硫酸盐型厌氧氨氧化的启动特性与影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的不断发展,在化工、食品、制药、制革、造纸等领域的生产过程中排放出大量含高浓度硫酸根( SO_4~(2-))和氨氮(NH_4~+-N)的废水,对环境和人们的生命财产安全造成危害。这些废水处理难度大,传统的生物除硫和生物脱氮工艺遇到了很多问题。目前人们对同歩除硫脱氮的研究主要有无机条件下硫自养反硝化和有机条件下的S、N、C同步去除。硫酸盐型厌氧氨氧化是在传统厌氧氨氧化基础上发现的新的同步除硫脱氮途径,硫酸盐型厌氧氨氧化的发现为低C/N比、高SO_4~(2-)的可生化性差废水的处理开辟了新道路。
     本试验以原有的硫自养反硝化反应器为基础、硫自养反硝化污泥为菌源,历时95天成功启动厌氧氨氧化反应。NH_4~+-N去除量:NO_2~--N去除量为1:1.33,NH_4~+-N和NO_2~--N去除率均达99.9%,反应器总氮容积负荷为0.165kg·(m3·d)-1。反应器内的污泥主要为灰白色、褐色颗粒污泥,颗粒污泥局部呈红色。在厌氧氨氧化活性稳定期,反应器内可能存在自养反硝化反应,反应器出水NO3--N浓度逐渐降低。进水、出水pH值基本保持一致,没有理论上的出水pH值上升现象。
     成功启动厌氧氨氧化后,通过提高厌氧氨氧化的基质浓度,以提高反应器内生物量;然后逐步用SO_4~(2-)代替NO_2~-使SO_4~(2-)成为厌氧氨氧化的电子受体,历时158d硫酸盐型厌氧氨氧化成功启动。NH_4~+-N与SO_4~(2-)的去除量分别为76.2 mg·L~(-1)和68mg·L~(-1)。在传统厌氧氨氧化运行效果良好的缺氧条件下,硫酸盐型厌氧氨氧化启动的效果不理想,这与硫酸盐型厌氧氨氧化的标准吉布斯自由能变化小有关。硫酸盐型厌氧氨氧化反应器中存在硫自养反硝化与厌氧氨氧化协同作用,反应器出水中有NO_2~-积累,pH值出水低于进水。
     本实验是利用厌氧氨氧化进行同步脱氮除硫,因此选取了几个影响厌氧氨氧化菌活性的营养因素和环境因素,研究这些因素对脱氮除硫效率的影响。研究发现:(1)硫酸盐型厌氧氨氧化的顺利进行易受NO_2~-的影响,NO_2~-的投加使NH_4~+-N和NO_2~- -N的去除效率迅速达到100%,NO_2~-会对硫酸盐型厌氧氨氧化产生竞争性抑制,使SO_4~(2-)的去除效率降低;(2)Fe~(3+)促进了NH_4~+-N的去除,且会使反应器氧化还原电位升高,氧化还原电位升高导致硫酸盐型厌氧氨氧化受到抑制;(3)有机物对厌氧氨氧化有抑制作用,使NH_4~+-N的去除效率降低,高浓度有机条件下,异养型硫酸盐还原菌导致了SO_4~(2-)的去除。
With the development of industry, factories of chemical, food, pharmaceutical, leather paper and other fields discharge lots of wastewater with high concentration of SO_4~(2-) and NH_4~+. The safty of environment and human were threatened by the wastewater. Traditional treatment methods of wastewater were incompetent on this kind of pollution. There are many researches on the autotrophic denitrification and the simultaneously remove of S, N, C. Anammox is one of the most efficient pathways to remove NH_4~+. Anammox with sulfate as electron acceptor is a new pathway which can remove SO_4~(2-) and NH_4~+at the same time. The discovery of this pathway open a new way for the treatment of wastewater with high concentration of SO_4~(2-) and NH_4~+.
     A special reactor was used in this experiment. The reactor was running autotrophic denitrification previously. The sludge in this reactor was used as bacteria source to enrich anammox bacteria. Anammox process was started up successfully after 95d. The removal ratios of NH_4~+-N and NO_2~--N was more than 99.9%. The volume load of the reactor was 0.165 kg·(m3·d)-1. The colors of most of sludge were gray, black and red. In the stable period of anammox process, the concentration of NO3--N delined, maybe denitrification process occurred at the same time. The pH value of influent was consistent with the effluent`s, which was different from the anammox theory.
