末端电磁搅拌对钢连铸坯成分偏析及微观组织影响的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
末端电磁搅拌(Final Electromagnetic Stirring, F-EMS)技术能有效地改善钢在连铸过程中容易出现的中心偏析、枝晶偏析、裂纹、缩孔、缩松及卷气、卷渣等常见缺陷。本文针对上海宝山钢铁股份有限公司末端电磁搅拌项目,利用DJG-φ20W新型多功能电磁搅拌器,在实验室条件下模拟钢连铸坯凝固末端电磁搅拌条件,选用低熔点的Sn-Sb、 Sn-Pb合金,在金属熔体凝固过程中对其施加螺旋磁场,并在相同电参数下施加行波磁场,对比分析螺旋磁场在改变励磁电流及频率的情况下改善成分偏析、细化微观组织的效果及作用机理,为连铸凝固末端施加电磁搅拌引入螺旋磁场提供一定的理论依据。实验以金属Sn为基体,用Sn-11wt.%Sb合金分析螺旋、行波对铸锭中心轴向成分偏析的影响;用Sn-20wt.%Pb合金分析螺旋、行波及反螺旋磁场对铸锭微观组织的影响。
     在Sn-11wt.%Sb合金凝固过程中施加行波磁场及螺旋磁场,搅拌频率为10Hz,励磁电流分别为25A、50A、75A、100A、125A。实验证明:励磁电流增大,两种搅拌方式改善成分偏析的能力增强。行波磁场励磁电流为125A时,改善轴向偏析的效果达到最佳,铸锭上、下p相含量差为1.67vol.%;当螺旋磁场的励磁电流为100A时,铸锭上、下p相含量差仅为0.56vol.%, Sb含量为0.08wt.%。可见,螺旋磁场能有效消除铸锭的成分偏析缺陷,且效果强于行波磁场。
     为了模拟钢连铸末端电磁搅拌过程,通过测量合金凝固坯壳厚度与凝固时间的关系确定浇注后6.5min开始施加电磁搅拌,坯壳厚度约为19mm,凝固率约为70%。励磁电流由75A增大至150A,行波磁场作用下最佳励磁电流为150A,平均晶粒尺寸为154μm;螺旋磁场最佳励磁电流为125A,对应的平均晶粒尺寸为133μm。改变两种磁场的搅拌频率,行波磁场搅拌频率为10Hz时平均晶粒尺寸最小,约为153μm;螺旋磁场搅拌频率为10Hz时,晶粒尺寸仅为133μm。研究发现:当旋转磁场与行波磁场复合后(即螺旋磁场)相比于单一的行波磁场在相同电参数下更易驱动熔体激烈对流、碎段枝晶,即励磁电流为125A、搅拌频率为10Hz的螺旋磁场细化组织效果最佳。当螺旋磁场的励磁电流、搅拌频率超过临界值后会延长熔体的凝固时间,导致微观组织有明显的变粗、长大现象。对金属熔体施加反螺旋磁场发现:行波分量向上的反螺旋磁场不利于排出气体而形成缩孔。
Defects like central gravitational and dendritic segregation in the process of continuous casting can be improved by final electromagnetic stirring (F-EMS) effectively. This subject is in the light of the FEMS installation of Baoshan Iron and Steel Company Limited. With the New-type multi-functional electromagnetic stirring installation, the process of FEMS of the continuous casting was simulated in the experiment conditions. Low melting alloys Sn-Sb and Sn-Pb were selected in this paper which were stirred on with spiral magnetic field (SPF), with comparison of alloys solidified in the travelling magnetic field (TMF). Effect and mechanism of action under SMF on macrosegregation improvement, microstructure refinement were analysed at different excitation current and frequency which was expected to provide a theoretical basis for the practical application of a novel stirring method in F-EMS. Sn was selected in this experiment to be the matrix metal, and the composition was designed to Sn-11%Sb and Sn-20%Pb. Sn-11%Sb was selected to analyse the effect of SMF and TMF on the gravity segregation of the ingot as well as Sn-20%Pb was selected to analyse the effect of SMF, TMF and anti spiral magnetic field on the micro structure of the ingot.
