVIRONMENTALSCIENCE AND BIOTECHNOLOGY,2004,3(3):255-264
    [49] Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversityof bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic andApplied Microbiology,2000,23(1):93-106
    [50] Schmid M, Walsh K, Webb R, et al. Candidatus "Scalindua brodae", sp nov., Candidatus"Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizingbacteria[J]. Systematic and Applied Microbiology,2003,26(4):529-538
    [51] Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" anew propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J].Systematic and Applied Microbiology,2007,30(1):39-49
    [52] Quan Z-X, Rhee S-K, Zuo J-E, et al. Diversity of ammonium-oxidizing bacteria in agranular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. EnvironmentalMicrobiology,2008,10(11):3130-3139
    [53] Gong Z, Yang F, Liu S, et al. Feasibility of a membrane-aerated biofilm reactor toachieve single-stage autotrophic nitrogen removal based on Anammox [J]. Chemosphere,2007,69(5):776-784
    [54] Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation byanammox bacteria in the Black Sea[J]. Nature,2003,422(6932):608-611
    [55] van Niftrik L A, Fuerst J A, Damste J S S, et al. The anammoxosome: anintracytoplasmic compartment in anammox bacteria[J]. Fems Microbiology Letters,2004,233(1):7-13
    [56] van de Graaf A A, de Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobicammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology+,1996,142(8):2187-2196
    [57] Strous M, vanGerven E, Kuenen J G, et al. Effects of aerobic and microaerobicconditions on anaerobic ammonium-oxidizing (Anammox) sludge[J]. Applied andEnvironmental Microbiology,1997,63(6):2446-2448
    [58] Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater bypartial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilotplant[J]. Journal of Biotechnology,2002,99(3):295-306
    [59] Joss A, Salzgeber D, Eugster J, et al. Full-Scale Nitrogen Removal from Digester Liquidwith Partial Nitritation and Anammox in One SBR[J]. Environmental Science&Technology,2009,43(14):5301-5306
    [60]孙艳波,周少奇,李伙生,等.氮素负荷及高温冲击对UASB-ANAMMOX反应器的运行影响[J].化工进展,2009,28(9):1672-1676
    [61]李伙生,周少奇,孙艳波.2种UASB的ANAMMOX与反硝化协同作用对比研究[J].环境工程学报,2010,4(2):247-252
    [62] Cema G, Szatkowska B, Plaza E, et al. Nitrogen removal rates at a technical-scale pilotplant with the one-stage partial nitritation/Anammox process[J]. Water Sci Technol,2006,54(8):209-217
    [63] Strous M, Kuenen J G, Jetten M S M. Key Physiology of Anaerobic AmmoniumOxidation[J]. Applied and Environmental Microbiology,1999,65(7):3248-3250
    [64] Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium-oxidizing bacteria[J].Asm News,2001,67(9):456-+
    [65] Dapena-Mora A, Van Hulle S W H, Luis Campos J, et al. Enrichment of Anammoxbiomass from municipal activated sludge: experimental and modelling results[J]. Journalof Chemical Technology&Biotechnology,2004,79(12):1421-1428
    [66]唐崇俭,郑平,陈建伟, et al.基于基质浓度的厌氧氨氧化工艺运行策略[J].化工学报,2009,60(3):718-725
    [67]唐崇俭郑,陈建伟,胡宝.不同接种物启动anammox反应器的性能研究[J].中国环境科学,2008,28(8):683~688
    [68] van Dongen U, Jetten M S, van Loosdrecht M C. The SHARON-Anammox process fortreatment of ammonium rich wastewate [J]. Water science and technology: a journal ofthe International Association on Water Pollution Research,2001,44(1):153-160
    [69] van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxicammonium oxidation: Experiences from the first full-scale anammox reactor inRotterdam (vol41, pg18,2007)[J]. Water Research,2010,44(3):1025-1025
    [70]唐崇俭,郑平,汪彩华,等.高负荷厌氧氨氧化EGSB反应器的运行及其颗粒污泥的ECP特性[J].化工学报,2010,61(3):732-739
    [71]赵志宏.厌氧氨氧化微生物颗粒化的启动研究及因素分析[D].长沙;湖南大学,2009