     In order to enrich as much as bacteria, high concentration of nutrition was supplied. Then, NO_2~--N was replaced by SO_4~(2-) gradually to setup a new anammox pathway, and SO_4~(2-) finally became the electron acceptor of anammox process after 158d. The removal of NH_4~+-N and SO_4~(2-) were76.2 mg·L~(-1) and 68mg·L~(-1)respectively. Under this condition where traditional anammox process worked well, anammox with sulfate as electron acceptor performed badly. Maybe this can be attributed to the small standard Gibbs free energy change. Denitrification process occurred at the same time. The NO_2~- was detected in effluent, and the pH value of effluent was bigger than the influent`s.
     In order to improve the performance of the new anammox with sulfate as electron acceptor, some factors related to anammox bacteria were choes to explor their influence on the new pathway. The removal of SO_4~(2-)was disturbed by NO_2~- largely; however the removal of NH_4~+-N was enhanced, so did the influence of Fe~(3+). High concentration organic inhibited the anammox process and the removal of NH_4~+-N declined; however the removal of SO_4~(2-) was enhanced.
引文
[1] Hulshoff Pol L. W., Lens P. N. L., Stams A. J. M., et al. Anaerobic treatment of sulphate-rich wastewaters[J]. Biodegradation, 1998, 9(3-4): 213-224
    [2] Isa M. H., Anderson G. K.. Molybdate inhibition of sulphate reduction in two phase anaerobic digestion [J] . Process Biochem, 2005, 40(6): 2079-2089
    [3]陈灏珠,丁训杰,廖履坦,等.实用内科学[M].第11版.北京:人民卫生出版社, 2002
    [4]陈季华.废水处理工艺设计及实例分析[M].上海:华东师范大学出版社, 1989
    [5]魏世林.制革废水中的硫化物对环境的污染及其治理方法[J].中国皮革, 2003, 31(1): 3-5
    [6]姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京科学出版社, 2006
    [7]王爱杰,王丽燕,任南琪,等.硫酸盐废水生物处理工艺研究进展[J].哈尔滨工业大学学报, 2004(11): 1446-1449
    [8]冯俊丽,马鲁铭.高浓度硫酸盐废水的厌氧生物处理[J].环境保护科学, 2005, 127(31): 23- 26.
    [9] Lettinga G., Field J., Lier J. V., et al. Advanced anaerobic wastewater treatment in the near future[J]. Water Sci Technol, 1999, 35(10): 5- 12
    [10] Barber W. P., Stuckey D. C.. The use of anaerobic baffled reactor (ABR) for wastewater treatment; a review [J]. Water Res, 1999, 33(7): 1559- 1578
    [11]张高生,战立伟,王仁卿. ABR处理变性淀粉废水的试验研究[J].环境科学, 2008, 29(11): 3081- 3086
    [12]李清雪,范超,李龙和,等. ABR处理高浓度硫酸盐有机废水的性能[J].中国给水排水, 2007, 23(15) : 47- 50
    [13]黄慰祖,沈耀良. ABR处理含硫酸盐废水过程中硫转化的研究[J].中国给水排水, 2010, 26(13):86-89
    [14]倪国. ASBR处理高浓度硫酸盐废水技术的研究[D].江苏:江苏大学, 2003
    [15]马富国.部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液的研究[D].北京:北京工业大学, 2009
    [16]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社, 2006
    [17] Lisabeth E., Munch V.. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors [J].W at. Res., 1996, 30 (2): 277- 284
    [18]王川,聂会元,左金龙,等.溶解氧和污泥粒径分布对城市污水SND影响[J].?土木建筑与环境工程, 32(3): 145-148
    [19] Norbert W., eissenbacher. No monitoring of a simultaneous nitrifying denitrifying (SND) activated sludge plant at different oxidation reduction potentials [J]. Wat. Res., 2007, 41(2) : 397-405 [ 20]邹联沛,刘旭东. MBR中影响同步硝化反硝化的生态因子[J].环境科学, 2001, 22( 4): 51-55
