大跨度斜拉桥预应力混凝土索塔关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对大跨度斜拉桥预应力混凝土索塔的两个关键问题展开研究。
     对于索塔拉索锚固区小半径U形预应力筋的实测伸长值比理论伸长值偏大这一现象,主要做了以下几个方面的工作:
     1、分析影响小半径U形预应力筋伸长值的各种因素,指出了小半径U形预应力筋伸长值的构成特点。
     2、从研究张拉过程中小半径U形预应力筋在波纹管内的位置变化入手,得出预应力筋由理想状态至波纹管变形前几何长度的变化量,引入系数ξ(挤压系数),给出了小半径U形预应力筋附加伸长值的计算公式。
     3、指出将由波纹管变形引起的预应力筋几何伸长值简单地处理为πS(S为波纹管产生径向压缩变形量)是不妥的,此种处理夸大了由波纹管变形引起的预应力筋几何伸长值,并提出了小半径U形预应力筋因波纹管变形引起的几何伸长值的计算公式。
     4、提出了能够体现各种效应和因素影响的小半径U形预应力筋理论伸长值的计算方法。通过多个模型数据对此计算方法进行校验,结果表明:实测伸长值与理论伸长值的偏差基本可控制在规范规定的±6%以内,完全能够满足小半径U形预应力筋张拉的控制要求。
     5、通过拟合优度检验,肯定了计算小半径U形预应力筋的理论伸长值时取用变量—挤压系数ξ的合理性。
     为获得索塔拉索锚固区塔壁预应力计算公式,主要做了以下几个方面的工作:
     1、以力法为手段,依据拉-压杆模型的优化原理,确立了体内单锚的拉-压杆模型。
     2、以单锚拉-压杆模型为基础,首次利用拓扑优化成果(Ft2=0),经过力法计算,自下而上全面解答了前壁的拉-压杆模型,揭示出相邻拉索竖向分力间既相互干扰又相对独立的事实,从而,准确反映在拉索竖向分力作用下前壁拉、压应力区的分布状况。
     3、通过对实例的研究,提出α3=23.3°,简化了前壁拉-压杆模型,且具有较好的工程精度。
     4、创造性地利用几何关系完全确定了拉索侧壁竖向分力作用下拉-压杆模型各杆件的力值和位置,首次建立了在拉索竖向分力作用下完整的索塔锚固区侧壁拉-压杆模型。
     5、在对大量索塔水平向尺寸数据进行统计、分析的基础上,建立了可信的水平向系列模型;对水平向系列模型的形状拓扑成果进行矢量化处理,确立了全面的索塔水平向拉-压杆模型,总结出模型参数依塔柱前壁宽厚比变化的规律,给出了拉索水平向分力作用下最大拉杆力值的计算公式。
     6、在索塔拉索锚固区竖向拉-压杆模型和水平向拉-压杆模型研究的基础上,提出了全面反映拉索竖向和水平向作用的塔壁预应力的计算方法,定量设计塔壁预应力筋,指导索塔结构的尺寸拟定和预应力筋布置,大大简化了塔壁预应力的设计。
Two key issues in prestressed concrete pylons of long-span cable-stayed bridges were studied in this thesis.
     In view of the phenomenon that the actual elongation of small radius U-shaped prestressing tendons in anchorage zone of pylons is slightly greater than the theoretic elongation, the following researches were mainly done:
     The factors that influence the elongation of the U-shaped tendons were analyzed and the constitution feature of the tensioning elongation of the U-shaped tendons was pointed out.
     Based on the research of the position change of small radius U-shaped prestressing tendons in the corrugated pipe during the tensioning process, the variation in geometric length of the tendons from the ideal state to that before the deformation of corrugated pipe was obtained. The compression factor ξ was introduced, and the formula to calculate the additional elongation of the U-shaped tendons was presented.
