Fenton-双泥SBR深度处理垃圾渗滤液的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液是垃圾堆放过程中产生的高浓度有机废水。因其具有污染物浓度高、成分复杂、水质水量变化大等特点,经过生化处理后仍有难降解的有机物残留,难以达标排放。随着垃圾渗滤液对周围环境的污染问题日益严重,以及新标准--《生活垃圾填埋场污染物控制标准(GB16887-2008)》的颁布,亟需探索经济、高效的垃圾渗滤液深度处理技术。
     针对垃圾渗滤液中高浓度难降解有机物难处理的问题,本论文在进行实际工程分析的基础上,开展了物化-生物深度处理工艺的研究,提出Fenton-双泥SBR组合工艺,以探讨渗滤浓缩液的深度处理技术。
     首先分析实际工程中,组合工艺对垃圾渗滤液的处理效果。通过对渗滤液中溶解性有机物质(DOM)的分离以及采用GC-MS联用仪对垃圾渗滤液中的有机微污染物的鉴定。结果表明,经过生物-物化处理,出水水质达标排放。
     其次通过单因素分析实验确定Fenton法处理渗滤液的最佳条件,分析反应过程中氧化、混凝作用对COD和腐殖酸的去除特性,同时初步探讨Fenton氧化降解机理。结果表明,Fenton试剂处理渗滤液的最佳条件:反应时间为2h,初始pH值为4.0,Fe~(2+)的投量为40mM,H_2O_2的投量为120mM。Fenton试剂能有效去除高浓度的腐殖酸,大部分的腐殖酸被Fenton试剂氧化降解为低分子的有机物而不是完全矿化生成CO_2和水。COD的变化曲线与腐殖酸的相似,但腐殖酸的去除率要高于COD大约30%,说明腐殖酸的去除对整体污染物的去除具有决定性的作用。Fenton试剂处理渗滤浓缩液主要通过混凝作用和氧化作用。因不同的[H_2O_2]/[Fe~(2+)]摩尔比而有显著差异。在低[H_2O_2]/[Fe~(2+)]摩尔比(≤0.5)时,反应机制是促进的絮凝作用;在[H_2O_2]/[Fe~(2+)]摩尔比为1~6时,反应机制是兼有氧化和絮凝沉淀作用;在高[H_2O_2]/[Fe~(2+)]摩尔比(≥6)时,反应机制是氧化作用。
     最后研究双泥SBR对Fenton处理后的浓缩液与模拟生活污水混合液的去除效果。经过Fenton试剂处理,浓缩液的可生化性提高,生物毒性降低,为后续生物处理创造良好条件。结果表明,模拟生活污水的混入可有效提高Fenton后浓缩液的可生化性,反应器对混合液中COD、TN、NH3-N和腐殖酸的平均去除率分别为85.2%、75.5%、70.4%和70.3%。出水COD、氨氮和总氮能够达标排放,有效解决了浓缩液高浓度难生物降解有机物和TN去除的难题。
Landfill leachate is one kind of organic wastewater with high concentration which produced in the process of refuse disposal. The landfill leachate contains a variety of organic, inorganic and heavy metal contents, which are high in concentration and often influenced by the age and type of solid wastes of the landfill site. Therefore, there still have much refractory contaminant in the leachate after the biochemical treatment and the effluent can’t meet relevant standards. And with a potential risk and potential hazards towards the public healthy and ecosystems and the launch of the new Standard for Pollution Control on the Landfill Site of Municipal Solid Waste(GB16887-2008), finding an economic and effective way to treat landfill leachate properly becomes an urgent and challenging task to local gocernments. This study is carried out to investigate the feasibility of chemical-biological (Fenton reagent+Two sludge SBR) combined technology in treating landfill leachate so as to meet the newly launched discharge limit of landfill leachate.
     Firstly, the transformation of pollutions including humic substances, microorganic pollutants in landfill leachate treated by a combined technology were investigated by fractionation technology of dissolved organic matters (DOM) and gas chromatography-mass spectroscopy (GC-MS) analysis. The observations indicated that landfill leachate was treated effectivly by the combined process .