    [21] Voets J., Vanstanen H. L., Verstraete W. L.. Removal of nitrogen from highly nitrogenous Wastewater [J]. Journal of Water Pollution Control Federation, 1975, (47): 394-398
    [22] Sutherson S., Ganczarczyk J. J.. Inhibition of nitrite oxidation during nitrification: some Observation[J]. Wat. Pollu. J. Can., 1986, 21: 257-266
    [22] Abeling U., Seyfried C. F.. Anaerobic-aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite[J]. Wat. Sci. Tech., 1992, 26: 1007-1015
    [23] Wett B., Rauch W.. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater[J]. Wat. Res., 2003, 37: 1100-1110
    [24] Antoniou P., Hamilton J., Koopman B., et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria [J]. Water Research, 1990, 24(1): 97-101
    [25]李绍峰,崔崇威,黄君礼,等. DO和HRT对MBR同步硝化反硝化影响研究[J].哈尔滨工业大学学报, 2007, 39( 6): 887-890
    [26]陈际达,陈志胜,张光辉,等.含氮废水亚硝化型硝化的研究[J].重庆大学学报,自然科学版, 2000, 23(3 ): 74-76
    [27]范建华,张朝升,方茜,等. COD/N对亚硝酸盐型同步硝化反硝化脱氮的影响[J].广州大学学报,自然科学版, 2007, 6(5): 55-59
    [28] van Kempen R., Mulder J. W., Uijterlinde C. A., et al. Overview full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology, 2001, 44 (1): 145-152
    [29]张艳萍,汪苹.好氧反硝化菌的脱氮性能及N2O逸出量研究[J].北京理工大学学报, 2010, 30(8): 995-998
    [30]张彦浩,钟佛华,夏四清.利用氢自养反硝化菌处理硝酸盐污染地下水的研究[J].水处理技术, 2009, 35 (5): 75-78
    [31]李军,张文文,王立军,等.硫自养反硝化同步脱氮除硫启动试验[J].沈阳建筑大学学报(自然科学版), 2010, 26(1): 162-165
    [32] Mulder A., van de Graaf A. A., Robertson L A., et al. Anareobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol, 1995, 16 (3): 177-183
    [33]孙洪伟,彭永臻,王淑莹,等.厌氧氨氧化生物脱氮技术的演变、机理及研究进展[J].工业用水与废水, 2008, 39(1): 7-11
    [34] Broda E.. Two kinds of lithotrophs missing in nature [J]. Z. Allg. Microbiol., 1977, 17: 491-493
    [35] Strous M., Heijnen J. J., Kuenen J.G., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol, 1998, 50: 589-596
    [36] JettenM. S. M., Cirpus I., Kartal B., et al. 1994-2004:10 years of research on the anaerobic oxidation of ammonium [J]. Biochel Soc Trans, 2005, 33(1): 119-123
    [37] Van de Graaf A. A., de Bruijn P., Robertson L. A., etal. Metabolic pathway of anaerobic ammonium oxidation onthe basis of 15N studies in a fluidized bed reactor[J].Microbiol., 1997, 143 (7): 2415-2421
    [38] Strous M., Kuenen J. G., Jetten M. S. M.. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65 (7): 3248- 3250
    [39]周少奇,姚俊芹. UASB厌氧氨氧化反应器启动研究[J].食品与生物技术学报, 2005, 24 (6) : 1- 5
    [40] Kuypers M. M., Sliekers A. O., Lavik G., et al. Anaerobic ammonium oxidation by anammox bacteria in the BlackSea[J]. Nature, 2003, 422 (6932): 608- 611
    [41] Kartal B., Rattray J., van Niftrik L. A., et al. Candidatus“Anammoxoglobus propionicus”a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied M icrobiology, 2007, 30 (1): 39- 49
    [42] Strous M., Van Gerven E., Kuenen J. G., et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge [J]. Appl.Environ. Microbiol., 1997, 63(6): 2446-2448