     The results show that expressing the geometry elongation induced by the deformation of the corrugated pipe as πS (S was the radial compression deformation of the corrugated pipe) is inappropriate, which exaggerats the geometry elongation of the corrugated pipe. Thus, a calculation method of the geometry elongation of small radius U-shaped prestressing tendons which caused by the deformation of the corrugated pipe was proposed.
     A general calculation method for the theoretical elongation of small radius prestressing tendons was developed, which could reflect the variety of effects and factors. The developed method for calculating the tensioning elongation was verified by the data obtained by field tests. The results show that the deviation of between measured value and calculated value of elongation can be controlled within the range (±6%) from the technical specification, which can fully satisfy the control requirements of tensioning small radius prestressing tendons.
     Using the compression factor ξ as a variable in the calculation of the theoretical elongation of small radius prestressing tendons was reasonable through the test of goodness of fit.
     The following aspects were mainly done for getting the formula to calculate the prestressing force in the wall of box pylon:
     According to the optimization principle of strut-and-tie model(STM), the STM of single anchor was established by means of force method.
     On the basis of the STM of single anchor, using firstly topology optimization result (Ft2=0)and force method, the STM in the facade wall was comprehensively solved. The relation of interference and independence between vertical components of the adjacent cables was revealed. Thus, the distribution of compressive and tensile stresses in the facade wall under the action of vertical component of cable force was accurately reflected.
     By the example study, the parameter α3=23.30was determined, and the STM in the facade wall was simplified with better engineering precision.
     The force and position of each member of the STM under the action of vertical component of cable force in the side wall were originally determined by using the geometric relationship of members in the STM. The whole STM of pylon anchorage zone in the side wall under the action of vertical component of cable force was firstly established.
     Based on the mathematical statistics and analysis of a large number data of horizontal dimension of pylons, a series of credible horizontal models were established. By vectorizing shape topology results of horizontal models, the whole horizontal STM of pylon was established. The variation rule of model parameters with width-thickness radio of the facade wall was explored, and the calculation formula of the maximum rod force under the action of horizontal component of cable force was presented.
     On the basis of study on vertical STM and horizontal STM of pylon anchorage zone, the general calculation formula of the prestressing force in the pylon wall was proposed, which can serve to design tendons for the pylon wall quantitatively and to determine pylon size and arrangement of prestressing tendon, which can greatly simplify the tendons design for the pylon wall.
引文
[1]项贻强,易绍平,杜晓庆等.南京长江二桥南汊桥斜拉索塔节段足尺模型的研究[J].土木工程学报,2000(2):15-22.
    [2]刘钊,孟少平,刘智等.润扬大桥北汊斜拉桥索塔节段足尺模型试验研究[J].土木工程学报,2004(6):35-40 51.
    [3]刘世同.五河口斜拉桥索塔环向预应力筋张拉试验研究[J].公路,2005(5):7-10.
    [4]张望喜,易伟建,陈建阳等.武汉军山长江公路大桥索塔锚固区带锚块足尺节段模型试验研究[J].中南公路工程,2001(12):33-35.
    [5]项贻强,陈国强.鄱阳湖口大桥索塔节段足尺模型试验与分析研究[J].中国公路学报,2000(10):74-78.
    [6]成都西南交大科技园管理有限责任公司.重庆长寿长江公路斜拉桥索塔拉索锚固区足尺寸模型试验报告[C].成都:成都西南交大科技园管理有限责任公司,2007.
    [7]成都西南交大科技园管理有限责任公司.宜宾长江大桥索塔锚固区足尺节段模型试验报告[C].成都:成都西南交大科技园管理有限责任公司,2006.
    [8]唐亮,龙勇,黄道全等.宜宾中坝金沙江斜拉桥索塔拉索锚固区足尺寸模型试验报告[C].成都:西南交通大学土木工程学院桥梁及结构工程系,四川路桥集团公司,四川省交通厅公路规划勘察设计研究院,2002.
    [9]周厚斌,王俊,王勇等.西(昌)—攀(枝花)高速公路金江金沙江大桥索塔锚固区足尺寸模型试验研究报告[C].成都:西南交通大学,中国铁路工程总公司,2006.