     Secondly , the optimum process condition for treatment of landfill leachate by Fenton reagent are achieved. Just as follow: the initial pH value of 4, reaction time of 2h, H_2O_2 dosge of 120Mm and H_2O_2/Fe~(2+) molar ratio of 3:1. The change curves of humic acids removal were similar to those of COD. The removal of humic acids was 30% higher than removal of COD, which indicated that humic acids was mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagent. In addition, our study was focus on the oxidation and coagulation performances of Fenton treatment on chemical oxygen demand (COD) and humic substances removal in leachate. The mechanism of COD and humic acids removed by Fenton reagent was significantly different according to the [H_2O_2]/[Fe~(2+)] molar ratio. With low ratio of [H_2O_2]/[Fe~(2+)] (≤0.5 ), the Fenton reaction was coagulation enhanced by H_2O_2. With high ratio of [H_2O_2]/[Fe~(2+)] (≥6 ), the Fenton reaction was oxidation while H_2O_2 oxidation catalyzed by Fe~(2+). With medium ratio of [H_2O_2]/[Fe~(2+)] (0.5~6), the Fenton reaction could be characterized into two speciffic systems: oxidation and coagulation.
     Finally, the feasibility of treating mixture of landfill leachate and synthetic wastewater was studied using two-sludge SBR systems. The results showed that the addition of carbon with addition of synthetic wastewater could effectively enhance the reduction rate of TN. And the average removal efficiencies for COD, NH3-N, TN and humic substances were 85.2%, 75.5%, 70.4% and 70.3% respectively. The combined advanced treatment of Fenton oxidation process followed Two-sludge SBR could remove high concentration of humic substances effectively.
引文
[1] Renou S., Givaudan J.G., Poulain S., et al. Landfill leachate treatment: Review and opportunity[J]. Hazardous Materials, 2008, 150: 468-493
    [2]王宗平,陶涛,金儒霖.垃圾填埋场渗滤液处理研究进展[J].环境科学进展, 1999, 7(3): 32-39
    [3] Berthe C., Redon E., Feuillade G.. Fractionation of the Organic Matter Contained in Leachate Resulting from Two Modes of Landfilling: An Indicator of Waste Degradation[J]. Hazardous Materials, 2008, 154(1-3): 262-271
    [4] Foo K.Y., Hameed B.H.. An overview of landfill leachate treatment via activated carbon adsorption process[J]. Hazardous Materials, 2009, 171: 54-60
    [5]杨志泉,周少奇.广州大田山垃圾填埋场渗滤液有害成分的检测分析[J].化工学报, 2005, 11(56): 2183-2188
    [6]周大石,马汐平,田永静,等.细菌降解硝基苯的研究[J].卫生研究, 1994, 23 (3): 143-146
    [7]金重阳,刘辉,荆志严.活性炭纤维处理含多氯联苯水的研究[J].环境保护科学, 1997, 23(3): 6-7
    [8]陈玉成,李章平.城市生活垃圾渗沥水的污染及全过程控制[J].环境科学动态, 1995, 4: 15-17
    [9]李广科.生活垃圾填埋场渗滤液生物毒效应研究[D].上海:同济大学, 2003