     Sn-11%Sb was selected with the stirring methods of TMF and SMF, frequency of lOHz and excitation current of25A,50A,75A,100A,125A. Ability on improving the gravity segregation becomes better with the increasing of the excitation current for both of the two magnetic field. Effect of gravity segregation improvement reach a optimal value with1.67vol%for the content of β phase difference between upper and lower part of the ingot when the excitation is125A under TMF stirring;(3phase difference is0.56vol.%when the excitation is100A under SMF stirring. Difference between upper and lower part of the ingot is only0.08wt.%for quality score of Sb analysed by XRF under SMF which means the gravity segregation of the ingot is substantially eliminated. It could be found that, from the experimental analysis, effect of SMF on gravity segregation improvement is more excellent than TMF.
     In order to simulate the process of FEMS in the continuous casting, relationship between the solidified shell thickness and solidified time was measured in which6.5min was confirmed to be the beginning stirring time after pouring and the shell thickness was about19mm with a solidification rate of70%. When the excitation current increase from75A to150A, the minimum value of the average grain size unde TMF is154μm when the excitation current is150A and comparatively, the minimum value of the average grain size under SMF is 133μ m when the excitation current is125A. An optimal value of frequency can also be found for both SMF and TMF when changing the stirring frequency. The minimum of the average grain size is153μm when the frequency is lOHz and13Hz under TMF while the average grain size is133μm when the frequency is lOHz under SMF. From the analysis it could be found that, compare to TMF, a more intense convection could occur in the melt when the rotating magnetic field (RMF) and travelling magnetic field (TMF) superposed with each other (SMF) which can cause the fracture of dendrites more easily, therefore SMF shows a more excellent effect on solidification structure refinement with the optimal stirring parameters of125A and10Hz. Furthermore, solidification time could be deferred under the intense convection and more induction heat will be brought in, for this reason, a higher excitation current and frequency over the optimal value will lead to a coarse microstructure and the growth of dendrites. It could be found that when the melt was stirred on with the anti spiral magnetic field with an upward direction travelling wave, a worse effect would be showed than SMF on the ability of dendrites fracture and microstructure refinement and the sinkhole could appear easily due to the gas which couldn't be let out timely.
引文
[1]宋宝来,程淘祖.轻压下技术压下量对钢偏析的影响[J].铸造技术2009,30(5):678-681.
    [2]夏晓东,史华明,李爱武.电磁搅拌技术在连铸的应用[J].宝钢技术,1999,(3):9-13.
    [3]谢兵,甘永年.电磁搅拌在连铸钢中应用的评述[J].四川冶金,1987,3:41-46.
    [4]吴存有,周月明,侯晓光.电磁搅拌技术的发展[J].世界钢铁,2010,(2):36-41.
    [5]VIVES C. Solidification of Tin in the presence of electric and magnetic field[J]. Journal of Crystal Growth,1986,76:170-184.
    [6]毛大横,严宏志.电磁搅拌对铝及其合金凝固和铸态组织的影响[J].轻合金加工技术,1991,19(4):10-16.
    [7]GARNIER M. Electromagnetic processing of liquid materials in Europe[J]. ISIJ International, 1990,30:1-7.
    [8]潘秀兰,王艳红,梁慧智.国内外电磁搅拌技术的发展与展望[J].鞍钢技术,2005,(4):9-15.
    [9]Hideaki YAMAMURA, Takehiko TOH, Hiroshi HARADA, et al. Optimum magnetic flux density in quality control of casts with level DC magnetic field in continuous casting mold [J]. ISIJ International,2001,41(10):1229-1235.
    [10]Kyung Shik OH, Yong Won CHANG. Macrosegregation Behavior in Continuously Cast High Carbon Steel Blooms and Billets at the Final Stage of solidification in Combination Stirring [J]. ISIJ Intemational,1995,35(7):866-875.
    [11]谢兵,甘永年.电磁搅拌在连铸钢中应用的评述[J].四川冶金,1987,3:41-46.
    [12]夏晓东,史华明,李爱武.电磁搅拌技术在连铸的应用[J].宝钢技术1999,(3):9-13.
    [13]Okimura T, et al. Flow control of molten steel by EMBr ruler in the curved mold conticuous caster at Kure Works[A]. International Symposium on Eletro-magnetic Processing of Materials[C], Paris, ISIJ,1997:37.
    [14]Kariya K, Kitano Y, Kuga M, et al. Development of flow control mold for high speed casting using static magnetic field[A]. The 7th Steel Making Conference Proceedings[C], Chicago:The Iron and Steel Society,1994:53.
    [15]Takeuchi T,Zeze M, Tamaka H, et al. Novel continuous casting process for clad steel slabs with level DC magnetic field [J]. Ironmaking and steelmaking,1997,24(3):257-263.