    [10]林元培.斜拉桥[M].北京:人民交通出版社,1995,138-143.
    [11]李兴华,安群慧,王戒躁.芜湖长江大桥索塔锚固区模型试验研究[J].中国铁道科学,2001(10):103-106.
    [12]彭苗,陈升平,余天庆等.巴东长江大桥索塔锚固区节段模型试验和空间应力分析[J].武汉理工大学学报(交通科学与工程版),2004(10):759-762.
    [13]Tan K H, Lu H Y. Shear behavior of large reinforced concrete deep beams and code comparisons[J]. ACI Structural Journal,1999,96(5):836-845.
    [14]陶海.基于空间分析的混凝土斜拉桥关键问题研究(博士学位论文)[D].上海:同济大学,2007,117-136.
    [15]Yuen K C. Study on Ting Kau bridge[C]. Proceedings of Bridge Engineering 2 Conference, Bath, UK,2007.
    [16]王应良,高宗余.欧美桥梁设计思想[M].北京:中国铁道出版社,2008,248-250.
    [17]Ritter W(1899). "Die Bauweise Hennebique. " Schweizerische Bauzeitung, Zurich, (adopted from Schlaich et al.,1987).
    [18]Morsch E (1902). "Der Eisenbetonbau, seine Anwendung und Theorie. " 1st ed., Wayss and Freytag, A.G., Im Selbstverlag der Firma, Neustadt a. d. Haardt, 118pp. (adopted from Schlaich et al.,1987).
    [19]Rausch E(1929). "Berechnung des Eistenbetons gegen Verdrehung(Design of reinforced concrete in torsion). " Ph.D Thesis, Technische Hochschule.
    [20]Nielson M P. Om forskydningsarmering i jembetonbjaelker(On shear rein-forcement in reinforced concrete beams) [J]. Bygningsstatiske Meddelelser, 1967,38(2):33-58.
    [21]Lampert P, Thurlimann B. Torsionsversuche an stahlbetonbalken(Torsion tests of reinforced concrete beams) [C]. Bericht Nr.6506-2, Institut fur Baustatik, ETH, Zurich,1968,101pp.
    [22]Elfgren L. Reinforced concrete beams loaded in combined torsion bending and shear [M], Publication 71:3. Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden,1972,249pp.
    [23]Collins M P. Torque-twist characteristics of reinforced concrete beams [M]. Inelasticity and non-linearity in structural concrete. University of Waterloo Press.1973,211-231.
    [24]Robinson J R, Demorieux J M. Resistance ultimate du beton de lame de poutres en double te en beton arme[C]. IRABA Rep., Part 2,1972,53pp.
    [25]Vecchio F, Collins M P. Stress-strain characteristics of reinforced concrete in pure shear[C]. Final Report, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft,1981,211-225.
    [26]Hsu T T C. Softening truss model theory for shear and torsion[J]. AC I Structural Journal,1988,85(6):624-635.
    [27]Marti P. Basic tools of reinforced concrete beam design[J]. ACI Journal, 1985,83(1):36-42.
    [28]Collins M P, Mitchell D. Rational approach to shear design-the 1984 Canadian Code Provisions[J]. ACI Structural Journal,1986,83(6):925-933.
    [29]Rogowsky D M, Macgregor J G. Design of reinforced concrete deep beams [J]. Concrete International:Design & Construction,1986,8(6):49-58.
    [30]Schlaich J, Schafer K & Jennewein M. Toward a consistent design of structural concrete[J]. PCI Journal, May-June 1987,74-150.
    [31]Adebar P, Kuchma D & Collins M P. Strut-and-tie models for the design of pile caps:experimental study[J]. ACI Structural Journal,1990,87(1): 81-92.
    [32]Adebar P, Zhou L. Design of deep pile caps by strut-and-tie models [J]. ACI Structural Journal,1996,93(4):437-448.