    [10] Marco A., Esplugas S., Saum G.. How and why to combine chemical and biological processes for wastewater treatment[J]. Water Science Technology, 1996, 35(4): 321-327
    [11] Venkataramani E.S., Ahlert R.C.. Acclimated Mixed Microbial Responses To Organic Species In Industrial Landfill Leachate[J]. Hazardous Materials, 1985, 10(l): 1-12
    [12]孙召强,杨宏毅,武泽平,等. CASS工艺处理垃圾渗滤液工程设计实例[J].给水排水, 2002, 28(1): 20-21
    [13]徐迪民,陈绍伟,宋伟如,等.低氧-好氧两段活性污泥法处理垃圾填埋场渗滤水的研究[J].中国环境科学, 1989, 9(4): 311-315
    [14]王显胜,黄继国,邹东雷. ABR-接触氧化-化学氧化组合工艺处理垃圾渗建液方法研究[J].环境污染与防治, 2005, 27(l): 53-55
    [15]汪慧贞,沈家杰.英国垃圾填埋场渗沥水处理及其沼气利用简介[J].给水排水, 1994, 20(7): 23-25
    [16] Kennedy K.J., Lenta E.M. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket(UASB) reactors[J]. Water Res., 2000, 34(14): 3640-3656
    [17]徐竺,李正山,杨玖贤.上流式厌氧过滤器处理垃圾渗滤液的研究[J].中国沼气, 2002, 20(2): 12-15
    [18]王小虎,胡春莲,杨铁庚,等. SBR法处理垃圾渗滤液试验研究[J].环境卫生工程, 2000, 8(4): 147-150
    [19]周少奇,杨志泉.广州垃圾填埋渗滤液中有机污染物的去除效果[J].环境科学, 2005, 26(3): 186-191
    [20]王宝贞,王承武,杨铨大,等. A(缺氧活性污泥)/B(淹没式生物膜)复合系统处理垃圾填埋场渗沥液[J].给水排水, 1996, 22(5): 15-18
    [21]周益洪.人工湿地处理垃圾渗滤液工艺研究[D].上海:同济大学, 2006
    [22]孟玢.垃圾渗滤液生化工艺出水的深度处理试验研究[D].天津:天津大学, 2003
    [23]李国建,许迪民,于晓华.垃圾填理场渗滤水回灌技术的研究Ⅱ.填理场对渗滤水净化能力的研究[J].同济大学学报, 1997, 25(2): 195-199
    [24]赵宗升,刘鸿亮,李炳伟,等.垃圾填埋场渗滤液污染的控制技术[J].中国给水排水, 2000, 16(6): 20-23
    [25]孙英杰,徐迪民,胡跃城.城市生活垃圾填埋场渗滤液处理方案探讨[J].环境污染治理技术与设备, 2002, 3(3): 65-68
    [26]沈耀良,赵丹.厌氧-好氧法处理渗滤液与城市污水混合废水的可行性[J].污染防治技术, 2000, 13(2): 63-65
    [27]孙艳波,周少奇,李伙生,等. SBR法处理垃圾渗滤液与粪水的混合液[J].中国给水排水, 2009, 25(7): 5-8
    [28]王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究[J].环境污染治理技术与设备, 2001, 2(2): 59-63
    [29]孙洪伟,王淑莹,时晓宁,等.序批式膜反应器处理高氨氮渗滤液同步硝化反硝化特性[J].环境化学, 2010, 19(2): 271-276
    [30]孙洪伟,王淑莹,王希明,等.高氨氮垃圾渗滤液SBR法短程深度生物脱氮[J].化工学报, 2009, 60(7): 1806-1811
    [31]周少奇,张鸿郭.垃圾渗滤液厌氧氨氧化与反硝化的协同作用[J].华南理工大学学报(自然科学版) , 2008, 36(3): 73-76
    [32]周少奇.厌氧氨氧化与反硝化协同作用化学计量学分析[J ] .华南理工大学学报(自然科学版) , 2006 ,34 (5) : 1-4
    [33]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学, 1999, 20(5): 90-92
    [34] Ozturk I.,Altinbas M., Koyuncu I., et.al. Advanced Physico-chemical treatment experiences on young municipal landfil lleachates[J]. Waste Management, 2003, 23(5): 441-446
    [35]周爱娇,陶涛,李胜利,等.等离子体技术用于垃圾渗滤液预处理[J].中国给水排水, 2003, 19(11): 56-61
    [36]陶映初,陶举洲.环境电化学[M] .北京:化学工业出版社, 2003: 244-307
    [37]杨运平,唐金晶,方芳,等. UV/TiO2/Fenton光催化氧化垃圾渗滤液的研究[J].中国给水排水, 2006, 22(7): 34-37
    [38]蒋明,何少华,娄金生,等.氧化法处理垃圾渗滤液的研究进展[J].环境卫生工程, 2004, 12(3): 148-151
    [39]王春霞,肖书虎,赵旭,等.光电芬顿氧化法深度处理垃圾渗滤液研究[J].环境工程学报, 2009, 3(1): 11-16