    [16]舍里克,著.彭一川,等译.冶金中的流体流动现象[M].沈阳:东北大学出版社,2003.
    [17]韩至成,编译.电磁流体力学在冶金工业中的应用[J].国外钢铁,1997,(6):24-39.
    [18]周德光,傅杰,王平,等.工艺参数对连铸轴承钢坯碳偏析的影响[J].钢铁,1999,34(6):22-26.
    [19]李秋玲,李伟轩,任忠鸣,等.薄板坯水平连铸结晶器电磁搅拌的模拟实验研究[J].上海金属,2005,27(6):35-39.
    [20]郭大勇,花福安,胡壮麒,等.电磁驱动熔体流动与枝晶变形断裂模拟[J].金属学报,2003,39(9):914-919.
    [21]张宏丽,王恩刚,赫冀成,等.搅拌器的结构参数对钢液内电磁场和流场分布的影响[J].钢铁研究学报,2002,14(4):10-15.
    [22]王学东,张伟强时海芳.电磁搅拌技术的国内外发展现状[J].辽宁工程科技大学学报,2001,20(1):82-84.
    [23]WANG Bao-feng, LI Jian-chao. Application of electromagnetic stirring technology in continuous casting[J]. ANGANG Technology,2009,1:1-5.
    [24]黄军涛,赫冀成.方坯连铸二冷区电磁旋转搅拌数值模拟[J].钢铁研究学报,2001,13(5):19-23.
    [25]YASUDA H, TOH T, I WAI K, MO RITA K. Rencent progress of EPM in steelmaking, casting, and Solidification Processing[J]. ISIJ International,2007,47(4):619-626.
    [26]Cai Y, Tan M J, Shen G J, Su H Q. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite [J]. Materials Science Engineering,2000, A282:232-239.
    [27]Huajie Wu, Ning Wei, Yanping Bao, Guo-xin Wang, et al. Effect of M-EMS on the solidification structure of a steel billet[J]. International Journal of Minerals, Metallurgy and Materials,2011, 18(2):159-164.
    [28]张秀荣.电磁搅拌技术在合金钢连铸机中的研究与应用[J].莱钢科技,2008,(4):55-57.
    [29]Oh K S, Chang Y W. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring[J], ISIJ International,1995,7(35): 866-875.
    [30]Jianchao Li, Baofeng Wang, Yonglin Ma, Jianzhong Cui. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom[J]. Materials Science and Engineering A,2006, (425):201-204.
    [31]曹红福.连铸复合电磁搅拌对低碳钢碳偏析的影响[J].特殊钢,2010,31(2):38-39.
    [32]赵倩,房灿峰,侯晓光,等.螺旋磁场对金属凝固过程中成分偏析的影响[J].特种铸造及有色合金,2011,31(6):495-500.
    [33]毛卫民,李树索,赵爱民,等.电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J].金属学报,2001,37(7):781-784.
    [34]王陈伟,王琛.电磁连铸技术的应用及发展[J].河北理工大学学报,2011,33(4):39-43.
    [35]戴秀东,李俊.凝固末端电磁搅拌对77B铸坯中心偏析的影响[J].山西冶金,2009,32(2):29-31.
    [36]毕铭强,谢宝辉.连铸电磁搅拌技术的应用[J].重工与起重技术,2010,(2):9-16.
    [37]Masayuki NAKADA, Kentaro MORI, Shin-ichi NISHIOKA, et al. Reduction of Macrosegregation by Applying a DC Magnetic Field at the Final Stage of Solidification[J]. ISIJ Internationl,1997, 37(4):161-163.
    [38]Limoges J. Beitelman L. Continuous casting of high carbon and alloy steel billets with in-mold dual-coil electromagnetic stirring system[J]. Iron and steel maker,1997, (11):45-47.
    [39]杜卫东,王凯,蒋明伟,等.间歇式变相复合电磁搅拌作用下60Si2CrVAT钢的凝固组织[J].钢铁,2007,42(11):27-30.
    [40]Shigeo ASAI. Theoretical analysis and model experiments on electromagnetically flow in continuous casting[J]. Trans, ISIJ,1982, (22):126-133.
    [41]Krishnadev M R, Angers R, Huard G, Nair C G K. The Structure and Properties of Magnesium-Matrix Composites [J]. JOM, August,1993,52.