    [33]Alshegeir A, Ramirez J A. Strut-tie approach in pretensioned deep beams [J]. ACI Structural Journal,1992,89(3):296-304.
    [34]Siao W B. Strut-and-tie model for shear behavior in deep beams and pile caps falling in diagonal splitting[J]. ACI Structural Journal,1993, 90(4):356-363.
    [35]Tan K H, Weng L & Teng S. A strut-and-tie model for deep beams subjected to combined top-and-bottom loading [J]. The Structural Engineer,1997, 75(13):215-225.
    [36]Yun Y M. Nonlinear strut-tie model approach for structural concrete [J]. ACI Structural Journal,2000,97(4):581-590.
    [37]Liang Q Q, Uy B & Steven G P. Performance-based optimization for strut-tie modeling of structural concrete[J]. Journal of Structural Engineering, 2002,128(6):815-823.
    [38]Ali M, Mhite R. Automatic generation of truss model for optimal design of reinforced concrete structures [J]. ACI Structural Journal,2001,98 (4): 431-442.
    [39]Liang Q Q, Xie Y M & Steven G P. Generating optimal strut-and-tie models in prestressed concrete beams by performance-based optimization [J]. ACI Structural Journal,2001,98(2):226-232.
    [40]Liang Q Q, Xie Y M & Steven G P. Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure [J]. ACI Structural Journal,2000,97(2):322-330.
    [41]Brena S F, Morrison M C. Factors affecting strength of elements designed using strut-and-tie models [J]. ACI Structural Journal,2007,104(3): 267-277.
    [42]Brown M D, Sankovich C L, Bayrak O & Jirsa J 0. Behavior and efficiency of bottle-shaped struts [J]. ACI Structural Journal,2006,103(3):348-355.
    [43]Eurocode 2. Design of Concrete Structures, Part 1-1, General Rules and Rules for Buildings[S]. prEN1992-1-1,2004,222pp.
    [44]ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05)[S]. American Concrete Institute, Farmington Hills, Mich.,443pp.
    [45]American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Specification,3st ed.[S]. Washington, DC,2005.
    [46]CSA Technical Committee on Reinforced Concrete Design. Design of Concrete Structures(A23.3-04)[S]. Canadian Standards Association, Mississauga, Ontario,2004,232pp.
    [47]Committee BD/2. Australian Standard, Concrete Structures (AS3600-2001) [S]. Standards Association of Australia,2001.
    [48]Concrete Design Committee. The Design of Concrete Structure (NZS3101:Part 1 and 2:2006)[S]. New Zealand Standard,2006.
    [49]Hwang S J, Lee H J. Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance [J]. ACI Structural Journal,1999,96(5):846-857.
    [50]Hwang S J, Lee H J. Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance [J]. ACI Structural Journal,2000,97(1):35-44.
    [51]Hwang S J, Lu W Y & Lee H J. Shear strength prediction for deep beams [J]. ACI Structural Journal,2000,97(3):367-376.
    [52]Hwang S J, Lu W Y& Lee H J. Shear strength prediction for reinforced concrete corbels[J]. ACI Structural Journal,2000,97 (4):543-552.
    [53]Hwang S J, Lee H J, Liao T F, Wang K C & Tsai H H. Role of hoops on shear strength of reinforced concrete beam-column joints [J]. ACI Structural Journal,2005,102(3):445-453.
    [54]周冬华.线荷载下桩承台按空间桁架模型的设计方法研究(硕士学位论文)[D].南京:东南大学,2001,48-63.
    [55]林松.桩厚承台空间桁架理论的研究及程序编制(硕士学位论文)[D].南京:东南大学,2002,27-34.
    [56]王田友.钢筋混凝土框架节点的拉压杆模型计算方法(硕士学位论文)[D].上海:同济大学,2004,40-78.
    [57]张文学.预应力混凝土连续箱梁局部应力分析及拉-压杆设计(博士学位论文)[D].上海:同济大学,2007,97-134.
    [58]王东.预应力混凝土锚固区配筋设计的拉压杆模型法(硕士学位论文)[D].上海:上海交通大学,2007,20-39.