    [40] Rivas F.J., Beltrán F.J., Gimeno O., et al. Adsorption of landfill leachates onto activated carbon: equilibrium and kinetics[J]. Hazard.Mater., 2006, 131: 170-178
    [41] Lim Y.N., Shaaban G., Yin C.Y., Treatment of landfill leachate using palm shell activated carbon column: axial dispersion modeling and treatment profile[J]. Chemical Engineering, 2009, 1(146): 86-89
    [42]王敏,阳小敏.垃圾渗滤液深度处理技术及其分析[J].环境科技, 2002, 15 (2): 32-34
    [43] Aziz, H.A., Adlan M.N., Zahari M.S.M., et al. Removal of ammoniacal–nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and lime stone[J]. Waste Manage, 2004, 05(22): 371-375
    [44]刘研萍,李秀金,王宝贞. DT- RO处理垃圾渗沥液工程介绍[J].给水排水, 2005, 31(8): 41-45
    [45]蒋宝军,李俊生,杨威,等.垃圾渗滤液反渗透浓缩液回灌处理中试研究[J].哈尔滨商业大学学报(自然科学版) , 2006, 22(6): 36-40
    [46]聂永丰,岳东北,许玉东,等.渗滤液膜处理浓缩液的蒸发处理技术[J].中国城市环境卫生, 2006, 4: 18-22
    [47]张龙,李爱民,吴海锁,等.混凝沉淀-树脂吸附-Fenton氧化工艺处理垃圾渗滤液膜滤浓缩液[J].环境污染与防治, 2006, 31(3): 16-20
    [48]郭琇,孙宏伟. Fenton法处理反渗透浓缩液的研究[J].工业水处理, 2010, 30(10): 64-66
    [49]岳东北,刘建国,聂永丰,等.蒸发法深度处理浓缩渗滤液的实验研究[J].环境科学动态, 2005, 1: 44-45
    [50]岳东北,许玉东,何亮,等.浸没燃烧蒸发工艺处理浓缩渗滤液[J].中国给水排水, 2005, 21(70): 71-73
    [51]王廷涛,杨庆峰.反渗透浓缩液的再利用[J].化工进展, 2009, 28(5): 734-740
    [52]刘东,武春瑞,吕晓龙.减压膜蒸馏法反渗透浓水处理过程研究[R].天津:第六届全国膜与膜过程学术报告会, 2008
    [53]张金海,薛风山,宋茂军.生活垃圾浓缩液的处理方法[P].中国:200910014170, 2009-07-29
    [54] Jokela J.P.Y., Kettunen R.H., Sormunen K.M., et al. BiologicalNitrogen Removal from Municipal Landfill Leachate:Low-costNitrification in Biofilters and Laboratory Scale in-situ[M]. Denitrification[J]. Water Res., 2002, 36(2): 4079-4080
    [55]郭劲松,陈鹏,方芳,等. Fenton试剂对垃圾渗滤液中有机物的去除特性研究[J].中国给水排水, 2008, 24(3): 88-91
    [56] Beccari M., Cecchi F., Maj oneM., et al . Improved biological nutrient removal resulted from the integrated treatment of wastewater and municipal solid waste . Annali.di. Chimica, 1998, 88(11-12): 773-781
    [57] Huo Sh.L., Xi B.D., Yu H.CH., et al. Characteris tics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. Environ.Sci, 2008, 20(4): 492-498
    [58] Kjeldsen P., Barlaz M., Rooker A.P., et al. Present and longterm composition of MSW landfill leachate: A review[J]. Environ.Sci.Tech., 2002, 32(4) : 297-336
    [59] Pin-jing He, Jun-feng Xue, Li-ming Shao. et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Res., 2006, 40(7): 1465-1473
    [60]秦万德.腐殖酸的综合利用[M].北京:科学出版社, 2002
    [61] Harmsen J.. Identification of organic compounds in leachate from a waste tip [J]. Water Res., 1983, 17(6): 699-705
    [62] Qasim S.R., Chiang W.. Sanitary landfill leachate Generation, Control and Treatment[M]. Technomic Lancaster, UK,1994