    [42]左玉波,崔建忠,赵志浩,等.电磁搅拌和细化剂对Al-Mg-Mn合金组织的影响[J].特种铸造及有色合金,2008,28(8):581-583.
    [43]李树索.A1-37%Si合金磷变质及电磁搅拌显微组织的研究[J].机械工程材料,1998,22(5):14-16.
    [44]韩维新.电磁搅拌对离心铸造0Cr17Mn14Mo2N管坯组织和性能的影响[J],铸造,1998,(12):7-9.
    [45]Chen Zhao, Chen Changle, Wen Xiaoli, et al. Effect of frequency and intensity of rotating magnetic field on the microstructures of Pb-Sn alloys[J]. Chinese Science Bulletin,2008,53(17): 2575-2581.
    [46]ZHOU Shucai, BAI Chenguang, LEI Ya, et al. Effect of low-frequency rotary electromagnetic-field on solidification structure of continuous casting austenitic stainless steel[J]. Journal of Central South University of Technology,2009,360-364.
    [47]W. D. Griffiths, D. G. McCartney. The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminium alloy 7150[J]. Mater, Sci. Eng. A,1996, (216):47-60.
    [48]何少平,许晓嫦.热加工工艺基础,第1版.北京:中国铁道出版社,1998.
    [49]Chen Xanlin, Yang Quan, Zhang Qingdong, et al. Varying contact back-up roll for improved strip flatness[J]. Steel Technology International, Sterling Publications Limited. London, 1994/1995(y early):174-178.
    [50]Langenberg F C, Pestel G, Honeycutt C R. Grain refinement of steel ingots by solidification in a moving electromagnetic field[J].TMS-AIME,1961,221:895-899.
    [51]Johnston W C, Kolter G R, Tiller W A. Grain refinement via electromagnetic stirring during solidification[J].TMS-AIME,1965,233:1856-1860.
    [52]胡坤太,仇圣桃,张慧,等.重钢小方坯连铸机内置式结晶器电磁搅拌器的研制[J].2003,38(5):22-24.
    [53]Kader Za(i)dat; Nathalie Mangelinck-No(e)l; Rene Moreau Control of melt convection by a traveling magnetic field during the directional solidification of Al-Ni alloys[J]. Materials Review,2007:5-6.
    [54]Tatyana P; Lyubimova; Arne Croell Time-dependent magnetic field influence on GaAs crystal growth by vertical Bridgman method[J]. Materials Review,2004:1-3.
    [55]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991:778-815.
    [56]Matsuda H.李玲译.采用结晶器电磁搅拌法减少连铸坯夹杂的新技术[J].国外钢铁,1991,(12):34-40.
    [57]陈雷.连铸电磁搅拌的现状和展望[J].炼钢,1995,(2):26-38.
    [58]徐兴国,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的改善[J].上海金属,1997(3):28-33.
    [59]邓湘斌,陈凯,李小虎,等.预防小方坯中心偏析与中心疏松的措施[J].连铸,2009,(2):41-43.
    [60]胡汉起,郑日琪.电磁搅拌对低硫钢枝晶组织及机械性能的影响[J].金属学报,1990,26(4):313-316.
    [61]刑文彬,许诚信,房彩刚,毛斌王世郁.新型螺旋磁场电磁搅拌的冶金效果[J].北京科技大学学报,1991,13(2):110-115.
    [62]Glaws P C. The influence of electromagnetic stirring on inclusion distribution as measured by ultrasonic inspection [A].1991 Steelmaking Conference Proceedings [C],1991:247-264.
    [63]Papay F R. Billet quality improvement with mold electromagnetic stirring [A].1993 Steelmaking Conference Proceedings [C],1993:437-439.
    [64]METAN V, EIGENFELD K, RABIGER D, et al. Grain size control in Al-Si alloys by grain refinement and electromagnetic stirring[J]. Jouranl of Alloy and Compounds,2009,487:163-172.
    [65]陈莉娟,李永晖,陶淑芬.电磁搅拌对铝铜合金宏观组织及偏析的影响[J].热加工工艺,2010,37(7):69-71.
    [66]MAO Wei-min, ZHEN Zi-sheng, CHEN Hong-tao. Effects of electromagnetic stirring parameters on microstrusture of semi-solid AZ91D Mg alloy[J]. Special Casting & Nonferrous Alloy,2005, 25(9):538-541.
    [67]Bettelman L. Effect of mold EMS design on billet casting productivity and product quality [J]. Canadian Matallurgical Quarterly,2000,38(5):301-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700