    [43]杨岚,杨景亮,李再兴,等.厌氧氨氧化反应的影响因素研究[J].河北华工, 2010, 10(10) : 23-25
    [44] Huihui C., Sitong L., Fenglin Y., et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100:1548-1554
    [45]孙艳波,周少奇,李伙生,等. ANAMMOX与反硝化协同脱氮反应器启动及有机负荷对其运行性能的影响[J].化工学报, 2009, 60(10): 186-191
    [46] Thamdrup B., Dalsgaard T.. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments [J]. Appl. Environ. Microbiol., 2002, 68(3): 1312-1318
    [47] Dosta J., Fernandez I., Vazquez-Padin J. R., et al. Short- and long-term effects of temperature on the Anammox process[J]. Journal of Hazardous Materials, 2008, 154(1/3): 688-693
    [48]姚俊芹,周少奇.厌氧氨氧化生物脱氮研究进展[J].化工学报, 2005, 56(10): 1826-1831
    [49]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报, 2001, 17(2): 193-198
    [50] Van De Graaf A. A., DeBruijn P., Robertson L. A., et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology-Uk, 1996, (142): 2187?2196
    [51] Jetten M., Schmid M., van de Pas-Schoonen K., et al. Anammox organisms: enrichment, cultivation, and environmental analysis [J]. Environmental Microbiology, 2005, (397): 34?57
    [52]王勇,黄勇,袁怡,等.进水Ca/P比对厌氧氨氧化活性的影响[J].水处理技术, 2009, 35(5): 53?56
    [53]唐崇俭,郑平,陈建伟,等.基于基质浓度的厌氧氨化工艺运行策略[J].化工学报, 2009, 60(3): 718-725
    [54] Tsus hima I., Ogasawa ra Y., Kindaichi T., et al. Development of high rate anaerobic ammonium oxidizing ( anammox) biofilm reactors[J] . Water Res, 2007, 41 (8):1623- 1634
    [55] Van Dongen U., Jetten M. S. M., Van Loosdrecht M. C. M.. The SHARON-Anammox process for treatment of ammonium rich wastewater[J]. Wat. Sei. Teeh., 2001, 44(l): 153-160
    [56] Kuai L., Verstraete W.. Ammonium removal by the oxygen limited autotrophic nitrification- denitrification system[J]. Appl. Env. Microbiol., 1998, 64: 4500-4506
    [57] Sliker A. Q., Derwort N., Gomez J. L., et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Wat. Res., 2002, 36(10): 2745-2482
    [58] Sliekers A. O., Third K. A., Abma W., et al. CANON and Anammox in a gas-lift reactor [J]. FEMS Microbiology Letters,2003, 218:339-344
    [59] Hao X. D., Heijnen J. J., Van Loosdrecht M. C. M.. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Wat. Res., 2002, 36(19): 4839-4849
    [60]于振国.自养脱硫反硝化反应器微生物群落动态及功能菌群分析[D].哈尔滨:哈尔滨工业大学, 2007
    [61]王爱杰,杜大仲,任南琪,等.一种同步脱氮脱硫并回收单质硫的新工艺初探[J].中国环境科学,2004,25(2).
    [62]万东锦,刘会娟,雷鹏举,等.硫自养反硝化去除地下水中硝酸盐氮的研究[J].环境工程学报, 2009, 3(1): 1-5
    [63]蔡靖,郑平,胡宝兰,等. pH和碱度对同步厌氧生物脱氮除硫工艺性能的影响[J].化工学报,2008, 59(5): 1264-1269
    [64]蔡靖,郑平,胡宝兰,等.硫氮比对厌氧生物同步脱氮除硫工艺性能的影响[J].环境科学学报, 2008, 28 (8) : 1506 -1514
    [65]蔡靖,郑平, Qaisar Mahmood,等.同步厌氧生物脱氮除硫工艺性能的研究[J].生物工程学报, 2006, 22(5): 840-844
    [66]李巍,赵庆良,刘颢,等.兼养同步脱硫反硝化工艺及影响因素[J].中国环境科学, 2008, 28(4):345-349
    [67]李巍,赵庆良,刘颢,等.含氮化合物对兼养脱硫反硝化的影响[J].哈尔滨工业大学学报, 2009, 41(4): 95-99
    [68]刘春爽,王爱杰,任南琪,等. EGSB反应器同步脱除废水中碳、氮、硫的研究[J].中国给水排水, 2008, 24(17): 60-62
    [69]郭磊,王爱杰,刘春爽,等.碳氮比对碳氮硫同步脱除的影响[J].给水排水, 2008, 34(增刊): 224-227