    [63] Albaiges J., Casado F., Ventura F. Organic indicators of groundwater pollution by a sanitary landfill. Water Res., 1986, 20(9): 1153-1159
    [64] Cecilia B.O., Christian J.. Chemical characterization of landfill leachates-400 parameters and compounds [J]. Waste Management, 2008, 28(10) :1876-1891
    [65]杨志,汪蘋,张月琴,等. GC-MS法对垃圾渗滤液生物处理前后微量有机物的研究[J].环境污染与防治, 2005, 27(3): 218-221
    [66] Wu Y.Y., Zhou S.Q., Qin F.H., et al. Removal of humic substances from landfill leachate by Fenton oxidation and coagulation[J]. Process Saf. Environ. Prot., 2010, 88(4): 276-284
    [67] Wu Y.Y., Zhou S.Q., Qin F.H., et al. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM) [J]. Hazard. Mater., 2010,180(1-3): 456-465
    [68] Christensen J.B., Jensen D.L., Gron C., et al. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater [J]. Water Res., 1998, 32(1): 125-135
    [69] Baun D.L., Christensen T.H.. Speciation of heavy metals in landfill leachate [J]. Waste Manag. Res., 2004, 22(1): 3-23
    [70] Ronnback P., Astrom M., Gustafsson J.P.. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden[J]. Appl. Geochem., 2008, 23(7): 1862-1880
    [71]尚爱安,徐美燕,孙贤波.物化-生化组合工艺处理垃圾渗滤液[J].华东理工大学学报(自然科学版), 2005, 31(6) : 756-758
    [72]熊小京,叶志隆.贝壳与球形塑料填料曝气生物滤池的硝化特性比较[J].厦门大学学报, 2005, 44(4): 538-541
    [73] Moura M.N., Martín M.J., Burguillo F. J. A compara- tive study of the adsorption of humic acid,fulvic acid and phenol onto Bacillus subtilis and activated sludge[J]. Hazard Mater, 2007, 149(1): 42-48
    [74]方芳,刘国强,郭劲松,等.活性污泥法对水溶性腐殖酸的去除效能与机制研究[J].环境科学, 2008, 29(8): 2266-2270
    [75] Mario E.S., Westerhoff P.. Biosorption of humic and fulvic acids to live activated sludge biomass[J]. Water Res., 2003, 37(10): 2301-2310
    [76] Lema J.M.. Characteristics of landfill leachates and alternatives for their treat -ment: a review. JW-PCF, 1998, 40: 223-25
    [77]董秉直,曹达文,范瑾初.最佳混凝投加量和pH去除水中有机物的研究[J].工业水处理, 2002, 22(6): 29-31
    [78]陈传好,谢波,任源,等. Fenton试剂处理废水中各影响因子的作用机制[J].环境科学, 2000, 21(5): 93-96
    [79] Ahmet U. , Fikret K. Biological nutrient removal from pretreated landfill leachat in a sequencing batch reactor[J]. Environ.Manage., 2004, 71(1):9-14
    [80]詹旭,吕锡武.持久性有机污染物(POPs)的生物降解研究进展[J].中国给水排水, 2006, 22(22): 10-12
    [81]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学, 2000,19(3): 24-28
    [82]尚爱安,赵庆祥,徐美燕,等.混凝在垃圾渗滤液处理中的作用研究[J].中国给水排水, 2004, 20(1): 50-52
    [83]吕怡兵,付强,陈瑛.环境中邻苯二甲酸酯类物质的污染现状与监测方法[ J].中国环境监测, 2007, 23(5): 66-70
    [84]夏风毅,郑平,周琪,等.邻苯二甲酸酯的摇瓶生物降解规律研究[J].环境科学学报, 2002 , 22(3): 379-380
    [85]王建龙,吴立渡,施汉昌,等.驯化活性污泥降解邻苯二甲酸酯类化合物的研究[J].环境科学, 1998, 19(1): 18-20