    [59]Kuchma D A, Tjhin T N. CAST (Computer Aided Strut-and-Tie) design tool [J]. Structures 2001,1-7.
    [60]Yun Y M. Computer Graphics for Nonlinear Strut-Tie Model Approach [J]. Journal of Computing in Civil Engineering,2000,14(2):127-133.
    [61]荣见华,郑健龙,徐飞鸿.结构动力修改及优化设计[M].北京:人民交通出版社,2002,251-254.
    [62]周志民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005(2):69-76.
    [63]谢涛,刘静,刘军考.结构拓扑优化综述[J].机械工程师,2006(8):22-25.
    [64]Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures,1993,49(5):885-896.
    [65]Young V, Querin 0 M & Steven G P.3D and multiple load case bi-directional evolutionary structural optimization(BESO) [J]. Structural Optimization, 1999,18:183-192.
    [66]荣见华,姜节胜,胡德文.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003(5):584-590.
    [67]罗志凡,卢耀祖,荣见华.基于一种新的应力准则的渐进结构优化方法[J].同济大学学报,2005(3):372-375.
    [68]荣见华,姜节胜,颜东煌等.多约束的桥梁结构拓扑优化[J].工程力学,2002(4):160-165.
    [69]傅建林,荣见华,杨振兴.带有预应力的连续体组合结构拓扑优化[J].应用力学学报,2005(6):231-236.
    [70]李建强.拓扑优化在厚承台设计中的应用[J].http://www.paper.edu.cn.
    [71]张爱林,杨海军.预应力索-桁架结构形状优化设计[J].计算力学学报,2007(2):91-97.
    [72]曹云,胡秋香.斜拉桥主梁横截面拓扑优化研究[J].路基工程,2011(1):70-73.
    [73]周孟波,秦顺全.芜湖长江大桥大跨度低塔斜拉桥板桁组合结构建造技术[M].北京:中国铁道出版社,2004,101-104.
    [74]严少波,裴丙志.斜拉桥索塔拉索锚固区空间应力分析模型[J].国外公路,2000(6):22-24.
    [75]牟廷敏,蒋自强,蒋劲松等.重庆云阳长江公路大桥两阶段施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,2002.
    [76]林其均,刘万春,张忠诚等.国道319线涪陵长江大桥施工图设计文件[C].成都:四川省交通厅公路规划勘察设计院,1995.
    [77]刘万春,雷作樵,喻璐等.国道主干线重庆~湛江公路(重庆境)上桥至界石段马桑溪长江大桥施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,1998.
    [78]王应良,郑旭峰,周霆等.西部开发省际公路通道重庆绕城公路南段江津观音岩长江大桥施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,2006.
    [79]罗刚林,庄卫林,雷作樵等.西南公路出海大通道泸州绕城公路泸州泰安大桥两阶段施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,2001.
    [80]余报楚,张哲,张洪金.金马大桥主塔直束预应力筋设计技术与研究分析[J].公路交通科技,2005(5):104-107.
    [81]韩富庆,杨成斌,娄建等.安庆长江公路大桥索塔锚固区受力分析[J].合肥工业大学学报(自然科学版),2002(12):1167-1170.
    [82]朱玉,王宜均,王镛生等.鄂黄长江大桥塔索锚固区受力分析[A].二000年湖北省桥梁学术讨论会论文集(上册)[C],2000,127-131.
    [83]陈建阳,徐国平,刘丽等.大吨位小半径环向预应力在斜拉桥索塔锚固区中的应用研究[J].桥梁建设,2001(2):12-15.
    [84]Tensioning of tendons:Force-elongation relationship[R].London:Published by Thomas Telford Ltd, Telford House,1986,1-17.
    [85]柳州欧维姆机械股份有限公司.OVM技术参数[R].2005.
    [86]施海健.预应力混凝土结构张拉阶段应力分布和质量控制研究(硕士学位论文)[D].南京:东南大学,2003,21.