    [70] Bisogni J. J , Driscoll C. T.. Denitrification Using Thiosulfate and Sulfide [J]. Env Eng, 1977, 103 : 593-604
    [71] Sumino T., Isaka K., Ikuta H., et al. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor[J]. Bioscience and Bioengineering, 2006, 102(4): 346-351
    [72] Kartal B.. Anammox bacteria disguised as denitrifies: nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3): 635-642
    [73] Fdz-Polanco F., Maria Fdz-Polanco, Neivy Fernandez, et al. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions[J]. Water Res, 2001, 35(4): 1111-1114
    [74] Sabumon P.C.. Development of a novel process for anoxic ammonia removal with sulphidogenesis[J]. Process Biochemistry, 2008, 43(9): 984-991
    [75] Liu S. T., Yang F. L., Gong Z., etal. Application of anaerobic ammonium-oxidizing consortium toachieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology, 2008, 99: 6817-6825
    [76]张蕾,郑平,何玉辉,等.硫酸盐型厌氧氨氧化性能的研究[J].中国科学B辑化学, 2008, 38(12): 1113-1119
    [77]董凌霄,吕永涛,韩勤有,等.硫酸盐还原对氨氧化的影响及其抑制特性研究[J].西安建筑科技大学学报(自然科学版), 2006, 38(3): 425-428
    [78]朱明石,周少奇,曾武. UASB反应器厌氧氨氧化菌的脱氮特性研究[J].环境工程学报, 2008, 2(1):11-15
    [79]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004: 1-15
    [80] Schmidt I., Sliekers O., Schmid M., et al. Aerobic and anaerobic ammonia oxidizing bacteria competitors or natural partners[J]. FEMS.Microbiol Ecol, 2002, 39 (3): 175-181
    [81]陈杰娥,贾晓珊,徐昕荣.应用RAPD方法分析厌氧氨氧化污泥驯化过程中的微生物遗传性质[J].环境科学学报, 2007, 27 (6): 961 - 967
    [82]赵宗升,赵云霞,陈智均,等.厌氧氨氧化菌接种污泥的选择培养过程研究[J].环境工程学报, 2007, 1( 2): 39-42
    [83]唐崇俭,郑平,张蕾.厌氧氨氧化菌富集培养技术的研究与应用[J].化工进展, 2009, 28(8): 1421-1434
    [84]周少奇,张鸿郭.垃圾渗滤液厌氧氨氧化与反硝化的协同作用[J].华南理工大学学报(自然科学版), 2008, 36(3): 73-76
    [85] Huihui C., Sitong L., Fenglin Y., et al. The development of simultaneous partial nitrification , ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 2009, 100:1548-1554
    [86] Schmidt I., Sliekers O., Schmid M., et al. Aerobic and anaerobic ammonia oxidizing bacteria - competitors or natural partners[J]. FEMS Microbiology Ecology, 2002, 39(3): 175-181
    [87]游少鸿,李小霞,解庆林,等.厌氧氨氧化影响因素实验研究[J].水处理技术, 2009, 29(10): 27-29
    [88]蒋军,吴立波,付丽霞,等.容积负荷对厌氧氨氧化反应器运行影响的研究[J].环境工程学报, 2010, 4(2):283-287
    [89] Dapena-Mora A., Fernández I., Campos J. L., etal. Evaluation of activity and inhibition effects on ANAMMOX process by batch tests based on the nitrogen gas production[J]. Enzyme Microb. Technol., 2007, 40 (4) : 859-865
    [90]魏琛,陆天友,钟仁超,等. HRT及氮素负荷对厌氧氨氧化系统的影响[J].环境科学学报, 2010, 30 (4) : 749 - 755
    [91] Shimamura M., Nishiyama T., Shigetomo H. Isolation of amultiheme protein with features of a hydrazine oxidizing enzyme from an anaerobic ammonium oxidizing enrichment culture[J]. Appl Environ. Microbiol, 2007, 73 (4) :1065 -1072
    [92]陈胜,孙德智,遇光禄.填充床快速启动厌氧氨氧化反应器及其脱氮性能研究[J].环境科学,2010, 31(3): 691-695
    [93]何占飞,荀方飞,陶雪峰.好氧硝化污泥启动厌氧氨氧化试验研究[J].水资源与水工程学报, 2009, 20(5): 173-175