    [86] Chang B.V., Yang C.M. Cheng C.H., et al. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere , 2004, 55(4): 533-538
    [87] Dargnat C., Blanchard M., Chevreuil M., et al. Occurrence of phthalte esters in the Seine River estuary ( France) [J]. Hydrological Processes , 2009, 23(8): 1192-1201
    [88]黄荣新.酞酸酯类激素在污水厂的迁移及GAC吸附与生物降解研究[D].哈尔滨:哈尔滨工业大学, 2007
    [89] Barbeni M., Minero C., Pelizzetti E., et.al.Chenmical degradation of chloro- phenols with Fenton’s reagent(Fe2++H2O2) [J]. Chemosphere, 1987, 16(10-12): 2225-2237
    [90] Papadopoulos A., Fatta D., Loizidou M.. Treatment of stabilized landfill leachate by physico-chemical and bio-oxidation processes[J]. Environ. Sci. Technol., 1998, 33 (4): 651-670
    [91] Petrasek,A.C., Kugelman,l.J. Austern B.M, et al. Fate of toxic organic compounds in wastewater treatment plants[J]. JWPCF, 1983, 55 (9): 1366-1372
    [92] Neyens E., Baeyens J.. A review of classic Fenton’s peroxidation as an advancedoxidation technique[J]. 2003, Hazard. Mater., 98(1-3): 33-50
    [93] Walling C., Goosen A.. Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide: effects of organic substrate[J].Am. Chem. Soc. 1973, 95(9): 2987- 2991
    [94] Kim Y.K., Huh I.R.. Enhancing biological treatability of landfill leachate by chemical oxidation[J]. Environ. Eng. Sci., 1997, 14(1): 73-79
    [95] Lopez A., Pagano M., Volpe A., Di Pinto A.. Fenton’s pretreatment of mature landfill leachate[J]. Chemosphere, 2004, 54 (7):1005-1010
    [96]张晖, Huang C P. Fenton试剂处理垃圾渗滤液的影响因素分析[J].中国给水排水, 2002, 18(3): 14-17
    [97]彭陵文,铁柏清,杨佘维,等. Fenton氧化法预处理垃圾渗滤液试验研究[J].安全与环境工程, 2009, 16(3): 30-33
    [98] Kim, S.M., Geissen S.U., Vogelpohl A.. Landfill leachate treatmentby a photo -assisted fenton reaction[J]. WaterSci. Technol. , 1997, 35: 239-248
    [99]王立军,聂广正,李森,等. Fenton试剂法在垃圾渗滤液深度处理中的应用[J].长春工程学院学报(自然科学版) , 2006, 7(2): 37-39
    [100]郑怀礼,潘云霞,李丹丹,等.光助Fenton法氧化垃圾渗滤液中有机物的研究[J].光谱学与光谱分析, 2009, 29(6): 1661-1664
    [101]王春霞,肖书虎,赵旭,等.光电芬顿氧化法深度处理垃圾渗滤液研究[J].环境工程学报, 2009, 3(1): 11-16
    [102]丁辉,李鑫刚,徐世民.光助Fenton氧化垃圾渗滤液中腐殖质研究[J].太阳能学报, 2008, 29(6): 761-766
    [103] Deng Y. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate [J]. Hazard. Mater., 2007, 146(1-2): 334-340
    [104] Kang Y.W., Hwang K.Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process [J]. Water Res., 2000, 34(10): 2786-2790
    [105]卞华松,陈骞,张仲燕.中和混凝与催化氧化法处理高浓度有机废水[J].上海环境科学, 2002, 21(4): 244-246
    [106] Sun J., Li X., Feng J., et al. Oxone/Co2+ oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate [J]. Water Res., 2009, 43(17): 4363-4369
    [107] Tang W.Z., Huang C. P.. 2, 4- Dichlorophenol oxidation kinetics by Fenton’s reagent[J].Environ. Technol., 1996, 17: 1371-1378