    [87]唐红元,孟少平,刘钊.斜拉桥索塔锚固区环向预应力束张拉控制研究[A].中国公路学会桥梁和结构工程分会2004年全国桥梁学术会议论文集[C],2004,489-493.
    [88]唐红元,孟少平,刘钊.小曲率半径预应力束张拉延伸量研究[J].桥梁建设,2005(3):18-20 32.
    [89]吴喜之.非参数统计(第二版)[M].北京:中国统计出版社,2006,158-169.
    [90]刘爱玉.SPSS基础教程[M].上海:世纪出版集团上海人民出版社,2007,251-253.
    [91]马恩林.概率论与数理统计(理工)[M].北京:人民教育出版社,2006,206-211.
    [92]http://ces.iisc.ernet.in/energy/water/paper/drinkingwater/rainwater/ ferro-cement.html.
    [93]Hsu T T C, Mo Y L. Softening of concrete in torsional members-theory and tests[J]. ACI Journal, Proceedings,1985,82(3):290-303.
    [94]Hsu T T C, Mo Y L. Softening of concrete in torsional members-prestressed concrete[J]. ACI Journal, Proceedings,1985,82(5):603-315.
    [95]Hsu T T C, Mo Y L. Softening of concrete in low-rise shear walls[J]. ACI Journal, Proceedings,1985,82(6):883-889.
    [96]Hsu T T C, Mau S T & Chen B. A theory on shear transfer strength of reinforced concrete[J]. ACI Structural Journal,1987,84(2):149-160.
    [97]周履.结构混凝土通向协调设计的压杆-拉杆模型[J].国外桥梁,2001(4):25-35.
    [98]周履.压杆-拉杆模型混凝土结构设计中的应用[J].世界桥梁,2002(2):1-7.
    [99]周履.利用压杆-拉杆模型进行结构混凝土的评估和加固[J].世界桥梁,2002(4):49-52.
    [100]http://cee.uiuc.edu/kuchma/strut_and_tie/STM/Models.html
    [101]Salem H, Maekawa K. Computer-aided analysis of reinforced concrete using a refined nonlinear strut and tie model approach [J]. Journal of Advanced Concrete Technology,2006,4(2):325-336.
    [102]http://cee.uiuc.edu/kuchma/strut%5Fand%5Ftie/STM/
    [103]Mitchell D, Collins M P. Diagonal compression field theory-a rational model for structural concrete in pure torsion [J]. ACI Structural Journal, 1974,71(8):396-408.
    [104]Lampert P, Thurlimann B. Ultimate strength and design of reinforced concrete beams in torsion and bending[M]. IASBE Publications, Zurich, Switzerland,1971.
    [105]Ramirez J, Breen J E. Proposed design procedures for shear and torsion reinforced and prestressed concrete[R]. CTRR248, Austin, Texas,1983.
    [106]Schafer K. Strut-and-tie models for the design of structural concrete [R]. National Cheng Kung University,1996.
    [107]Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal,1986,83(2):219-231.
    [108]Collins M P, Mitchell D. Prestressed concrete basics[R]. Canadian Pre-stressed Concrete Institute, Ottawa,1987.
    [109]程文瀼,康谷贻.混凝土结构,上册,混凝土结构设计原理(第二版)[M].北京:中国建筑工业出版社,2002,8-10.
    [110]贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计[M].北京:中国建筑工业出版社,2007,89-91.
    [111]叶列平,宋世研.中、美规范中受压构件的正截面承载力计算[J].建筑科学与工程学报,2008(6):56-63.
    [112]马旭涛.上海长江大桥索塔锚固区模型试验与分析研究(硕士学位论文)[D].上海:同济大学,2007,69.
    [113]汪听,吕志涛.斜向索力下钢-混凝土组合索塔锚固区荷载传递与分配关系分析[J].东南大学(自然科学版),2006(7):585-589.
    [114]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996,258-261.
    [115]张喜刚.苏通大桥总体设计[J].公路,2004(7):1-11.