    [94]路青,李秀芬,华兆哲,等.接种污泥源对厌氧氨氧化启动效能的影响[J].生态与农村环境学报, 2009, 25 (4) : 60 - 65
    [95]车轩,罗国芝,谭洪新,等.脱氮硫杆菌的分离鉴定和反硝化特性研究[J].环境科学, 2008, 29(10): 2932-2937
    [96] Blaszczyk M.. Effect of medium composition on the denitrification of nitrate by Paracoccus denitrify- icans [J]. Appl. Environ. Microbiol, 1993, 59 : 3951-3953
    [97]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报, 2001, 17(2): 193-198
    [98] Anthonisen A. C., Loehr R. C., Prakasam T. B. S. et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal of Water Pollution Control Federation, 1976, 48(5): 835-852
    [99]叶建锋,薄国柱.低碳源条件下厌氧氨氧化影响因素的研究[J].水处理技术, 2006, 32(9): 30-33
    [100] Mosquera-Corral A., Gonzalez F., Campos J. et al. Partial nitrification in a SHARON reactor in the presence of salt and organic carbon compounds [J]. Process Biochem, 2005, 40(9): 3109-3118
    [101] Yang Zhiquan, Zhou Shaoqi, Sun Yanbo. Start up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation ( anammox ) process in an anaerobic up flow bioreactor [J]. Hazard Mater, 2009, 169(13): 113- 118
    [102]赵庆良,李巍,徐永波,等.厌氧附着生长反应器处理氨氮和硫酸盐废水的研究[J].黑龙江大学自然科学学报, 2007, 24( 4): 421- 426
    [103] Van de Graaf A. A., De Bruijn P., Robertson L. A., etal. Autotrophlic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187 - 2196
    [104]王浩源,缪应祺.高浓度硫酸盐废水治理技术的研究[J].环境导报, 2001, (1): 22 - 25.
    [105] Petrucci R. H., Harwood W. S., Herring F. G...普通化学原理与应用(第八版,影印版).北京:高等教育出版社, 2004: 793-811
    [106]张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学, 2004, 24(4): 496-500
    [107]吴立波,宫玥,龙斌,等.厌氧氨氧化工艺在厌氧复合床反应器中的启动运行[J].天津大学学报, 2008, 41(11): 1367-1371
    [108] Toh S. K., Ashbolt N. J.. Adaptation of anaerobic ammonium-oxidizing consortium to synthetic cokeovens wasterwater [J]. Appl. Microbiol. Biotechnol., 2002, 59 : 344 - 352.
    [109] Ahn Y. H., Hwang I. S., Min K. S.. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste[J]. Wat. Sci. and Tech, 2004, 49 (526): 145 - 153.
    [110]张蕾,郑平,胡安辉.铁离子对厌氧氨氧化反应器性能的影响[J].环境科学学报, 2009, 29(8): 1629 - 1634
    [111] Zhu H., Fang H. H. P., Zhang T., et al. Effect of ferrous ion on photo heterotrophic hydrogen p-roduction by Rhodobacter sphaeroids [J]. International Journal of Hydrogen Energy, 2007, 32(17): 4112-4118
    [112] Petrucci R. H., Harwood W. S., Herring F. G..普通化学原理与应用(第八版). Beijing: Higher Education Press, 2004: 793-811
    [113] Mike S. M. Jetten, Marc Strous, Katinka T., etal.The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews. 1999, 22: 421-437
    [114] Strous M., Pelletier E., Mangenot S., et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J]. Nature, 2006, 440 (7085): 790-794
    [115] Wei X., Vajrala N., Hauser L, et al. Iron nutrition and physiological responses to iron stress in N- itrosomonas europaea [J]. Archives of Microbiology, 2006, 186 (2): 107-118
    [116]赵阳国,任南琪,王爱杰,等.铁元素对硫酸盐还原过程的影响及微生物群落响应[J].中国环境科学, 2007, 27(2): 199-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700