    [108] Zhang H., Choi H.J., Huang C.P. Optimization of Fenton process for the treatment of landfill leachate [J]. Hazard. Mater., 2005, 125(1-3): 166-174
    [109] Edward S.K., Foppe B. Sanitary landfill leachates and their Leachate treatment[J]. Environ.Eng. , 1976, 102 (2),:411-431
    [110] Lau I.W.C., Fang H.H.P., Wang P.. Organic removal of anaerobically treated leachate by Fenton coagulation[J]. Environ.Eng. , 2001, 127(7): 666-669
    [111] Chou S.S., Huang Y.H., Lee S.N., et al. Treatment of high strength hexamine- containing wastewater by electro-Fenton method[J]. Wat.Res., 1999, 33(3): 751-759
    [112] Bossmann S.H., Oliveros E., Gob S., et al. New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Photochemically Enhanced Fenton Reactions[J]. Phys. Chem. A, 1998, 102 (28): 5542-5550
    [113] Walling C.. Fenton’s Reagent Revisited[J].Acc.Chem. Res., 1975, 8(4): 125-131
    [114] Bortone G.. Saltarelli R., Alonso V., et al.Biological anoxic phosphorus removal the dephanox process[J].Wat. Sci. Tech., 1996, 34(1-2): 119-128
    [115] Lee D.E., Jeon C.O., Park J.M.. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Wat.Res, 2001, 35(16): 3968-3976
    [116]王亚宜,彭永臻,王淑莹,等.碳源和硝态氮浓度对反硝化除磷的影响及ORP的变化规律[J].环境科学, 2004, 25(4): 54-58
    [117]王亚宜,杜红,彭永臻,等. A2N反硝化除磷脱氮工艺及其影响因素[J].中国给水排水, 2003, 19(9): 8-11
    [118]彭永臻,王亚宜,顾国维,等.连续流双泥系统反硝化除磷脱氮特性[J].同济大学学报(自然科学版) , 2004, 32(7): 933-938
    [119]谢可蓉,温旭志,谢璨楷,等. SBR法在垃圾渗滤液治理中的研究及应用[J].广东工业大学学报, 2001, 18(4): 90-93
    [120] Tekin H., Bilkay O., Ataberk S.S., et al. Use of Fenton Oxidation toimprove the biodegradability of a pharmaceutical wastewater[J]. Hazard. Mater., 2007, 136(12): 258-265
    [121]左晨燕,何苗,张彭义,等. Fenton氧化/混凝协同处理焦化废水生物出水的研究[J].环境科学, 2006, 27(11): 2201-2205
    [122] Lee B.D., Hosomi M., Murakami A.. Fenton oxidation with ethanol to degradeanthracene into biodegradable 9, 10-anthraquinon: A pretreatment method for anthracene-contaminated soil[J]. Wat. Sci.&Techno., 1998, 38(7): 91-97
    [123]周少奇,钟红春,胡永春.聚铁混凝-Fenton法-SBR工艺对成熟垃圾场渗滤液深度处理的研究[J].环境科学, 2008, 29(8): 2201-2205
    [124] Yang Deng, James D., Englehardt. Review:Treatment of landfill leachate by the Fenton process[J]. Wat. Res., 2006, 40(20): 3683-3694
    [125] Mario E.S., Westerhoff P.. Biosorption of humic and fulvic acids to live activated sludge biomass.Water Res, 2003, 37(10): 2301-2310
    [126] Moura M.N., Martín M.J., Burguillo F.J.. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge[J]. Hazard. Mater., 2007, 149:42-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700