    [72]吴永华,王劲,崔力明.硝化-厌氧氨氧化组合反应器的运行和评价[J].工业用水与废水,2004,35(2):10-13
    [73]陈旭良,郑平,金仁村,等.味精废水厌氧氨氧化生物脱氮的研究[J].环境科学学报,2007,27(5):747-752
    [74] Qiao S, Yamamoto T, Misaka M, et al. High-rate nitrogen removal from livestockmanure digester liquor by combined partial nitritation–anammox process[J].Biodegradation,2010,21(1):11-20
    [75] Liang Z, Liu J-X, Li J. Decomposition and mineralization of aquatic humic substances(AHS) in treating landfill leachate using the Anammox process[J]. Chemosphere,2009,74(10):1315-1320
    [76] Münch E V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scalesequencing batch reactors[J]. Water Research,1996,30(2):277-284
    [77] Pochana K, Keller J. Study of factors affecting simultaneous nitrification anddenitrification (SND)[J]. Water Science and Technology,1999,39(6):61-68
    [78]万金保,王敬斌.同步硝化反硝化脱氮机理分析及影响因素研究[J].江西科学,2008,26(2):345-350
    [79]郭冬艳,李多松,孙开蓓,等.同步硝化反硝化生物脱氮技术[J].安全与环境工程,2009,16(3):41-44
    [80] Jetten M S M, Logemann S, Muyzer G, et al. Novel principles in the microbialconversion of nitrogen compounds[J]. Antonie Van Leeuwenhoek International Journalof General and Molecular Microbiology,1997,71(1-2):75-93
    [81] Robertson L A, Cornelisse R, De Vos P, et al. Aerobic denitrification in variousheterotrophic nitrifiers[J]. Antonie van Leeuwenhoek,1989,56(4):289-299
    [82] Bernet N, Bizeau C, Moletta R, et al. Study of Physicochemical Factors ControllingNitrite Build-Up During Heterotrophic Denitrification[J]. Environ Technol,1995,16(2):165-172
    [83] Van Neil E W J. Nitridication by Heterotrophic Denitrifiers and I ts Relationship toAutotrophic Nitrification[D]. Delft; Delft University of Technology,1991
    [84] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful toolfor the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596
    [85]《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [86]陈徉,陈英文,沈树宝.环境温度下短程硝化反硝化试验研究[J].中国给水排水,2008,24(15):93-96
    [87] Zeng W, Li L, Yang Y, et al. Nitritation and denitritation of domestic wastewater using acontinuous anaerobic-anoxic-aerobic (A(2)O) process at ambient temperatures[J].Bioresour Technol,2010,101(21):8074-8082
    [88] Park S, Bae W, Rittmann B E, et al. Operation of suspended-growth shortcut biologicalnitrogen removal (SSBNR) based on the minimum/maximum substrate concentration[J].Water Res,2010,44(5):1419-1428
    [89] Guo X, Kim J H, Behera S K, et al. Influence of dissolved oxygen concentration andaeration time on nitrite accumulation in partial nitrification process[J]. Int J Environ SciTe,2008,5(4):527-534
    [90] Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation inbatch reactors[J]. Biodegradation,2001,12(5):359-366
    [91]郭建华,彭永臻,黄惠珺,等.好氧曝气时间实时控制实现短程硝化[J].清华大学学报(自然科学版),2009,49(12):1997-2000
    [92]高大文,彭永臻,杨庆,等.应用实时控制实现和稳定短程硝化反硝化[J].中国给水排水,2003,19(12):1-5
    [93]高大文,彭永臻,王淑莹.交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制[J].环境科学学报,2004,24(5):761-768
    [94] Wiesmann U. Biological nitrogen removal from wastewater Biotechnics/Wastewater[M].Springer Berlin/Heidelberg.1994:113-154
    [95]袁林江,彭党聪,王志盈.短程硝化—反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31
    [96] Antileo C, Werner A, Ciudad G, et al. Novel operational strategy for partial nitrificationto nitrite in a sequencing batch rotating disk reactor[J]. Biochemical Engineering Journal,2006,32(2):69-78
    [97] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatmentof wastewater with high ammonia concentration[J]. Water Research,2003,37(6):1371-1377
    [98] Ganigue R, Lopez H, Ruscalleda M, et al. Operational strategy for a partialnitritation-sequencing batch reactor treating urban landfill leachate to achieve a stableinfluent for an anammox reactor[J]. Journal of Chemical Technology and Biotechnology,2008,83(3):365-371