    [116]卢永成,邵长宇.上海长江大桥工程的设计与关键技术研究[J].上海建设科技,2006(2):5-8.
    [117]林元培.斜拉桥[M].北京:人民交通出版社,1995,135-137.
    [118]王伯慧.斜拉桥结构发展和中国经验(下册)[M].北京:人民交通出版社,2004,180-184.
    [119]Burdet 0 L. Analysis and design of anchorage zones in post-tensioned concrete bridges[D], Doctor's Thesis. Austin:The university of Texas, 1990.
    [120]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002)[S].北京,2002.
    [121]VSL International LTD. Detailing for post-tensioned[C]. Bern, Switzerland, 1996.
    [122]Jo B W, Byun Y J & Tae G H. Structural behavior of cable anchorage zones in prestressed concrete cable-stayed bridge[J]. Can. J. Civ. Eng.29 (2002): 171-180.
    [123]文武松,周履.单束中心直锚的后张拉锚固区域[J].国外桥梁,1998(3):35-44.
    [124]Hengprathanee S. Linear and nonlinear finite element analysis of anchorage zones in post-tensioned concrete structures [D], Doctor's Thesis. Blacks-burg:Virginia polytechnic institute and state university,2004.
    [125]李兴华,安群慧,王戒躁.预应力混凝土空心桥塔锚固区受力特点研究[J].桥梁建设,1999(1):23-24.
    [126]Reineck K H. Examples for the design of structural concrete with strut-and-tie models(ACI SP-208)[M], USA,185-194.
    [127]魏华.体外预应力结构关键部位受力分析及拉压杆模型配筋计算研究(硕士学位论文)[D].上海:同济大学,2004,78-79.
    [128]卢春玲.体外预应力桥梁关键部位典型构造形式及其配筋研究(硕士学位论文)[D].长沙:长沙理工大学,2006,50-56.
    [129]刘涛.结构优化设计的渐进方法及优化设计的软件实现(硕士学位论文)[D].西安:西北工业大学,2004,37-40 62-65.
    [130]彭宇明.基于渐进结构优化法的结构截面形状优化(硕士学位论文)[D].汕头:汕头大学,2006,51-61.
    [131]张晋芳,赵人达.基于ANSYS的渐进结构拓扑优化方法比较[J].四川建筑科学研究,2009(4):35-40.
    [132]田波,牟廷敏,蒋劲松等.四川省雅安经石棉至泸沽高速公路苏村坝大渡河大桥施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,2007.
    [133]谢光辉,蒋劲松,庄卫林等.四川省川渝界至宜宾高速公路合江长江二桥施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [134]丁健康.重庆长江二桥主塔设计[A].全国城市桥梁青年科技学术会议论文集[C].上海,1996,40-48.
    [135]罗刚林,王祖华,雷作樵等.国道212线重庆至合川高速公路沙溪庙嘉陵江大桥施工图设计文件[C].成都:四川省交通厅公路规划勘察设计研究院,1998.
    [136]彭勇,何雅宇.重庆奉节长江大桥索塔拉索锚固区施工[J].重庆建设,2004(2):34-36.
    [137]中国公路学会桥梁和结构工程分会.面向创新的中国现代桥梁[M].北京:人民交通出版社,2009,81-83 87-89 55-57 37-41.
    [138]李军,姚建军.重庆忠县唐家沱长江大桥索塔锚固区环向预应力设计和受力分析[J].公路交通技术,2005(7)增刊:46-50.
    [139]伍波,常国强,张峰.彭溪河大桥索塔锚固区段足尺模型试验研究[J].公路交通技术,2008(6):61-65.
    [140]彭泽友,王兴达,冯云成等.梅溪河大桥索塔锚固区应力分析[J].公路交通科技(应用技术版),2010(09):131-133.
    [141]邓文中,任国雷,杨春.涪陵乌江二桥总体设计[.丁].桥梁建设,2007(4):43-46.