    [99] Ganigue R, Lopez H, Balaguer M D, et al. Partial ammonium oxidation to nitrite of highammonium content urban land fill leachates[J]. Water Research,2007,41(15):3317-3326
    [100] Vilar A, Eiroa M, Kennes C, et al. The SHARON process in the treatment of landfillleachate[J]. Water Sci Technol,2010,61(1):47-52
    [101] Van Hulle S W H, Volcke E I P, Teruel J L, et al. Influence of temperature and pH on thekinetics of the Sharon nitritation process [J]. Journal of Chemical Technology andBiotechnology,2007,82(5):471-480
    [102]杨庆,彭永臻,王淑莹,等. SBR法低温短程硝化实现与稳定的中试研究[J].化工学报,2007,58(11):2901-2905
    [103]郑雅楠,滝川哲夫,郭建华, et al. SBR法常、低温下生活污水短程硝化的实现及特性[J].中国环境科学,2009,29(9):935-940
    [104] Anthonisen A C, Loehr R C, Prakasam T B, et al. Inhibition of nitrification by ammoniaand nitrous acid[J]. Journal-Water Pollution Control Federation,1976,48(5):835-852
    [105] Ciudad G, Rubilar O, Mu oz P, et al. Partial nitrification of high ammonia concentrationwastewater as a part of a shortcut biological nitrogen removal process[J]. ProcessBiochemistry,2005,40(5):1715-1719
    [106] Vadivelu V M, Yuan Z, Fux C, et al. The Inhibitory Effects of Free Nitrous Acid on theEnergy Generation and Growth Processes of an Enriched Nitrobacter Culture[J].Environmental Science&Technology,2006,40(14):4442-4448
    [107]张小玲,彭党聪,王志盈,等.低DO紊动床内有机物对硝化过程的影响[J].中国给水排水,2002,18(5):10-13
    [108] Jetten M S M, Horn S J, van Loosdrecht M C M. Towards a more sustainable municipalwastewater treatment system[J]. Water Science and Technology,1997,35(9):171-180
    [109]田智勇,李冬,曹相生,等.常温限氧条件下SBR反应器中的部分亚硝化研究[J].环境科学,2008,29(4):931-936
    [110]金仁村,阳广凤,马春,等.乙酸钠和无机盐对部分亚硝化反应器运行性能的影响[J].环境科学学报,2010,30(3):504-512
    [111]李军媛.短程硝化-厌氧氨氧化耦合工艺处理低C/N废水试验研究[D].西安;长安大学,2008
    [112]赖杨岚,周少奇.厌氧氨氧化与反硝化的协同作用特性研究[J].中国给水排水,2010,26(13):6-10
    [113]朱明石,周少奇.厌氧氨氧化—反硝化协同脱氮研究[J].化工环保,2008,28(3):214-217
    [114]周少奇,姚俊芹. UASB厌氧氨氧化反应器启动研究[J].食品与生物技术学报,2005,24(6):1-5
    [115]蒋军,吴立波,付丽霞,等.容积负荷对厌氧氨氧化反应器运行影响的研究[J].环境工程学报,2010,4(2):283-287
    [116] Thuan T-H, Jahng D-J, Jung J-Y, et al. Anammox bacteria enrichment in upflowanaerobic sludge blanket (UASB) reactor[J]. Biotechnology and BioprocessEngineering,2004,9(5):345-351
    [117] Chen J, Zheng P, Yu Y, et al. Promoting sludge quantity and activity results in highloading rates in Anammox UBF[J]. Bioresource Technology,2010,101(8):2700-2705
    [118] Tsushima I, Ogasawara Y, Kindaichi T, et al. Development of high-rate anaerobicammonium-oxidizing (anammox) biofilm reactors[J]. Water Research,2007,41(8):1623-1634
    [119]唐崇俭,郑平,张吉强,等.中试厌氧氨氧化反应器的运行性能及其过程动力学特性[J].环境科学,2010,31(8):1834-1838
    [120] van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxicammonium oxidation: Experiences from the first full-scale anammox reactor inRotterdam[J]. Water Research,2007,41(18):4149-4163
    [121] Schalk J, de Vries S, Kuenen J G, et al. Involvement of a novel hydroxylamineoxidoreductase in anaerobic ammonium oxidation[J]. Biochemistry-Us,2000,39(18):5405-5412
    [122] Shimamura M, Nishiyama T, Shigetomo H, et al. Isolation of a multiheme protein withfeatures of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizingenrichment culture[J]. Appl Environ Microbiol,2007,73(4):1065-1072
    [123]徐昕荣,贾晓珊,陈杰娥.一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析[J].环境科学学报,2006,26(6):912-918
    [124]李捷,张杰,周少奇. TOC与IC对厌氧氨氧化反应的影响研究[J].给水排水,2008,34(11):157-160
    [125]高景峰,彭永臻,王淑莹.以pH作为SBR法硝化过程模糊控制参数的基础研究[J].应用与环境生物学报,2003,9(5):549-533
    [126]陈建伟,郑平,唐崇俭,等.低pH对高负荷厌氧氨氧化反应器性能的影响[J].高校化学工程学报,2010,24(2):320-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700