    [142]曹洪武.重庆双碑大桥主桥斜拉桥设计[J].桥梁建设,2010(5):35-38.
    [143]王伯惠.斜拉桥结构发展和中国经验(下册)[M].北京:人民交通出版社,2004,32-44 96-102 128-139.
    [144]李翠霞.武汉白沙洲长江大桥主塔设计[J].人民长江,2003(5):49-50.
    [145]李立峰,邵旭东,曾田胜.斜拉桥小尺寸预应力索塔的布束设计及试验研究[J].公 路,2000(10):1-3.
    [146]苏杨,罗嗣碧,朱华民.株洲建宁大桥主塔设计[J].人民长江,2003(12):14-15.
    [147]金文成,张晓飞,简方梁等.斜拉桥塔索锚固区空间应力分析[J].公路交通科技,2007(9):69-73.
    [148]武志军,姚伟发,吴文清.徐州市和平路跨铁路站场斜拉桥索塔锚固区足尺模型试验[J].中外公路,2008(2):117-120.
    [149]王锋君,项贻强.斜拉桥索塔节段足尺模型试验与分析研究[J].桥梁建设,2001(2):8-11.
    [150]乔建东,刘桂林.紫金斜拉桥索塔锚固段足尺模型试验研究[J].铁道标准设计,2008(11):54-57.
    [151]齐文忠,张利.甬江大桥斜拉桥索塔施工技术[J].公路,2010(10):47-50.
    [152]广东省西部沿海高速公路新会段有限公司.崖门大桥工程:塔墩梁固结单索面斜拉桥[M].北京:人民交通出版社,2004,110-113.
    [153]高宝峰.湛江海湾大桥斜拉桥主塔设计[J].中外公路,2006(10):23-25.
    [154]梁立农,宋神友,郭文华等.高赞大桥主跨斜拉桥设计简介[J].公路,2006(11):57-62.
    [155]梁立农,代希华.广州东沙大桥主跨斜拉桥设计简介[J].广东公路勘察设计,2008(1):1-4.
    [156]刘振标.广珠城际西江特大桥主桥设计[J].桥梁建设,2009(3):55-58.
    [157]刘旭锴,杨亮,陈明贵.丹拉海河大桥主塔锚固区空间应力分析[J].城市道桥与防洪,2003(4):44-46.
    [158]项敬辉,华龙海,李伟钊.天津海河大桥索塔锚固区应力分析[J].中国市政工程,2011(2):58-59 74.
    [159]熊守富.天津南仓斜拉桥索塔锚固区U形环向预应力施工控制研究[J].桥梁建设,2011(2):71-75.
    [160]郑宗仕,张强.泉州晋江大桥主桥总体设计[J].桥梁建设,2006(4):24-2648.
    [161]朱安静,秦顺全,吴靖云等.海口世纪大桥主孔斜拉桥设计[A].中国土木工程学会桥梁及结构工程学会第十四届年会论文集[C],2000,280-284.
    [162]李洋,王福春,张建军.沈阳市富民桥主塔应力状态研究[J].桥梁建设,2004年增刊:20-23.
    [163]李朝阳,冯鹏程,吴游宇.马岭河大桥的主塔设计[J].中外公路,2007(2):96-98.
    [164]李睿,董明,程海根.景洪澜沧江大桥索塔顶端空心截面段模型空间有限元分析[J].云南交通科技,1998(12):21-24.
    [165]杨国平,闫朔,党权交.东海大桥Ⅶ标主桥斜拉桥主塔施工[J].公路,2006(3): 45-50.
    [166]石建华,徐恭义,张强.澳门西湾大桥斜拉桥上部结构设计[J].桥梁建设,2005年增刊:55-57 75.
    [167]唐亮,龙勇,黄道全等.宜宾中坝金沙江斜拉桥索塔拉索锚固区足尺寸模型试验补充报告[C].成都:西南交通大学土木工程学院桥梁及结构工程系,四川路桥集团公司,四川省交通厅公路规划勘察设计研究院,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700